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Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the gen
effective chiral Lagrangian. The potential is obtained up to a certain order in chiral perturbation theory bot
momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are pre
where satisfactory agreement is found for laboratory energies up to about 100 MeV.@S0556-2813~96!04305-2#
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I. INTRODUCTION

The problem of deriving the interaction potential betwee
two nucleons continues to be one of the most fundamen
problems in nuclear physics. Early field theoretical work
this area@1–4# encountered many difficulties, mostly due t
the nonrenormalizability of meson theory. This was followe
by more phenomenological approaches which utilized e
pirical forms for the medium- and short-range parts of th
interaction potential@5,6#. During the last two decades a
compromise approach has been developed in which me
exchange potentials provide the medium- and long-ran
parts of the nucleon-nucleon (NN) potential while the short-
range dynamics is treated phenomenologically@7–9#. Al-
though the latter approaches have achieved very impress
empirical descriptions of nucleon-nucleon bound state~deu-
teron! and scattering data the connection between t
nucleon-nucleon interaction and the fundamental, underlyi
dynamics of the strong interaction remains unclear. It is f
this reason that the nucleon-nucleon problem continues to
of fundamental interest.

It has been argued@10# that Regge phenomenology can b
extended to low-energy nucleon-nucleon scattering w
Regge poles leading to a one-boson-exchange~OBE! poten-
tial where~i! the contributions of meson trajectories~includ-
ing scalar« ’s! are dominated by the particles with lowes
spin which couple to nucleons with a Gaussian form fact
and~ii ! Gaussian potentials arise from the Pomeron and te
sor trajectories. Such a potential in a nonrelativistic expa
sion has been constructed by the Nijmegen group@7# and fits
data very well. However, Regge cuts are simply neglecte
The Bonn group@8# made a serious attempt to includ
multiboson-exchange in the framework of old-fashioned pe
turbation theory. In addition to the OBE of known meson
they included the following: 2p andpr exchange with both
nucleons andD isobars in intermediate states, ‘‘correlated
two-pion exchange in the form of as8 scalar meson,
psOBE exchange~with s OBE an approximation to 2p, s8,
536/53~5!/2086~20!/$10.00
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andpr exchanges!, andpv exchange. Agreement with data
is quite good.

Nevertheless, the justification for such approaches
terms of quantum chromodynamics~QCD! remains mysteri-
ous. In particular, it is not clear how to consistently deal wi
the exchange of mesons which have masses of the orde
the typical inverse hadronic radius set by the QCD sca
LQCD. This has led a number of researchers@11# to attempt
derivations of nucleon-nucleon scattering from quark mode
~either constituent or bag! formulated in terms of some ef-
fective degrees of freedom which carry the same quant
numbers as the current quarks and gluons. Although su
models are not derived from QCD either, they usually ha
only a few parameters, most of which are fixed by fittin
one-nucleon properties. Generally these models produce
equate short-range interactions@11#, but the long-range po-
tential continues to be formulated in terms of pion exchang

It seems natural, therefore, to start a treatment of t
nuclear force problem by recognizing the unique role play
by the pion. Although we are largely ignorant of the nonpe
turbative dynamics of QCD at low energies, we know the
exists an approximate chiral symmetry which is broken b
the vacuum. This symmetry restricts the form of the allowe
interactions of pions among themselves and with other p
ticles. Consequences of approximate chiral symmetry are~i!
the small mass of the pion relative to the QCD sca
LQCD, and its subsequent long-range contribution to t
NN potential and~ii ! theorems relating processes involvin
different numbers of pions which yield some predictiv
power. The pion is indeed the most important character, b
sides the nucleon, in the nuclear physics drama.

The distinguished status of the pion in determining th
NN interaction has, of course, been emphasized before, p
ticularly by the Stony Brook and Paris groups@9#. The coor-
dinate space potential developed by the latter contains~i! a
long-range, ‘‘theoretical’’ part constructed through unitarity
analyticity, and crossing relations frompp andpN phase
shifts, which includes one, two~continuum plusr, «), and
partially three pion exchanges~in the form of v) and ~ii !
2086 © 1996 The American Physical Society
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53 2087TWO-NUCLEON POTENTIAL FROM CHIRAL LAGRANGIANS
short-range, purely phenomenological spin and isospin
pendent parts. Both groups evolved from this mode
independent but parameter-crowded approach to the o
extreme, the two-parameter Skyrme model. Semiquantitat
success resulted, except for the lack of a centr
intermediate-range attraction@12#. ~For a review of further
developments, see@13#.!

What is fundamentally new in the present approa
@14,15# is the development of theNN potential within the
framework of the general effective chiral Lagrangian. B
considering the most general Lagrangian which involves
pion and the nucleon, and transforms under chiral symme
as the QCD Lagrangian, we divide theNN problem into two
parts. The first task concerns QCD and its reformulation
terms of the relevant, low-energy degrees of freedom. T
resulting theory must have the form of the general chir
Lagrangian~because the latter containsall the interactions
with the correct symmetry!, where the coupling constants
are, in principle, known functions of fundamental quantitie
like LQCD and the quark masses. In other words, the dyna
ics of QCD is buried in the couplings of the effective chira
Lagrangian. Since different models based on QCD repres
different attempts to capture the essence of this underly
dynamics, they will generally differ in the strengths of th
low-energy parameters. The second part of the problem is
relate the parameters of the effective chiral Lagrangian to
measured, low-energyNN scattering data and deuteron prop
erties.

Clearly, we do not attempt to ‘‘solve’’ QCD here, bu
instead concentrate on the second task described in the
ceeding paragraph. We start with the general chiral Lagra
ian with undetermined coefficients. Because chiral symme
is manifest~contrary to most meson exchange models, e.
@7,8#!, our approach isa priori compatible both with QCD
and with all known low-energy phenomenology, includin
pp, pN, andgN scattering, meson exchange currents, e
Our scheme is model independent in the sense that we do
adopt either a massive meson exchange picture or a part
lar quark model. When a systematic analysis based on a
ral Lagrangian is carried out for such processes aspN scat-
tering, a number of the unknown coefficients in our mod
can be determined independently of theNN data. In the
meantime we keep these parameters free in theNN data
fitting procedure.

We do have to make one assumption, that of naturalne
which requires that the parameters be consistent with na
dimensional analysis. With this one assumption a pertur
tive treatment of the nuclear potential can be developed t
is lacking in other approaches. Here the perturbative exp
sion is in powers of momentum divided by a typical QC
mass scale. Up to a given order of expansion the effect
chiral Lagrangian specifies precisely the terms which app
in theNN potential. Of course, there is no guarantee that t
resulting potential will be sufficient to describe the data. If
good overall description of the data results, it means that
perturbation expansion was carried out to the order the p
cision of the data requires. If, on the other hand, an import
phenomenological ingredient~e.g., scalar-isoscalar attrac
tion! is missing, then this might indicate that a certain oper
tor or diagram is more important than naively expected. Th
in turn would be indicative of some characteristic dynam
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mechanism, and we would be learning something ab
QCD.

