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Higher order long range correlations in nuclear structure and dynamics
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An explicit correction term to the ensemble averaged trajectory for the phase space single-particle dis
tion function due to the presence of the higher order long range correlations is considered. It is demons
that this extension of the usually employed transport approaches~BUU, BNV, LV, etc.! has a diffusion
structure. The role of higher order correlations in the cases of nuclear collective motion and the mean
decomposition effect in nuclear fragmentation at high temperatures is analyzed. In particular we show
importance of higher order correlations for the transition from zero to first sound regime for propagation o
collective excitation in hot nuclear matter.@S0556-2813~96!00905-3#
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In the last decade the use of the kinetic transport theo
of the Boltzmann-Nordheim-Vlasov~BNV! type has been
very successful in describing the main reaction mechanis
~e.g., particle production, collective flows, etc.! of heavy ion
collisions ~for review see, for example,@1#! All these theo-
ries are based on the one-body reduction of the many-b
dynamics accounting for the two-body correlation effec
through the averaged response of the one-body density@long
range correlations~LRC!# and the binary collision term
@short range correlations~SRC!#. At sufficiently high excita-
tion energies the dynamics of many-body correlations c
bring new important information on the system, going fro
the variances of physical observables to the essential feat
of the time evolution in instability regions@1,2#. Recently
there have been proposed several attempts to formula
stochastic transport theory including a selfconsistent dyna
ics of the higher order correlations. These approaches
based on the Boltzmann-Langevin~BL! method, where the
higher order effects are treated through the fluctuations a
ciated with the collision integral~e.g., the stochastic part o
the SRC@3–5#!. In some previous studies regarding the i
termediate excitation energies~see, for example,@6–9#, and
references therein! it has been pointed out the importance
higher order long range correlations~HOLRC!, that can be
treated as a mean field fluctuations. In this paper such ef
is analyzed within a technique which is not restricted to t
usually employed mode expansion approximation. We sh
that being more general such a method gives some simp
cations in understanding the physics and gross propertie
HOLRC effects. In particular we discuss here an applicat
to cases where we expect an increase of the contribut
from long range correlations and a relatively large spread
of different events: the collective motions at high tempe
ture and the dynamical instabilities. We must remark th
many studies have been devoted to the analysis of hig
order correlation effects in the theory of nuclear collecti
motions, in particular of giant resonances@10–13#. It is how-
ever extremely difficult to predict the temperature depe
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dence of these contributions. In this paper we suggest a se
classical approach which allows one to get a quite cle
picture of correlation contributions at high temperature wi
fundamental consequences on the nature of collective m
tions in excited nuclear matter.

The general features of the kinetic phenomena can be
pressed in terms of the average properties of the sing
particle ~sp! distribution function~df!: f (t)5^ f̂ (t)&; where
^•••& refers to the ensemble averaging related, for examp
to nucleus-nucleus collision events. The equation of moti
for the fluctuating sp dff̂ (t) regarding the particular event
can be written in a very general way as

] f̂

]t
1 iL f̂5I ~ f̂ !1dK~ t !, ~1!

whereL52 i $h, . . . % is the Liouville operator correspond-
ing to an evolution of the system in ensemble averaged tim
dependent mean fieldU(r)5^Û( r̂)&, and h(r)5p2/2m
1U(r) is the self-consistent mean field Hamiltonian, relate
to the long range part of the nuclear interaction.I ( f̂ ) denotes,
in general, a memory dependent binary collision term, re
resenting the average effect of the residual Pauli-reduc
hard two-body interactions. This gives rise to the volum
dissipation due to incoherent two-body correlation effec
during the evolution. The higher order effects are indicate
in Eq. ~1! by the additional term: dK(t)5dKcol(t)
1dKmf(t); corresponding to the fluctuating part of the SRC
dKcol(t); as well as to the HOLRC:dKmf(t)52 idL f̂ ;
dL52 i $dU, . . . %, where dU5Û2U is the deviation of
the mean field from the average one. ThisdU has nothing to
do with variations of the average mean field due to se
consistency. These are indeed already accounted for wit
standard random-phase approximation~RPA! approach to
the linear response theory for the ensemble averaged sp
~see below and in the Appendix!. Moreover we show below
that contrary to the versions of BL model incorporated in@4,
9# such a fluctuation is not vanishing in a collisionless dy
namics and in a zero sound propagation of collective m
tions. Actually one of the main results of the present study

