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Higher order long range correlations in nuclear structure and dynamics
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An explicit correction term to the ensemble averaged trajectory for the phase space single-particle distribu-
tion function due to the presence of the higher order long range correlations is considered. It is demonstrated
that this extension of the usually employed transport approat®es), BNV, LV, etc) has a diffusion
structure. The role of higher order correlations in the cases of nuclear collective motion and the mean field
decomposition effect in nuclear fragmentation at high temperatures is analyzed. In particular we show the
importance of higher order correlations for the transition from zero to first sound regime for propagation of the
collective excitation in hot nuclear matt¢50556-28136)00905-3

PACS numbd(s): 21.60—n, 24.30.Cz, 24.66:k

In the last decade the use of the kinetic transport theoriedence of these contributions. In this paper we suggest a semi-
of the Boltzmann-Nordheim-ViasoBNV) type has been classical approach which allows one to get a quite clear
very successful in describing the main reaction mechanismgicture of correlation contributions at high temperature with
(e.g., particle production, collective flows, étof heavy ion  fundamental consequences on the nature of collective mo-
collisions (for review see, for examplg1]) All these theo- tions in excited nuclear matter.
ries are based on the one-body reduction of the many-body The general features of the kinetic phenomena can be ex-
dynamics accounting for the two-body correlation effectspressed in terms of the average properties of the single-
through the averaged response of the one-body delisity  particle (sp distribution function(df): f(t)=(f(t)); where
range correlationgLRC)] and the binary collision term (---) refers to the ensemble averaging related, for example,
[short range correlationSRQ]. At sufficiently high excita-  to nucleus-nucleus collision events. The equation of motion
tion energies the dynamics of many-body correlations caror the fluctuating sp dff(t) regarding the particular event
bring new important information on the system, going fromcan be written in a very general way as
the variances of physical observables to the essential features
of the time evolution in instability regionfl,2]. Recently -
there have been proposed several attempts to formulate a ﬂ+iLf=l(?)+5K(t) )
stochastic transport theory including a selfconsistent dynam- at '
ics of the higher order correlations. These approaches are
based on the Boltzmann-Lange\BL) method, where the . . N
higher order effects are treated through the fluctuations ass&‘fherel‘_ _'{h’.' .-} s the L'OUV'."e operator correspond.—
ciated with the collision integrale.g., the stochastic part of Ing to an evolution qf the system n ensemble a"e”;‘ged time
the SRC[3-5]). In some previous studies regarding the in-dependent mean field (p)=(U(p)), and h(p)=p~/2m
termediate excitation energiésee, for examplg6—9], and +U(p) is the self-consistent mean field Hamiltonian, related
references therejrit has been pointed out the importance of to the long range part of the nuclear interactif) denotes,
higher order long range correlatiofdOLRC), that can be in general, a memory dependent binary collision term, rep-
treated as a mean field fluctuations. In this paper such effeégsenting the average effect of the residual Pauli-reduced
is analyzed within a technique which is not restricted to thehard two-body interactions. This gives rise to the volume
usually employed mode expansion approximation. We showlissipation due to incoherent two-body correlation effects
tha‘[ being more genera' SUCh a method gives some simp"fpunng the eVOlut|0n. The h|gher Order effectS are |nd|Cated
cations in understanding the physics and gross properties 8 Ed. (1) by the additional term: sK(t)=oKco(t)
HOLRC effects. In particular we discuss here an applicatiortt SKmi(t); corresponding to the fluctuating part of the SRC:
to cases where we expect an increase of the contribution@o(t); as well as to the HOLRC: 6K y(t)=—i6Lf;
from long range correlations and a relatively large spreadingL = —i{5U, ...}, where SU=U-U is the deviation of
of different events: the collective motions at high tempera-the mean field from the average one. Thl$ has nothing to
ture and the dynamical instabilities. We must remark thatdo with variations of the average mean field due to self-
many studies have been devoted to the analysis of higheonsistency. These are indeed already accounted for within
order correlation effects in the theory of nuclear collectivestandard random-phase approximatid®PA) approach to
motions, in particular of giant resonandd9—13. It is how-  the linear response theory for the ensemble averaged sp df
ever extremely difficult to predict the temperature depen{see below and in the AppendixMoreover we show below

that contrary to the versions of BL model incorporatedldn
9] such a fluctuation is not vanishing in a collisionless dy-
*Permanent address: Institute for Nuclear Research, 47, Pr.Naukiamics and in a zero sound propagation of collective mo-
Kiev, 252028 Ukraine. tions. Actually one of the main results of the present study is
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zero to first sound dynamical regime. (27)35(M—h)2(f1,f;t)e><p[i k(r=r1)}, (8
We consider the fluctuating properties of the nuclear dy-

namics in analogy with Brownian motion, where it is as-\yhere, denotes the nucleon chemical potential

sumed that Eq(1) describes a stochastical process in which

the entire sp df is a stochastic variable angK (t) acts like

a random force. For the intermediate excitation energies M€

(above 20 MeYV it is convenient to employ the Markovian

assumption. Then the closed set of the self-consistent trangs., _x 212/, - Y o T

port equations foif(t) is derived(see the Appendixfrom With e* ~ T f4e; 2(ry,rit) is the probability of finding a