We emphasize that our aim here is not to obtain better
to the nucleon-nucleon data than the already excellent
achieved with meson exchange potentials. We do intend
this approach to help establish a bridge between QCD
nuclear physics and to provide a sound model of t
nucleon-nucleon potential whose off shell structure is fix
and which may be used for calculating other nuclear p
cesses. In short, the general chiral Lagrangian is a useful
to parametrize both our ignorance of QCD and our know
edge of nuclear physics.

General ingredients and properties of effective chi
Lagrangians for nuclear physics applications are discusse
Sec. II; the effective chiral Lagrangian expansion used h
is presented in Sec. III. The two-nucleon potential is deriv
to a certain order in chiral perturbation theory in momentu
space in Sec. IV and in Sec. V is transformed into coordin
space, using a momentum space Gaussian cutoff. The sp
techniques required to calculateNN scattering and bound
state properties with the present coordinate space pote
are discussed in Sec. VI and the results of fitting the nucle
nucleon scattering and bound state data are presented in
VII. Conclusions are given in Sec. VIII. Finally, many de
tails are deferred to the Appendices. An initial report of the
results was presented in Refs.@14,15#.

II. POWER COUNTING

In this work the low-energyNN potential is expanded in
powers of momentum divided by a QCD mass scale. Typi
three-momentaQ exchanged in nuclei can be estimated
the inverse of the rms electromagnetic radius^r ch

2 &1/2 of a
light nucleus. For example, for the triton with
^r ch

2 &1/2.1.75 fm we find thatQ;mp , the pion mass. In
QCD the coupling becomes strong and is dominated by n
perturbative effects below a momentum scaleM that is
roughly given by a typical hadronic mass,; 1 GeV. When-
ever we face such a two-scale problem it is useful to sepa
the corresponding physics by considering an effective, lo
energy theory which involves only the relevant degrees
freedom, all with small three-momentaQ. Such theories can
be formulated with a Lagrangian that is local~in the sense
that it involves only operators containing fields at the sa
spacetime point! and shares the symmetries of the underlyi
theory, in this case QCD. The dynamical information f
modes with momenta*M is contained in an infinite set o
parameters.

What then are the relevant degrees of freedom in the c
of low-energy nuclear physics? Unlike the situation at hi
energies where quark and gluon degrees of freedom are
directly manifest in the data~e.g., jets, deep inelastic scatte
ing, quarkonium production, etc.!, low-energy nuclear phys-
ics does not reveal this underlying QCD structure in a
obvious way. Therefore the relevant fields for this stu
should represent mesons and baryons. Clearly, the ligh
stable particles in each sector should be included. The piop
has a mass that is small compared toM , and its pseudo-
Goldstone boson nature makes it a fundamental ingredi
The nucleonN has a massmN which is not small but because
protons and neutrons comprise the principle constituents
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nuclei they must be included.~The explicit appearance of th
nucleon massmN in the effective theory requires care as h
been discussed previously@16,17#.! The effects of higher
mass meson and baryon states will generally be suppre
by the inverse of the meson masses or by the inverse o
mass differences between the baryons and the nucleon
retain only those mass states for which this factor is m
larger than;1/M . In the meson sector, this implies that w
do not explicitly keep ther, v, etc., whose masses a
*5.5mp which are closer toM than tomp. In the baryon
sector we retain only theD isobar which has a mas
mD;mN12mp , but do not include theN* with mass
mN*;mN13.5mp nor any other higher mass baryon sta
The contributions of these additional fields could be includ
in a similar way as is done for theD. The other octet pseudo
Goldstone bosons and the hyperons are also omitted.
simplicity we consider only SU~2!3SU~2!, however our
treatment can be readily extended to SU~3!3SU~3! to en-
compass hypernuclear physics.

The requirement that the low-energy Lagrangian incor
rates the symmetries of QCD restricts the form of poss
interactions involvingp, N, andD, but we are still left with
an infinite set of interactionsi with coupling constantsgi ,
which differ in the number of derivatives or powers of pio
massdi , fermion fields f i , etc. If we knew how to solve
QCD at low energies, we could calculate these coupling c
stants directly. Since there is noa priori reason for the cou-
plings in the effective chiral Lagrangian to be small, noa
priori perturbation expansion for the infinite set of intera
tions can be formulated.

We can proceed only by making an assumption of na
ralness which means that when a coupling constantgi of
mass dimension2d i is expressed asgi5g̃iM

2d i, the dimen-
sionless coupling constantg̃i will be of order unity. Of
course this might not be true for all the couplings and t
will become apparent through phenomenological data an
sis. If a coupling constant is found to be anomalously la
or small, it may require special treatment at low energies,
this may also indicate a particular dynamical or symme
effect at the level of QCD.

We now have a natural expansion parame
Q/M;mp /M , the contribution of any diagram being cha
acterized by the powern of the soft momentumQ. We or-
ganize our perturbation expansion by counting powers oQ
in the same way that is done to get the superficial degre
divergence of a graph, where special care is taken with b
ons due to explicit factors which contain their large mass
In the present effective theory it is assumed that all thr
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momenta Q!mN ; nucleons and D ’s are therefore
nonrelativistic.1

The first task is to organize the expansion in such a w
as to eliminate time derivatives of the fermions in interacti
terms, since they would contribute large factors. This h
been done by redefining the fermion fields in terms of velo
ity eigenstates@19#, but also more simply by directly replac
ing the time derivatives of fermion fields using the equatio
of motion for the fermions@16,17#. In so doing we generate
interaction terms that have already been accounted
which simply result in a redefinition of existing coefficient

The second task is to distinguish between so-called red
ible and irreducible diagrams. Reducible diagrams are th
which can be separated into two parts by cutting through
intermediate state which contains only the initial or final pa
ticles. This type of intermediate state produces infrared
vergences in the limit when the baryon kinetic energy
ignored; when it is not, a small recoil energy denomina
results which makes the overall diagram bigger than
pected by a factormN /Q@1. The contributions of these re
ducible diagrams are automatically included by solving t
Lippmann-Schwinger or Schro¨dinger ~in the nonrelativistic
limit ! equations of motion.

The simplest way to isolate these two types of diagram
to work in the framework of old-fashioned, time-ordered pe
turbation theory. Irreducible diagrams are those that con
only intermediate states with energies that differ from t
initial energy by an amountO(Q). For an irreducible dia-
gram withVi vertices of typei , L loops,C separately con-
nected pieces andEf52A external fermion lines, the powe
of Q can be conveniently written as

n542A12L22C1(
i
ViD i , ~1!

where

D i5di1
f i
2

22 ~2!

is called the index of vertexi . Any reducible diagram can be
constructed from irreducible diagrams by connecting the
ter with intermediate states with energies that differ from t
initial energy by an amountO(Q2/mN) or smaller.