uki,
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53 2177HIGHER ORDER LONG RANGE CORRELATIONS IN NUCLEAR . . .
related to the effect of the HOLRC on the transition fro
zero to first sound dynamical regime.

We consider the fluctuating properties of the nuclear
namics in analogy with Brownian motion, where it is a
sumed that Eq.~1! describes a stochastical process in wh
the entire sp dff̂ is a stochastic variable anddK(t) acts like
a random force. For the intermediate excitation energ
~above 20 MeV! it is convenient to employ the Markovia
assumption. Then the closed set of the self-consistent tr
port equations forf (t) is derived~see the Appendix! from
Eq. ~1! to be

] f

]t
1 iM @ f # f5Kc@ f #, M @ f #[L@r#1 i I @ f #, ~2!

Kc@ f #5(
ab

Dp
ab]pa]pb f ~r ,p;t !, ~3!

d

dt
svar52 i ~M @ f #2M* @ f # !svar1D~ t !, ~4!

D~ t ![(
ab

Dp
ab]pa f ]pb f . ~5!

Projecting Eq.~4! to some particular modes one gets@14# the
so-called Lalime equation for the expansion of the corre
tion function over the collective vibration modes.

The diffusion term~3! and~5! can be further simplified in
the case near local equilibrium. This case is of interest
studies of higher order correlation effects in the nuclear c
lective dynamics~e.g., giant resonances, fusion, fission, a
fragmentation phenomena!. In this quasistatic limit with re-
spect to the diffusion properties Eq.~4! reduces to

Deq5 i ~M2M* !eqsvar
eq52svar

eq /t rel , ~6!

wheret rel is a relaxation time for nucleon dynamics repr
senting the composition of the collisional and sp mec
nisms:t rel

215tcol
211tsp

21 , accounted by an extended sp ev
lution operator M @15#. One sees that an addition
correlation term due to the coupling sp dynamics with me
field fluctuations is not vanishing also within the limit of th
collisionless regimetcol

21→0. Using the familiar result
svar
eq5 f eq(12 f eq)'Td f/dh; obtained within semiclassica

mean field approximation neglecting zero point vibratio
and employing the definition~5! we get from Eq.~6! the
famous Einstein relation for the average diffusion ra
D̄p
eq'2T/ t̄ rel .
One of the particularly important quantities related to t

dynamical and structure features is represented by the
linear response function~rf!. Using the perturbation theor
~pt! and standard semiclassical technique~see, for example
@16#! we obtain from Eqs.~2! and ~3! the following expres-
sion for the imaginary part of the sp rf:x09(k;v)
[Im(x0(k;v)), of the Fermi system

x09~k;v!5
v

pE dt C~m,t !exp~2 ivt !, ~7!
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C5E dr 1dp

~2p!3
d~m2h!S~r 1,r ;t !exp$ ik~r2r1!%, ~8!

wherem denotes the nucleon chemical potential

m'e
FS 12

5p

4

e*

e
F
D

with e*'p2T2/4e
F
; S(r 1,r ;t) is the probability of finding a

nucleon with initial conditions (r ,p) at the pointr 1 at the
time t. AssumingT!e

F
, we have employed here a kind of

zero-temperature approximation that consists in the follow
ing relation: d f /dh5(2p)232d(m2h). It is important to
stress here that the approximation~7! is valid in the limit of
the long wavelength fieldk!km5A2mm.