Eqg. (1) to be

related to the effect of the HOLRC on the transition from dr,dp
c-|

57 €*
4 €
F

nucleon with initial conditions r;p) at the pointr, at the
time t. AssumingT< €., We have employed here a kind of
of ) zero-temperature approximation that consists in the follow-
E“M[f]f:Kc[f]’ MIfl=L[p]+il[f], (2  ing relation: df/dh=(27) 328(x—h). It is important to
stress here that the approximati@f is valid in the limit of
the long wavelength fielét<k,=+2mu.
Kf1=2> D3P dpadppf (r.p;t), 3 Within the local density approximation the diffusion rate
“p has a scalar formDg?~3,,D,. Then the probability
2(rq,r;t) can be approximated by the Gaussian distribution

%ovas—i(M[f]—M*[f])ovar+D(t), (4)  function (see[19]):
L exp—[ri—r(v]*/Dit}
D)= D&Pdp.t dpsf. 5) N T I ©)
aB

wherer(t) denotes the average trajectory of a nucleon and

Projecting Eq(4) to some particular modes one gEtd| the  the spatial diffusion coefficienD, is related to the value
so-called Lalime equation for the expansion of the correIaDp; Dr:;rzeIDp- For infinite nuclear matter we assume rec-
tion function over the collective vibration modes. tilinear average trajectory(t)=r+vt; and calculate from

The diffusion term(3) and(5) can be further simplified in Egs.(7)—(9) the quantityy’(k;w) as[16,20
the case near local equilibrium. This case is of interest for
studies of higher order correlation effects in the nuclear col- mp
lective dynamicge.g., giant resonances, fusion, fission, and XS(Z,U)~2—W§U O(1-(zA)*—-u?)
fragmentation phenomenadn this quasistatic limit with re-
spect to the diffusion properties E@l) reduces to . 27A
+ arctar{m

), (10

Deq:i(M_M*)eqo'\e/grzzo'\e/gr/Trely (6)

. . . . where the variablez andu are related to the wave number
where 7, is a relaxation time for nucleon dynamics repre—(zzk/ZK ) and sound velocity(= w/kv ,) measured in the
. " o [ u u
sgntmg qu cggnpos;tlon of the collisional and sp rneCharespective units regarding the chemical potential, while
NISMS: 7o) = 7¢0 + 75, , accounted by an extended sp evo- , _'n oz
lution operator M [15]. One sees that an additional e
correlation term due to the coupling sp dynamics with mea

field fluctuations is not vanishing also within the limit of the

The real part of the sp rfy((k;w)), is calculated using
The Kramers-Kronig relation

collisionless regimer,,—0. Using the familiar result mp u [(u+1)2+(zA)2
oo ="fe{l—feg~Tdf/dh; obtained within semiclassical Xé(Z.U)=ﬁ§(1—Z|n =12+ (z0) ))- 11

mean field approximation neglecting zero point vibrations,
and employing the definitiori5) we get from Eq.(6) the A expansion of the response function for small values of
famous Einstein relation for the average diffusion rate;proquct gA), which represents the ratio of the in medium

Dp=2T/7y. correlation length and the wavelength, reads
One of the particularly important quantities related to the
dynamical and structure features is represented by the sp mp, u )
linear response functiofrf). Using the perturbation theory — Xo(Z:W|(zs)<1~ 5.3 1 5Ino | Fimue(1-u)

(pt) and standard semiclassical technidsee, for example,

[16]) we obtain from Eqgs(2) and(3) the following expres- 2uzA  (uzA)?

sion for the imaginary part of the sp rfyg(k;w) BT (uZ—1)2 o
=Im(xo(k;w)), of the Fermi system

. (12

From first three terms of this series one can easily recognize
poL. @ . the familiar result obtained within Vlasov approximation
Xo(K;w)= ;j dt Clu.tyexp(—iot), @) [17,18. We see that HOLRC are extremely important if the
reduced sound velocity is close to 1. It is also clear that the
with diffusion term acts in the direction of a reduction of the real
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FIG. 1. (a) The sound velocityy vs the prod-
uct (zA): the solid line is the solution of E¢13);
the dashed line is obtained according to Edgf)
0.2 with k;=~1.085, 2.38, and 4.71 fdf;,=0.7 (O);
3.5 (*) and 7.0(X), respectively.(b) The tem-
perature dependence of the reduced GDR fre-
quency and HOLRC partial width being the solu-
tion of Egs. (13) and (15 at ¢{=25 and
ko= w?IT & ~225 MeV, corresponding to mass
numberA~120. The figures on the curves are in
units: (10 T)Meg.
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part of the sound velocity. Such a situation occurs, for in-values ofF,. The imaginary part of sound velocity is asso-
stance, in the case of zero soufsge below. ciated with a damping of the collective mode due to correla-