Here we deal with diagrams involving only two extern
nucleons. Irreducible diagrams are then two-nucleon irred
ible; any intermediate state contains at least one pion or
bar. The two-nucleon potential is defined as the sum of s
irreducible diagrams, their contributions being ordered
Eq. ~1!. The full NN scattering amplitude is evaluated b
iterating the nuclear potential in the Lippmann-Schwing
equation, or equivalently, by solving~numerically! the cor-
responding Schro¨dinger equation.
t. The

ly
that
tle
1Since we do not knowa priori what the scaleM is exactly, it is not clear how relativistic corrections~which are suppressed by 1/mN)
compare to 1/M corrections. A rough idea of their relative importance can be obtained from the following naive dimensional argumen
nucleon-nucleon potential in momentum space can be written asV(p,p8)5aI (p,p8) whereI (p,p8) is some dimensionless function of the
initial and final c.m. momentap and p8, respectively, anda;2p2/M2 if we count powers of 2 andp of @18#. Substituting this in the
Lippmann-Schwinger equation we obtain an expansion inaQmN/2p2;QmN /M

2. A shallow bound state indicates that this series bare
diverges, so we estimate thatM2;QmN. This estimate is admittedly crude and it is not crucial for our approach but it suggests
relativistic correctionsO(Q/mN) areO(Q

2/M2). If M is actually larger, it only indicates that relativistic corrections are relatively a lit
larger than assumed here.
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III. EFFECTIVE CHIRAL LAGRANGIAN

In order to construct a perturbative expansion inQ/M ,
Eq. ~1! requiresD i>0, for in this case there is a lower boun
for n corresponding to diagrams with the maximum numb
of separately connected pieces, no loops and all vertices
ing D i50. Corrections with highern are obtained by insert
ing loops and interactions withD i.0, and decreasing th
number of connected pieces. We will show that chiral sy
metry requires

D i>0. ~3!

Here, for simplicity, we work with QCD with only two
light flavors u and d with massesmu and md , but it is
straightforward to include the strange quark. In the limit
vanishing quark masses there is an SU~2!3SU~2!;SO~4!
symmetry which is spontaneously broken to SU~2!;SO~3!.
As a result, there exist Goldstone bosons whose fields liv
the three-sphereS3;SO~4!/SO~3!, with a diameter that turns
out to be the pion decay constantFp.190 MeV. Following
Weinberg@16,17# we use stereographic coordinatesp; the
covariant derivative is then

Dm5
1

11p2/Fp
2

]mp

Fp
[D21

]mp

Fp
. ~4!

The baryons considered here provide the 1/2 and 3/2
resentations of the spin and isospin SU~2! groups. A nucleon
N ~isobar D) is described by a Pauli spinor~a four-
component spinor! in both spin and isospin spaces, the r
spective generators being denoted by (1/2)sW @(1/2)sW (3/2)#
and t (t(3/2)). There are also, of course, 234 transition op-
erators (1/2)SW andT, satisfying

SiSj
15 1

3 ~2d i j2 i« i jksk!, ~5!

TaTb
15 1

6 ~dab2 i«abctc!, ~6!

which allow us to coupleN andD in bilinear terms with spin
and isospin transfer 1, respectively.

The effective chiral Lagrangian is constructed out of t
fieldsDm, N, andD and their covariant derivatives,

DmDn5]mDn1 iEm3Dn , ~7!

DmN5~]m1t•Em!N, ~8!

DmD5~]m1t~3/2!•Em!D, ~9!
d
er
hav-

m-

of

e in

rep-

e-

he

where

Em[
2i

Fp
p3Dm . ~10!

This is done by considering all possible isoscalar terms a
imposing the discrete spacetime symmetries of QCD, pari
and time reversal.

That is not all though, because the quark masses bre
SO~4! explicitly. The symmetry breaking terms can be writ
ten as a linear combination of the fourth component of
chiral four-vector and the third component of another fou
vector, with coefficients 1/2(mu1md) and 1/2(mu2md), re-
spectively. We account for this explicit symmetry breakin
by including in the chiral Lagrangian all the terms con
structed out ofp, N, andD that transform under SO~4! in
the same way. Their coefficients will then be proportional t
powers of these combinations of quark masses. That is
way the pion mass arises,mp

2}(mu1md), so each power of
mu1md will count asQ

2. For simplicity we neglect isospin
breaking terms proportional to (mu2md). When the latter
are included along similar lines we begin to understand wh
isospin violating effects are so feeble in most nuclear ph
nomena@20#. Appendix A presents further details regarding
the transformation properties of the field representation us
here.

By writing operators that are chiral invariant or that brea
chiral invariance proportional to the quark mass term, w
immediately see that all interaction terms haveD i>0; opera-
tors involving only pions have at least two derivatives or tw
powers ofmp and nucleon bilinears have at least one deriv
tive.Chiral symmetry therefore guarantees a natural pertur
bative low-energy theory.

The index of interactionD i provides a useful ordering
scheme for the chiral lagrangian. Below we denote b
L (n), referred to as thenth order Lagrangian, the collection
of terms with indicesD i5n. We explicitly show only those
terms relevant for our application. Since we evaluate di
grams only up to one loop, interaction operators with mo
pion fields or isobars than those exhibited below do not co
tribute to this potential, although they are there in general,
many cases to assure chiral invariance. Note also that
eliminate some redundant terms by integrating by parts,
using the equations of motion~e.g., to eliminate nucleon
time derivatives!, and by applying Fierz reordering@21#.

The lowest order Lagrangian is
L ~0!52 1
2 D

22@~¹W p!22ṗ2#2 1
2 D

21mp
2p21N̄@ i ]022D21Fp

22t•~p3ṗ!2mN#N22D21Fp
21gAN̄~ t•sW •¹W p!N

2 1
2 CSN̄NN̄N2 1

2 CTN̄sWN•N̄sWN1D̄@ i ]022D21Fp
22t~3/2!•~p3ṗ!2mD#D22D21Fp

21hA@N̄T•~SW •¹W p!D1H.c.#

1•••, ~11!

wheregA is the axial vector coupling of the nucleon,hA is theDNp coupling,CS andCT are the parameters first introduced
by Weinberg@16,17#, and as usual we work in units where\c51.