Within the local density approximation the diffusion rate
has a scalar formDp

ab'dabDp . Then the probability
S(r 1,r ;t) can be approximated by the Gaussian distributio
function ~see@19#!:

S~r 1,r ;t !'
exp$2@r 12r ~ t !#2/Drt%

~pDrt !
3/2 , ~9!

wherer (t) denotes the average trajectory of a nucleon an
the spatial diffusion coefficientDr is related to the value
D̄p : Dr5 t̄ rel

2 D̄p . For infinite nuclear matter we assume rec-
tilinear average trajectoryr (t)5r1vt; and calculate from
Eqs.~7!–~9! the quantityx09(k;v) as @16,20#

x09~z,u!'
mpm

2p2 uXQ~12~zD!22u2!

1p21arctanS 2zD

~zD!2211u2D C, ~10!

where the variablesz andu are related to the wave number
(z5k/2km) and sound velocity (u5v/kvm) measured in the
respective units regarding the chemical potential, whil
D5Dr /2\.

The real part of the sp rf„x08(k;v)…, is calculated using
the Kramers-Kronig relation

x08~z,u!5
mpm

2p3 „12
u

4
lnS ~u11!21~zD!2

~u21!21~zD!2D …. ~11!

An expansion of the response function for small values o
product (zD), which represents the ratio of the in medium
correlation length and the wavelength, reads

x0~z,u!u~zD!!1'
mpm

2p3 S 12
u

2
lnUu11

u21U1 ipuQ~12u!

1 i
2uzD

u221
1

~uzD!2

~u221!2
1••• D . ~12!

From first three terms of this series one can easily recogniz
the familiar result obtained within Vlasov approximation
@17,18#. We see that HOLRC are extremely important if the
reduced sound velocity is close to 1. It is also clear that th
diffusion term acts in the direction of a reduction of the rea
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FIG. 1. ~a! The sound velocityu0 vs the prod-
uct (zD): the solid line is the solution of Eq.~13!;
the dashed line is obtained according to Eq.~14!
with k i'1.085, 2.38, and 4.71 forF050.7 ~s!;
3.5 ~* ! and 7.0~3!, respectively.~b! The tem-
perature dependence of the reduced GDR f
quency and HOLRC partial width being the solu
tion of Eqs. ~13! and ~15! at z525 and
k05v r

2/GGDR
col '225 MeV, corresponding to mas

numberA'120. The figures on the curves are
units: (10 T)/heF.
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part of the sound velocity. Such a situation occurs, for
stance, in the case of zero sound~see below!.

The sp response function allows one to consider the ch
acteristic vibrations representing important features rela
to the structure of the many-body system. These vibrati
are determined by the following dispersion relation@17,18#:

x0~k,vk!52S ]Uk

]r D 21

. ~13!

Here the coupling constant is given by]Uk /]r
5g(k)(]Ũ/]r), whereŨ is a function of the local density
r and g(k) is the Fourier component of the convolutio
function that simulates a finite range of the interaction.

A very important property of a Fermi liquid is related t
the possibility of propagation of zero sound waves at ve
low temperature@17#. These vibrations are associated with
solution of Eq.~13! with real value of sound velocity corre
sponding to the condition Re@u#.1. It is well known that in
this case we have (vtcol).1 and the dominant relaxation
mechanism at low temperatures turns out to be the two-b
one due to the collision term@see Eq.~2!#. In this case the
relaxation rate regarding the collisional width of the colle
tive mode grows with the temperature asT2. It can be easily
seen that the solution associated with zero sound can ex
the valueFk5(]Uk /]r)(3r/2e

F
) is positive. This situation

occurs for nuclear matter at density values larger or equa
the normal one. For our estimates we consider a wave n
ber independent parameterF0 . From Fig. 1 we see that an
additional diffusion term in the transport equation due to t
HOLRC results in the decrease of the real part of sou
velocity. On the other hand, the imaginary part grows p
portionally to the productzD. This behavior can be approxi
mated by