The sp response function allows one to consider the chations. Therefore in the case of comparable correlation and
acteristic vibrations representing important features relatedvavelengths, #A)~ 1, we can come to a situation when the
to the structure of the many-body system. These vibrationslOLRC contribution to the width of the collective vibration
are determined by the following dispersion relat{d7,18: is larger than the respective frequency.

For the giant dipole resonan¢&DR) in finite nuclei we
can estimate the wave number according to Steinwedel and
Jensen modekgpr~ 7/2R, whereR is the nuclear radius.

In the bulk region we assume the collisional relaxation
Here the coupling constant is given byU,/dp  mechanism for the nucleons participating to dipole collective
=g(k)(aU/dp), whereU is a function of the local density mode: 7~ 7eo~ Ko/(“’r2+ [T?), that results in a frequency

p and g(k) is the Fourier component of the convolution dependent diffusion ratfsee Eq.(6)]. Then the coupled

p 13

Xo(K,wy)=—

auk)l

function that simulates a finite range of the interaction. equations accounting for HOLRC are reduced to
A very important property of a Fermi liquid is related to
the possibility of propagation of zero sound waves at very T
low temperaturg17]. These vibrations are associated with a (zA)~ K 2;2 o, —iTy~nuu, (15)
solution of Eq.(13) with real value of sound velocity corre- 2w+ (T 0

sponding to the condition Re]>1. It is well known that in o o

this case we haveu(r,,)>1 and the dominant relaxation Wherth_|nd|cates the contrlbutlon_cljlf3 HOLRC to the reso-
mechanism at low temperatures turns out to be the two-bodj@nce width; andy=m/k,R~2.1JA""". We see that the
one due to the collision terifsee Eq.(2)]. In this case the Product @A) reaches its maximum value at temperature
relaxation rate regarding the collisional width of the collec-Ty=w; /v/Z. Such a behavior could be related to the recently
tive mode grows with the temperature B It can be easily reported experimental evidence dealing with saturation of the
seen that the solution associated with zero sound can exist 8DR width at high excitation enerdy21] starting from the
the valueF .= (U, /dp)(3pl2¢.) is positive. This situation temperaturel,~3 MeV. This evidence allows one, indeed,

occurs for nuclear matter at density values larger or equal t& ‘?St'matﬁ the .parlametgirz 25. This value is t?]etwlgen the
the normal one. For our estimates we consider a wave nun¥elrfu§/ theoretical evaluations given in the literature:
ber independent parametBg. From Fig. 1 we see that an =47 /3 and{=4~ (see[21] and references thersirFig-
additional diffusion term in the transport equation due to ther® Xb) shows that the HOLRC partial width sharply in-
HOLRC results in the decrease of the real part of soundreases with temperature, reaches its maximum value at
velocity. On the other hand, the imaginary part grows pro-Tv= 7€/, and slowly decreases &t-T . We stress that
portionally to the productA. This behavior can be approxi- without the important corrections due to HOLRC the transi-
mated by tion temperature would be around 15 Mdg%2,21], much
more than an equilibrated compound nucleus can sustain.

Reu ]-1 ZA\ 2 Therefore without the substantial contribution of HOLRC it
—_— 1—(—) , Im[uo]%Ki(zA), (14 would be not possible to observe such an effect in excited

K nuclei. Similar behavior of the sound waves damping has
_ _ _ been observed, for example, fie liquid [23]. It would be
whereu is the sound velocity related to the respective Vla-yery interesting to carry out similar studies in the case of
sov equationy,~0.32; andx;~1+2exd—2/F,} for small  nuclear matter.

u-—1
0
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Finally we briefly consider the conditions referring the ACKNOWLEDGMENTS
unstable modes. In this case one finds the imaginary solution Authors are indebted to S. Ayik, M. Colonna, A. Bo-

w=iy of the dispersion relatio(L3) and it is defined by the nasera, and V. Denisov for numerous discussions and to the
RHS of the Eq(10). The negative quantity corresponds to ' |

mode leading to a mean fie{dpinodal decomposition of the
nuclear matter with growing time,= — (vk) ~1. From Egs.
(10) and (13) we find that a solution referring to amplified
modes exists at the condition {—1F;1)<0, while the case
(1+F,H>0 is associated with the overdamped modes.