In this work we will also employ terms with more derivatives and powers ofp. The first-order Lagrangian is
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L ~1!52
B1

Fp
2 D

22N̄N@~¹W p!22ṗ2#2
B2

Fp
2 D

22« i jk«abcN̄sktcN] ipa] jpb2
B3

Fp
2 mp

2D21N̄Np21•••, ~12!

where theBi ’s are coefficients of orderO(1/M ); in particular, the last interaction term proportional toB3 contributes to a
scalar-isoscalar term similar to thes term in meson exchange potentials. The second-order Lagrangian is

L ~2!5
1

2mN
N̄¹W 2N2

A18

Fp
@N̄~ t•sW •¹W p!¹W 2N1¹W 2N~ t•sW •¹W p!N#2

A28

Fp
¹W N~ t•sW •¹W p!•¹W N2C18@~N̄¹W N!21~¹W NN!2#

2C28~N̄¹W N!•~¹W NN!2C38N̄N@N̄¹W 2N1¹W 2NN#2 iC48@N̄¹W N•~¹W N3sWN!1~¹W N!N•~N̄sW 3¹W N!#

2 iC58N̄N~¹W N•sW 3¹W N!2 iC68~N̄sWN!•~¹W N3¹W N!2~C78d ikd j l1C88d i ldk j1C98d i jdkl!

3@N̄sk] iNN̄s l] jN1] iNskN] jNs lN#2~C108 d ikd j l1C118 d i ldk j1C128 d i jdkl!N̄sk] iN] jNs lN

2~ 1
2C138 ~d ikd j l1d i ldk j!1C148 d i jdkl!@] iNsk] jN1] jNsk] iN#N̄s lN1•••, ~13!
-

f
h
w
u
t
h
h

d

l

c

g
o
e
-
e

tr
io
s
h

s
f

r
t
w

gy
er,
uld
on
sent
ee-
s.
ef.

er of
.

ub-

at

the
ole
-
ge
where theAi8 and Ci8 are additional undetermined coeffi
cients of orderO(1/M2).

Using this expansion for the Lagrangian and the rules
diagrams in time-ordered perturbation theory, it is straig
forward to construct the interaction potential. Because
eliminated time derivatives in all interaction terms but fo
~those that come together with the pion and fermion kine
terms inL (0), and theB1 term inL (1)), and because eac
of these four terms involves at least two pion fields, t
interaction Hamiltonian is just (21) times the interaction
Lagrangian, up to interactions with more pion fields that
not contribute to the order we are working.

IV. THE TWO-NUCLEON POTENTIAL
IN MOMENTUM SPACE

We are now in a position to calculate any process invo
ing soft pions and nonrelativistic nucleons. Equations~1!,
~2!, and~3! guarantee that the dominant contributions to su
processes come from tree graphs with the maximum num
of connected pieces and constructed out of the Lagran
L (0). When applied to processes with at most one nucle
this is equivalent to that given by current algebra. For
ample, the Weinberg@22# pion-pion and Tomozawa
Weinberg@22,23# pion-nucleons-wave scattering lengths ar
readily obtained. But in the late 1970s Weinberg@24#
pointed out that chiral Lagrangians, in addition, provide
framework for evaluating corrections to the dominant con
butions. The systematic treatment of chiral perturbat
theory in the mesonic sector began with the work of Gas
and Leutwyler@25# and has been extensively studied in t
case of SU~3!3SU~3!, up toL51 andD i52, and including
electroweak effects~for an introduction, see Ref.@26#!. A
systematic study of the SU~2!3SU~2! chiral Lagrangian for
processes involving one nucleon was started by Gas
Sainio, and Sˇvarc @27# and is continuing with the work o
Bernard, Kaiser, and Meißner, and many others~for a review
see Ref.@28#!. In principle, the coefficientsgA , hA , Bi , and
Ai8 can be determined from analyses of one-nucleon p
cesses once all contributions through one loop are evalua
Unfortunately, this has not yet been done. In Sec. VII
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obtain values for all the parameters by fitting low-ener
nucleon-nucleon data. It should be kept in mind, howev
that the number of parameters in the present potential co
be reduced when sufficient information from the one-nucle
sector is gathered. For the many-nucleon system the pre
theory is consistent with the empirical observation that thr
~and more! body forces are smaller than two-body force
Some of the implications of this result are discussed in R
@29#. Furthermore, meson exchange currents@30#, pion scat-
tering @31#, and pion photoproduction@32# on nuclei have
also been studied in the same approach. For the remaind
this work we restrict our study to the two-nucleon system

For only two nucleons in the initial and final stateA52
andC51; Eq. ~1! then simplifies to

n52L1(
i
ViD i . ~14!

As usual we work in the center-of-mass~c.m.! system and
denote the initial energy by 2mN1E, initial ~final! momen-
tum by pW (pW 8) and defineqW [pW 2pW 8 andkW[(1/2)(pW 1pW 8) as
the transferred and average momenta, respectively. S
scripts 1 and 2 on spin and isospin matricessW andt refer to
nucleons 1 and 2.

The leading order potentialV(0) ~with n50) is obtained
from the graphs in Fig. 1 and interactions given byL (0) in
Eq. ~11!. Note that to this order nucleons are static, so th
their energies in intermediate states are simplymN and the
D isobar does not contribute. One obtains@16# the well-
known static one-pion-exchange~OPE! potential supple-
mented by contact interactions where

V~0!52S 2gAFp
D 2t1•t2sW 1•qW sW 2•qW

qW 21mp
2

1CS1CTsW 1•sW 2 . ~15!

The OPE term provides the longest-range part of theNN
force, and it is well established@33# that it accounts for the
higher partial waves in nucleon-nucleon scattering and
bulk of the properties of the deuteron, such as its quadrup
moment. Of course theNN potential has other sizable com
ponents, including a spin-orbit force, a strong short-ran
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repulsion, and an intermediate-range attraction. Clearly,
lowest order result in Eq.~15! does not account for thes
additional components. A test of the present approach i
determine whether higher order contributions yield such f
tures.

First-order corrections inQ/M (n51) also come from
the graphs of Fig. 1, but with one vertex fromL (1). How-
ever, there are no suitable vertices in Eq.~12! for the tree
graphs in Fig. 1 and we conclude that there are no cor
tions to the leading order potentialV(0) that are smaller by
just one power ofQ/M , i.e.,

V~1!50. ~16!

FIG. 1. Tree graphs contributing to the two-nucleon poten
~solid lines are nucleons, dashed lines pions!.
the

to
a-

ec-

This is a direct consequence of parity invariance. For the
graphs, we could only add a power of momentum~or sub-
tract one and add an extra power ofmp

2 ) to V(0), but this is
actually a three-momentum because we eliminated time
rivatives. This results in an odd number of three-mome
from which parity conserving terms cannot be constructe

There are, however, many corrections of second ord
where n52. This includes tree graph contributions fro
L (2) and a number of one-loop diagrams.