Re@u
0
#21

ū
0
21

'A12S zDk r
D 2, Im @u

0
#'k i~zD!, ~14!

whereū
0
is the sound velocity related to the respective V

sov equation,k r'0.32; andk i'112exp$22/F0% for small
n-

ar-
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values ofF0 . The imaginary part of sound velocity is asso
ciated with a damping of the collective mode due to correl
tions. Therefore in the case of comparable correlation a
wavelengths, (zD);1, we can come to a situation when th
HOLRC contribution to the width of the collective vibration
is larger than the respective frequency.

For the giant dipole resonance~GDR! in finite nuclei we
can estimate the wave number according to Steinwedel a
Jensen model:kGDR'p/2R, whereR is the nuclear radius.
In the bulk region we assume the collisional relaxatio
mechanism for the nucleons participating to dipole collectiv
mode:t rel'tcol'k

0
/(v r

21zT2), that results in a frequency
dependent diffusion rate@see Eq.~6!#. Then the coupled
equations accounting for HOLRC are reduced to

~zD!'
h

2

k
0
T

v r
21zT2

, v r2 iGh'hmu
0
, ~15!

whereGh indicates the contribution of HOLRC to the reso
nance width; andh5p/kmR'2.1A21/3. We see that the
product (zD) reaches its maximum value at temperatu
Ttr5v r /Az. Such a behavior could be related to the recent
reported experimental evidence dealing with saturation of t
GDR width at high excitation energy@21# starting from the
temperatureTtr'3 MeV. This evidence allows one, indeed
to estimate the parameterz'25. This value is between the
various theoretical evaluations given in the literatur
z54p2/3 andz54p2 ~see@21# and references therein!. Fig-
ure 1~b! shows that the HOLRC partial width sharply in-
creases with temperature, reaches its maximum value
Ttr'he

F
/Az, and slowly decreases atT.Ttr . We stress that

without the important corrections due to HOLRC the trans
tion temperature would be around 15 MeV@22,21#, much
more than an equilibrated compound nucleus can susta
Therefore without the substantial contribution of HOLRC
would be not possible to observe such an effect in excit
nuclei. Similar behavior of the sound waves damping h
been observed, for example, in3He liquid @23#. It would be
very interesting to carry out similar studies in the case
nuclear matter.
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Finally we briefly consider the conditions referring th
unstable modes. In this case one finds the imaginary solu
v5 in of the dispersion relation~13! and it is defined by the
RHS of the Eq.~10!. The negative quantityn corresponds to
a positive Lyapunov exponent of the respective collect
mode leading to a mean field~spinodal! decomposition of the
nuclear matter with growing timetk52(nk)21. From Eqs.
~10! and ~13! we find that a solution referring to amplifie
modes exists at the condition (11Fk

21),0, while the case
(11Fk

21).0 is associated with the overdamped mod
Similar conditions have been obtained in@14# also in the
limit of Vlasov approximation.

We have presented some results on higher order l
range correlation effects in nuclear dynamics. The obtai
equations~3!–~5! for the HOLRC term can be used in ord
to test the mode expansion approximation. Following a se
classical treatment we have analyzed some gross prope
of such an effect considering the averaged behavior of
respective kinetic terms and employing a Markovian proc
assumption. We have seen that HOLRC’s are very impor
for a correct description of thermal properties of zero sou
propagation.