Similar conditions have been obtained [ib4] also in the =~ APPENDIX: THE STOCHASTIC HIGHER ORDER LONG
limit of Vlasov approximation. RANGE CORRELATIONS

We have presented some results on higher order long
range correlation effects in nuclear dynamics. The obtaineg
equationg3)—(5) for the HOLRC term can be used in order y
to test the mode expansion approximation. Following a semiz,
classical treatment we have analyzed some gross propert|es
of such an effect considering the averaged behavior of the ]
respective kinetic terms and employing a Markovian process K[ f]=(oK(t))~—i(sLsf), (A1)
assumption. We have seen that HOLRC's are very important
for a correct description of thermal properties of zero soundyhere 5f=f—f is the deviation of the df from the average
propagation. one. We neglect the fluctuating part of the SREK .o ()],

On the other hand, one can find some analogy betweefhat vanishes near the equilibrium due to the averaging. This
the expansion of the response function with respect to th@art could turn out to be important, indeed, in some specific
quantity z and quantum features related to the intrinsic dy-cases dealing with many-body coherent effects within the
namics[24]. In absence of HOLRC's, quantum corrections|ocal region, for example subthreshold particle production.
associated with finiteness of the wave-length start with a For the small amplitude fluctuations{) we use the pt by

term proportional t@®, see Eq(10) of [24]. From Eq.(12)  employing the linearized equatioil) around the averaged
we see that a term Ilnear mis not vanishing as well due to  equation(2):

the presence of HOLRC's. This property seems to indicate a

guantum origin of considered correlations which turns out to 95f

be in competition with quantum features of intrisic structure. +iM[f]8f=6K(1), (A2)

The mean field fluctuations result in a broadening of single- 3

particle energies and eventually in a melting of the intrinsic

guantum structure at high temperature. For sound waves where M[f] represents an extended sp evolution operator
naive estimate of such “melting point” can be obtained from including the combined action of the averaged self-consistent
the condition|uA|>z. The use of the respective parametersmean field and collision integrébee Eq.(2)]. Solving for-

in finite nuclei(see aboveyields to a relatively small value mally Eq.(17) and assuming a random force structure of the
of the associated temperatufle> T~ 7i/|u|k,R. How-  fluctuation term,

ever our results also show that the considered effects require

a more detailed analysis when quantum features, like retar-

dation effects, etc., are taken into account as well. A quan- 6K(t)~2 OF 4dpaf  with 6F ,~—4,,0U,

tum Langevin treatment, similar to the one presente®in “«

would allow one, indeed, to carry out such a study, that we

hope to present in a near future. we get the stochastical correlation teky f] of Eq. (16) as

sity as well as financial support from INFN and Alexander
von Humboldt-Stiftung are gratefully acknowledged by one
of us (V.N.K.).

The transport equatiof?) for the averaged df is obtained
statistical averaging of the respective equatibn Then
‘the correlation term arising on the RHS of E#) is written

s[25]

Kc[f]=f0tdsaEB <(9m5U(t)exp{ —iLth MC'(T)]arﬁ5U(s)>apaapﬁf(s)+<5r5U(t)exp{ —ifotdr MC'(T)}épaf(0)>.

(A3)
Assuming Markovian structure of the correlations and a local mean field we qBtithe form(3) for the termK[ f] with

t
Dgﬂ: JodsaraarlﬁwU(r,t)éU(rl,s))l,lﬂr. (A4)

One sees that the term accounting for HOLRC has a diffusion structure with diffusion rate rgléte the density

correlation function within to a coupling constant facfsee Eq(13)]. The dynamics of correlation function is, consequently,

affected by HOLRC effects. These properties allow one, indeed, to incorporate the HOLRC in a self-consistent manner.
Employing Eg. (17) for the sufficiently small time interval[At=t—ty] we get the df correlation function

or(ty,t) =(8f(t,) 6% (t,)) as
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t1 t1 t2 t2
or(ty,ty)= todsexpl’—i dr M} ds’exp{—i s’dT M*](ﬁK(sz*(s’)}

5 to

t1 t2
+exp{—i dr M]exp[—i dr M]O’F(to,to). (A5)
to (0]
Under the Markovian approximation:
(SK(S)SK(S"))~ 2, (dradU(S") 3, g8U(8))dpaf dpsf~ >, DaPap,fdysf d(s—s')=D(s)8(s—s') (A6)
af ap

the equal time correlatar,,(t)=o(t,t) turns out to be dominant and it has the following form:

t t t
ava,(t)=exp|—iﬁodr(M—M*)]avar(t0)+ft0ds exp[—iLdr(M—M*))D(s). (A7)

One can easily see that the phase space correlation function fulfills the differential eddation
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