First, we obtain corrections from the tree graphs in Fig
where one vertex comes from the interactions inL (2) in Eq.
~13! and the nucleons remain static. We also obtain tree le
corrections where the vertices are fromL (0) in Eq. ~11! but
where recoil is included in the intermediate state. Ord
n52 tree level corrections using two factors fromL (1)

cannot be formed because, as we noticed above, there a
suitable vertices in Eq.~12!. The tree graphO@(Q/M )2# cor-
rection is therefore given by

FIG. 2. One loop graphs contributing to the two-nucleon pot
tial ~double lines represent nucleons or isobars!. Only one time
ordering is shown for each type of graph. In~d! and ~e! we only
consider those orderings that have at least one pion or one isob
intermediate states.

ial
t

th
Vtree
~2!52

2gA
Fp
2 t1•t2

sW 1•qW sW 2•qW

qW 21mp
2 S A1q

21A2k
222gA

E2~1/4mN!~4kW21qW 2!

AqW 21mp
2 D 1C1qW

21C2kW
21~C3qW

21C4kW
2!sW 1•sW 2

1 iC5

sW 11sW 2

2
•~qW 3kW !1C6qW •sW 1qW •sW 21C7kW•sW 1kW•sW 2 , ~17!

where theAi ’s andCi ’s are combinations~see Appendix B! of theAi8’s andCi8’s of Eq. ~13!. The explicit energy dependen
term is discussed in Appendix C.

Second, there are contributions from the one-loop graphs in Fig. 2 with all vertex factors coming fromL (0). ~Other
one-loop graphs only contribute to the renormalization of parameters in the Lagrangian.! Intermediate states include those wi
two nucleons, one nucleon and one isobar, and two isobars. Denoting

v6[A~qW 6 lW !214mp
2 , ~18!

D[mD2mN , ~19!

straightforward calculation gives

Vloop,noD
~2! 52

1

2Fp
4 t1•t2E d3l

~2p!3
1

v1v2

~v12v2!2

~v11v2!
24S gA

Fp
2 D 2t1•t2E d3l

~2p!3
1

v1v2
S qW 22 lW2

v12v2
D

2
1

4
S gA
Fp

D 4E d3l

~2p!3
1

v1
3 v2

H S 3

v2
1

8t1•t2
v11v2

D ~qW 22 lW2!214S 3

v11v2
1
8t1•t2
v2

DsW 1•~qW 3 lW !sW 2•~qW 3 lW !J
~20!
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for the diagrams of Figs. 2~a!–~d! that do not include isobars in intermediate states,

Vloop, oneD
~2! 5

8

9

hA
2

Fp
4 t1•t2E d3l

~2p!3
1

~v11v2!

qW 22 lW2

~v112D!~v212D!

2
1

18

gA
2hA

2

Fp
4 H ~314t1•t2!E d3l

~2p!3
@~qW 22 lW2!212sW 1•~qW 3 lW !sW 2•~qW 3 lW !#

3F 1

v1v2~v11v2! S 1

v1~v212D!
1

1

v2~v112D! D
1
1

2

1

Dv1v2
S 1

v1v2
1

1

v1~v212D!
1

1

v2~v112D!
1

1

~v112D!~v212D! D G
1~324t1•t2!E d3l

~2p!3
@~qW 22 lW2!222sW 1•~qW 3 lW !sW 2•~qW 3 lW !#

1

v1v2

3F 1

v11v212D S 1

v1v2
1

1

~v112D!~v212D! D
1S 1

v11v2
1

1

v11v212D D S 1

v2~v212D!
1

1

v1~v212D! D G J ~21!

for the diagrams of Figs. 2~b!–~e! with one intermediate isobar, and

Vloop,twoD
~2! 52

2hA
4

81Fp
4 H ~322t1•t2!E d3l

~2p!3
@~qW 22 lW2!22sW 1•~qW 3 lW !sW 2•~qW 3 lW !#

1

v1v2

1

~v112D!

1

~v212D!

3F 1

v11v2
1

1

2D G1~312t1•t2!E d3l

~2p!3
@~qW 22 lW2!21sW 1•~qW 3 lW !sW 2•~qW 3 lW !#

1

v1v2~v11v214D!

3F 1

~v112D!

1

~v212D!
1

v11v212D

v11v2
S 1

~v212D!2
1

1

~v112D!2D G J ~22!

for the diagrams of Figs. 2~c!–~e! that have two intermediateD ’s.
Finally, we consider corrections of order@(Q/M )3# wheren53. Again, some terms could come from the tree graphs of F

1 with one vertex fromL (3), but the same argument used forV(1) guarantees that

Vtree
~3!50. ~23!

Other third-order corrections would come from the one-loop graphs of Fig. 2 where one vertex is fromL (1) in Eq. ~12!. Parity
invariance requires the contribution from Fig. 2~a! to vanish, as can be confirmed by explicit calculation, and because there
no pN̄N couplings inL (1), the diagrams in Figs. 2~c!–~e! also do not contribute. Figure 2~b! gives

Vloop,noD
~3! 52

1

4 S gAFp
2 D 2E d3l

~2p!3
1

v1
2 v2

2 $3~qW 22 lW2!@2B1~qW
22 lW2!14mp

2B3#116B2sW 1•~qW 3 lW !sW 2•~qW 3 lW !t1•t2% ~24!

for no D in the intermediate state, and

Vloop, oneD
~3! 52

1

9 S hAFp
2 D 2E d3l

~2p!3
1

v1v2

1

~v11v2!

1

~v112D!~v212D!

3$~v11v212D!@3~qW 22 lW2!„2B1~qW
22 lW2!14mp

2B3…14B2sW 1•~qW 3 lW !sW 2•~qW 3 lW !t1•t2#

16B1Dv1v2~qW 22 lW2!% ~25!
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when there is one.
Further corrections are of higher order (n>4). They in-

clude ~i! two-loop graphs, like the ones in Fig. 3, that ar
numerous and harder to calculate, and~ii ! tree graphs with a
vertex fromL (4), which would bringmanynew undeter-
mined coefficients. We do not attempt to include them he

The momentum space form of the potential, first pr
sented in@14#, facilitates a discussion of its structure and th
comparison with other models. As usual the longest-ran
part of the potential is given by one-pion exchange@Eq.
~15!#, including the dominant, static OPE potential first ob
tained by Yukawa@1#, plus corrections@Eq. ~17!#. The A1
andA2 terms in Eq.~17! derive from the leading corrections
to the pN̄N vertex that arise in an expansion of its form
factor in powers of momenta over the form factor paramet
Theq2 dependence is usual~see, for example, Ref.@8# where
monopole and dipole forms are used!, whereas thek2 depen-
dence is not as common, however it too has been recen
considered~e.g., Williamsburg model@34#!. The other cor-
rection to the static OPE potential is the energy depend
term in Eq.~17!, which arises from the recoil of the nucleon
upon pion emission.