On the other hand, one can find some analogy betw
the expansion of the response function with respect to
quantity z and quantum features related to the intrinsic d
namics@24#. In absence of HOLRC’s, quantum correctio
associated with finiteness of the wave-length start with
term proportional toz2, see Eq.~10! of @24#. From Eq.~12!
we see that a term linear inz is not vanishing as well due to
the presence of HOLRC’s. This property seems to indica
quantum origin of considered correlations which turns ou
be in competition with quantum features of intrisic structu
The mean field fluctuations result in a broadening of sing
particle energies and eventually in a melting of the intrin
quantum structure at high temperature. For sound wav
naive estimate of such ‘‘melting point’’ can be obtained fro
the conditionuuDu.z. The use of the respective paramete
in finite nuclei ~see above! yields to a relatively small value
of the associated temperatureT.Tm't̄ rel

21/uuukmR. How-
ever our results also show that the considered effects req
a more detailed analysis when quantum features, like re
dation effects, etc., are taken into account as well. A qu
tum Langevin treatment, similar to the one presented in@9#,
would allow one, indeed, to carry out such a study, that
hope to present in a near future.
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APPENDIX: THE STOCHASTIC HIGHER ORDER LONG
RANGE CORRELATIONS

The transport equation~2! for the averaged df is obtained
by statistical averaging of the respective equation~1!. Then
the correlation term arising on the RHS of Eq.~2! is written
as @25#

Kc@ f #5^dK~ t !&'2 i ^dLd f &, ~A1!

whered f5 f̂2 f is the deviation of the df from the average
one. We neglect the fluctuating part of the SRC@dKcol(t)#,
that vanishes near the equilibrium due to the averaging. Th
part could turn out to be important, indeed, in some speci
cases dealing with many-body coherent effects within th
local region, for example subthreshold particle production

For the small amplitude fluctuations (d f ) we use the pt by
employing the linearized equation~1! around the averaged
equation~2!:

]d f

]t
1 iM @ f #d f5dK~ t !, ~A2!

whereM@ f # represents an extended sp evolution operat
including the combined action of the averaged self-consiste
mean field and collision integral@see Eq.~2!#. Solving for-
mally Eq. ~17! and assuming a random force structure of th
fluctuation term,

dK~ t !'(
a

dFa]pa f with dFa'2] radU,

we get the stochastical correlation termKc@ f # of Eq. ~16! as
,
er.
Kc@ f #5E
0

t

ds(
ab

K ] radU~ t !expH 2 i E
s

t

dt Mcl~t!J ] rbdU~s!L ]pa]pb f ~s!1K ]W rdU~ t !expH 2 i E
0

t

dt Mcl~t!J ]W pd f ~0!L .
~A3!

Assuming Markovian structure of the correlations and a local mean field we obtain@25# the form~3! for the termKc@ f # with

Dp
ab5E

0

t

ds] ra] r1b^dU~r ,t !dU~r1 ,s!&ur1→r . ~A4!

One sees that the term accounting for HOLRC has a diffusion structure with diffusion rate related@25# to the density
correlation function within to a coupling constant factor@see Eq.~13!#. The dynamics of correlation function is, consequently
affected by HOLRC effects. These properties allow one, indeed, to incorporate the HOLRC in a self-consistent mann

Employing Eq. ~17! for the sufficiently small time interval@Dt5t2t0# we get the df correlation function
sG(t1 ,t2)[^d f (t1)d f * (t2)& as
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sG~ t1 ,t2!5E
t0

t1

ds expH 2 i E
s

t1

dt M J E
t0

t2

ds8expH 2 i E
s8

t2

dt M* J ^dK~s!dK* ~s8!&

1expH 2 i E
t0

t1

dt M J expH 2 i E
t0

t2

dt M J sG~ t0 ,t0!. ~A5!

Under the Markovian approximation:

^dK~s!dK~s8!&'(
ab

^] radU~s8!] rbdU~s!&]pa f ]pb f'(
ab

Dp
ab]pa f ]pb fd~s2s8![D~s!d~s2s8! ~A6!

the equal time correlatorsvar(t)[sG(t,t) turns out to be dominant and it has the following form:

svar~ t !5expH 2 i E
t0

t

dt~M2M* !J svar~ t0!1E
t0

t

ds expH 2 i E
s

t

dt~M2M* !JD~s!. ~A7!

One can easily see that the phase space correlation function fulfills the differential equation~4!.
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