The intermediate range parts of the potential are due
two-pion exchange~TPE! and are determined by parameter
Fp , gA , hA , mD2mN , B1 , B2 , andB3 . The contributions
from box and crossed box diagrams@Figs. 2~c!–~e!# are stan-
dard. The one in Eq.~20! (gA

4 term! was first considered by
Brueckner and Watson@2#, while those withD ’s in Eq. ~21!
(gA

2hA
2 terms! and Eq.~22! (hA

4 terms! are due to Sugawara
and von Hippel@4#. As a check, our results also agree wit
the appropriate limit of the expressions listed in Ref.@35#.
But we would like to emphasize that there also exist TP
contributions from the ‘‘pair’’ diagrams of Figs. 2~a! and
2~b! that are less common. Those in Eq.~20! and theB3 term
in Eq. ~24! have also been suggested before by Sugawara
Okubo @3#, but with arbitrary coefficients. Here the terms i
Eq. ~20! are fixed by chiral symmetry in terms ofgA and
Fp while theB3 term comes from thepN s term. To the
same order, we also have in Eq.~24! two new terms
(B1 ,B2). The corresponding terms withD in Eqs.~21! and
~25! are also new. It is important to emphasize that the
contributions from the nonlinear coupling of the pion to th
nucleon are a consequence of chiral symmetry and that t

FIG. 3. Examples of two-loop graphs that arenot included in
our potential.
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arenot usually included2 in meson exchange potentials~e.g.,
Refs.@7,8#!. On the other hand, these terms are the only for
of ‘‘correlated’’ pion exchange in our potential. The more
traditionals-wave correlated TPE@Fig. 3~a!# is higher order
in the formalism discussed here.

The loop integrals in Eqs.~20!–~22!, ~24!, and ~25! di-
verge. Moreover, iteration in the Lippmann-Schwinger equ
tion of ~even the lowest order terms in! the potential pro-
duces further infinities. Regularization is therefore necessa
and counterterms are required to absorb the dependence
the regulator. The contact terms@the Ci ’s in Eqs. ~15! and
~17!# perform exactly this function. Once renormalized, the
contain the effect of exchange of higher-energy modes a
are not constrained by chiral symmetry; i.e., all combination
of spin operators and momenta~up to second power! that
satisfy parity and time reversal invariance are included. Th
results in spin-orbit (C5), spin-spin and tensor
(CT ,C3 ,C4 ,C6 ,C7), and spin independent centra
(CS ,C1 ,C2) forces. In order to compare with other ap
proaches it will be convenient to ‘‘undo’’ our previous Fierz
reordering@21# and rewrite the coefficientsCi as

Ci5Ci
~0!1Ci

~1!t1•t2 . ~26!

V. THE TWO-NUCLEON POTENTIAL
IN COORDINATE SPACE

Nucleon-nucleon scattering calculations, including thos
presented here, very often use a coordinate space represe
tion. In order to transform the momentum space potential
Eqs.~15!–~26! into coordinate space we first have to specif
the regularization procedure. The use of dimensional reg
larization here poses a problem that we have not yet su
ceeded in solving: how to iterate the potential to all orders
arbitrary dimension. Instead we use a momentum space c
off L&M , as has been done in other potential models, b
cause it is conceptually and mathematically simpler. Th
form of the cutoff function and the value assumed forL are
somewhat arbitrary and presumably not very important~see
results in Sec. VII!; variations in the cutoff are compensated
to some extent by a redefinition of the free parameters in t
theory. Again for simplicity, we follow the Nijmegen group
@7# and assume a Gaussian cutoff function exp(2lW2/L2),
which regulates the loop integrals in the potential. In order
further regulate the loops arising from the iteration of th
potential, we also cutoff the transferred momentumq using
the same cutoff function, exp(2qW2/L2).

All integrals overqW and lW can be reduced to simpler ex-
pressions involving one-dimensional integrals that can eas

2More recently, there has been some interest in the constraints
chiral symmetry to the TPENN force, but limited to the diagrams
corresponding to Eq.~20!. For example, in Ref.@36# the scalar-
isoscalar component of these diagrams has been studied, althou
different definition of potential is considered; Ref.@37# discussed
the relevance of energy dependence in OPEP to the definition
these TPE potentials; and in Ref.@38#, Eq. ~20! was examined for
the unphysical case ofgA51.
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be evaluated numerically. We use the formulas and te
niques presented in Refs.@35,39#, see Appendix D for de
tails. Only the final form is presented here.

The tensor, total spin, and relative orbital angular mom
tum operators are defined, as usual, by

S1253
sW 1•rWsW 2•rW

r 2
2sW 1•sW 2 , ~27!
ch-
-

en-

SW 5
1

2
~sW 11sW 2!,

LW 52 irW3¹W ,

respectively. In terms of these operators and the Pauli ma
cest in isospin space the present potential can be expres
in terms of the following 20 operators:
O p51, . . . ,2051,t1•t2 ,sW 1•sW 2 ,sW 1•sW 2t1•t2 ,S12,S12t1•t2 ,LW •SW ,LW •SW t1•t2 ,LW
2,LW 2t1•t2 ,LW

2sW 1•sW 2 ,LW
2sW 1•sW 2t1•t2 ,

~LW •SW !2,~LW •SW !2t1•t2 ,S12LW •SW ,S12LW •SW t1•t2 ,S12LW
2,S12LW

2t1•t2 ,S12~LW •SW !2,S12~LW •SW !2t1•t2 . ~28!
t
l

e
n

t
c

u
r
r
e

n

y

t

-

TheNN potential in coordinate space is written as

V5 (
p51

20

VpS r , ]

]r
,

]2

]r 2
;EDO p, ~29!

where

VpS r , ]

]r
,

]2

]r 2
;ED5Vp

0~r ;E!1Vp
1~r ;E!

]

]r
1Vp

2~r ;E!
]2

]r 2

~30!

is an energy dependent radial operator determined by
radial functionsVp

0(r ;E), Vp
1(r ;E), andVp

2(r ;E). These 60
functions~some vanish! are listed in Appendix E. Each con
sists of a sum of terms with coefficients determined by
parameters of the chiral Lagrangian, and each term invo
at most one one-dimensional integral of the functions fro
Appendix D. They are smooth at the origin thanks to reg
larization. The energy dependence in the radial functions
Eq. ~30! is linear ~see Appendix C!.

The first eight operators,O p51, . . . ,8, are standard and ar
accompanied in most potentials by radial functions with
derivatives. In this model they receive contributions fro
pion exchanges and contact terms. The next six opera
O p59, . . . ,14, complete the set used in the phenomenologi
Urbana v14 potential @6#, where, Vp

15Vp
250 for

p59, . . .,14. What is characteristic of the structure of o
potential is the presence of first and second derivative te
for p51, . . . ,8 and thepresence of the other six operato
O p515, . . . ,20. All of these additional terms arise from th
O(k2) dependence in theA2 , C2 , C4 , C7 , and recoil cor-
rection terms.

VI. SOLUTION OF THE SCHRÖ DINGER EQUATION

Having obtained a coordinate space representation of
potential the next step is to solve the Schro¨dinger equation
numerically. The procedure is standard, but care must
exercised with respect to the derivative terms.

As usual, basis functions of definite total isospinI , total
orbital angular momentumL, total spinS, and total angular
momentumJ ~and its third componentm) were used; the
relative c.m.NN wave function was decomposed into a pa
tial wave sum of products of radial and spin-angle functio
the

-
he
ves
m
u-
of

o
m
ors,
al

r
ms
s

the

be

r-
s.

By projecting onto the spin-angle basis a set of radial Schro¨-
dinger equations results which can be written schematicall
as

FX~2!
]2

]r 2
1X~1!

]

]r
1X~0!GR50, ~31!

where

X~0!5
1

2mr 2
L~L11!1(

p
Vp

~0!^O p&2E,

X~1!52
1

mr
1(

p
Vp

~1!^O p&,

X~2!52
1

2m
1(

p
Vp

~2!^O p&, ~32!

m is the reduced mass, and^ & denotes a matrix element
between spin-angle basis functions. Spin-singlet and -triple
L5J channels are uncoupled, so for these statesR is a single
radial function. For the tensor coupled triplet states with
L5J61, R has two components and quantitiesX(0), X(1)

andX(2) become 232 matrices.
In order to eliminate first derivative terms we define

R[Kf where the auxiliary functionK is chosen such that
f satisfies an equation with no first derivatives. This deter
mines a differential equation forK which depends onX(1)

andX(2), given by

]K

]r
52

1

2
@X~2!#21X~1!K, ~33!

where Det(X(2))Þ0 and asymptoticallyK;r21. The
boundary condition onK for triplet channels is fixed by
further requiring that the two components off are
linearly independent as r→` which results in
limr→`Ki j (r )5(1/r )d i j , where d i j is the Kronecker delta
function. FunctionK at finiter was obtained by Runge-Kutta
integration of Eq.~33!.

The resulting differential equation forf is of the form
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]2f~r !

]r 2
5A~r ;E!f~r !, ~34!

whereA(r ;E) depends onX(0), X(1), X(2), andK. The wave
function f(r ) satisfies the usual boundary conditions; i.e
f vanishes atr50 and for larger , f(r ) matches to the
asymptotic wave functions appropriate for scattering o
bound states. TheS matrix or binding energy is obtained
from the latter boundary condition. TheNN Smatrix is ex-
pressed in terms of the usual phase shifts and mixing ang
as in Eq.~7! of Ref. @40#. Equation~34! was solved numeri-
cally for several positive scattering energies and for negati
values ofE to determine the deuteron binding energy an
other properties. The calculated phase shifts and deute
properties depend on the undetermined parameters in the
grangian. The cutoff parameterL was fixed and the remain-
ing parameters of the Lagrangian were varied until an op

TABLE I. Effective chiral Lagrangian potential model param-
eters forL53.90 fm21 based on the fit to the Nijmegen phase
shifts @41#.

gA 1.33
hA 2.03
Fp ~MeV! 192
A1 (10

26 MeV22) 21.38
A2 (10

26 MeV22) 2.44
B1 (10

22 MeV21) 0.342
B2 (10

22 MeV21) 0.854
B3 (10

22 MeV21) 1.77

I50 I51

CS (10
24 MeV22) 1.12 0.135

CT (10
24 MeV22) 20.266 20.689

C1 (10
29 MeV24) 0.661 0.381

C2 (10
29 MeV24) 3.39 2.97

C3 (10
29 MeV24) 20.330 20.0295

C4 (10
29 MeV24) 20.144 0.453

C5 (10
29 MeV24) 2.10 20.910

C6 (10
29 MeV24) 0.281 0.0998

C7 (10
29 MeV24) 0.581 1.36
,

r

es

e

on
a-

i-

mized fit was obtained to recentNN phase shifts@41# ~with
errors from Ref.@42#! and measured deuteron propertie
@43#.

VII. FITTING RESULTS FOR PHASE SHIFTS
AND DEUTERON PROPERTIES

The 26 parameters of the model (gA , hA , Fp , A1 , A2 ,
B1 , B2 , B3 , CS

(0) , CT
(0) , C1

(0) , . . . ,C7
(0) , CS

(1) , CT
(1) ,

FIG. 4. Best fit~solid curves! to the I 5 0 np phase shifts and
e1 mixing angle from Ref.@41# assuming a cutoff parameter
L53.90 fm21. Errors in the phase shifts, where shown, are fro
Ref. @42#.
g
TABLE II. Experimental and effective chiral Lagrangian model fitted values for the deuteron bindin
energy ~BE!, magnetic moment (md), electric quadrupole moment (QE), asymptoticd/s ratio (h), and
d-state probability (PD).

Deuteron Fit to Nijmegen phase shifts@41# SP89 Fitsa

quantities Experimentb L52.50 fm21 L53.90 fm21 L55.00 fm21 L53.90 fm21

BE ~MeV! 2.224579~9! 2.15 2.24 2.18 2.18
md (mN) 0.857406~1! 0.863 0.863 0.866 0.863
QE ~fm2) 0.2859~3! 0.246 0.249 0.237 0.253
h 0.0271~4! 0.0229 0.0244 0.0230 0.0239
PD ~%! 2.98 2.86 2.40 2.89

aCorrected values given here for fit in Ref.@15#.
bSee Ref.@43#.
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C1
(1) , . . . ,C7

(1) , see Appendix E! were varied in order to
optimize the fit to the isospin 0~from np) and isospin 1
(pp) phase shifts of Ref.@41# at 10, 25, 50, and 100 MeV
laboratory kinetic energy. All partial wave channels with

FIG. 5. Best fit~solid curves! to the I51pp phase shifts and
e2 mixing angle from Ref.@41# assuming a cutoff paramete
L53.90 fm21. Errors in the phase shifts, where shown, are fr
Ref. @42#.
o-

tal angular momentumJ<2 were included in the fits. In
addition the I50, 3S12

3D1 tensor coupled bound state
~deuteron! binding energy, magnetic moment and electri
quadrupole moment were also used to constrain the fit. T
phase shifts for theJ.2 partial waves are dominated by the
OPE potential at these low energies and were not used in
fitting procedure. The masses for the pion, nucleon, and is
bar used weremp5140 MeV, mN5939 MeV, and
mD51232 MeV, respectively. The principle results of this
study were obtained assuming the cutoff parameterL to be
3.90 fm21 ~equal to ther mass!. Sensitivity to the cutoff
parameter is discussed later in this section.

The recent Nijmegen@41# phase shift solution was se-
lected for fitting; errors were taken from the 1994 Arnd
et al. @42# energy dependent phase shift analysis~solutions
C10, C25, C50, and C100!. The relative weighting of the
chi-square contributions from the deuteron properties~bind-
ing energy, magnetic moment, and electric quadrupole m
ment! and the scattering phase shifts was adjusted so as
achieve a suitable balance. The model was fitted to the ph
shift parameters rather than directly to theNN scattering data
since our goal here is to demonstrate the capabilities of t

r
m

FIG. 6. Predictions~solid curves! using theL53.90 fm21 cut-
off and the parameters in Table I in comparison with the Nijmege
phase shift solution@41# for the I 5 0 np phase shifts ande1
mixing angle to 300 MeV. Errors in the phase shifts, where show
are from Ref.@42#.
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effective chiral Lagrangian approach rather than to attemp
generate a phenomenological description of data which co
petes with other meson exchange models@7–9#.

A grid search using parametershA , A1 , A2 , B1 , B2 ,

FIG. 7. Predictions~solid curves! using theL53.90 fm21 cut-
off and the parameters in Table I in comparison with the Nijmeg
phase shift solution@41# for the I 5 1 pp phase shifts ande2
mixing angle to 300 MeV. Errors in the phase shifts, where show
are from Ref.@42#.
t to
m-

B3 , CS
(0) , CT

(0) , C1
(0) , . . . ,C7

(0) and fitting theI50 phase
shifts and deuteron properties was initially conducted fo
lowed by a similar grid search for parametersCS

(1) , CT
(1) ,

C1
(1) , . . . ,C7

(1) for the I51 phase shifts using the previously
optimized values ofhA , A1 , A2 , B1 , B2 , andB3 . The OPE
gA andFp parameters were held fixed throughout the gr
searches. A full, 26-parameter grid search was not feasi
due to computational resource limitations. After locating
minimum in the chi-square space via the grid searches,
fits were optimized by simultaneously varying all 26 param
eters using the downhill simplex method of chi-square min
mization @44#.

The best fits to the Nijmegen phase shifts withL53.90
fm21 are shown forI50 and 1 in Figs. 4 and 5, respec
tively. Except for a few of the channels at 100 MeV, the fi
~solid lines! are in quantitative agreement with the phas
shifts ~data points! where the errors from@42# are shown if
larger than the data symbol. The results are essentially
same as shown previously in Ref.@15# but these new fits are
in significantly better agreement with the 25 and 50 Me
1P1 ande1 Nijmegen phases than was obtained in this ea
lier analysis of the older SP89 phase shift solution@42#. The
L50 singlet and triplet scattering lengths are predicted
our model to be215.6 and 5.40 fm, respectively, in com

en

n,

FIG. 8. Deuterons-state~upper curve! andd-state~lower curve!
radial wave functions from the presentNN potential using the
L53.90 fm21 cutoff and the parameters in Table I.

FIG. 9. Radial potentials for the1S0 partial wave state at 50
MeV using theL53.90 fm21 cutoff and the parameters in Table I
The potentialsW0, W1, W2, andVeff defined in Eqs.~35! and~36!
are indicated by the dashed, dash-dotted, dotted, and solid cur
respectively. The dash-dotted~dotted! curve corresponds toW1/fm
(W2/fm2).
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parison with the measured values of216.4(1.9) fm@45# and
5.396~11! fm @46#. The optimized values obtained here fo
the 26 parameters are given in Table I.

The predictedphase shifts and mixing angles from ou
model ~solid curves! for energies from 100 to 300 MeV are
compared with the Nijmegen phase shift solutions~data
points! in Figs. 6 and 7. For most of the partial wave param
eters, except1P1 , e1 , and e2 , the model predictions and
phase shift solutions are in qualitative agreement. Becaus
the low momentum nature of the model, as expressed in
explicit (Q/M ) expansion, no effort was made to fit th
phase shifts at energies above 100 MeV.

The deuteron properties for theL53.90 fm21 model fit
are given in Table II in comparison with the measured valu
from Ref. @43#. Included are the binding energy, magnet
moment, electric quadrupole moment, asymptoticd-state to
s-state wave function ratio, andd-state probability. Thes-
andd-state radial wave functions are also shown in Fig.
The negative portion of thed state at small radii is also seen
in the deuteron wave function of the Bonn potential@8#, al-
though both the radial extent and magnitude are larger he
We do not claim that the short-range, high momentum co
ponents of our potential are realistic; no quantitative sign

FIG. 10. Best fits to theI 5 0 np phase shifts ande1 mixing
angle from Ref.@41# assumingL52.50 fm21 ~dashed curves!, 3.90
fm21 ~solid curves!, and 5.00 fm21 ~dotted curves!. The solid
curves here and in Fig. 4 are identical.
r

r

-

of
the

es
ic

8.

re.
m-
fi-

cance should be attached to this short-range part of the w
function. The depletion of thed state at small radii, however,
contributes to the lowd-state probability of;3% which we
obtain. Both the quadrupole moment and the asympto
d/s ratio are about 10% too small.

FIG. 11. Best fits to theI 5 1 pp phase shifts ande2 mixing
angle from Ref.@41# assumingL52.50 fm21 ~dashed curves!, 3.90
fm21 ~solid curves!, and 5.00 fm21 ~dotted curves!. The solid
curves here and in Fig. 5 are identical.
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Also given in Table II are corrected values for the de
teron parameters corresponding to the potential model
ported previously@15#. In these earlier calculations the deu
teron wave function was computed incorrectly, resulting
erroneous values for the calculated magnetic moment, qu
rupole moment andd-state probability.3 For the corrected
values the magnetic moment increased slightly by 1.4%,
quadrupole moment increased by 10% and is closer to
measured value, while the predictedd-state probability de-
creased from 5% to 3%. The scattering phase shifts, mix
angles, deuteron binding energy and asymptoticd/s ratio in
Ref. @15# are not affected.

It is interesting to study the sensitivity of the calculate
phase shifts and deuteron parameters to the terms in the
tential which are a direct consequence of chiral symme
corresponding to the diagrams in Figs. 2~a! and ~b!. These
include the first two terms in Eq.~20!, the first term in Eq.
~21! and the potentials in Eqs.~24! and ~25! which depend
on parametersB1 , B2 , and B3 . To study this sensitivity,
calculations for all partial wave channels were made
which each of the above terms in the potential was individ
ally set to zero. The first two terms in Eq.~20! and the first
term in Eq.~21! have minor effects on the scattering pha
shifts and mixing angles, however the chiral symmetry ter
in Eq. ~20! significantly affect the deuteron properties. Th
potentials in Eqs.~24! and ~25!, with the values for the pa-
rametersB1 , B2 , andB3 given in Table I, contribute sub-
stantially to the scattering predictions and the deuter
This applies to Eqs.~24! and ~25! individually and to the
(B1 , B2) terms andB3 ‘‘ s term’’ individually as well.

The NN potential model presented here is, admitted
complicated. To assist the reader we show in Fig. 9 the ra
potentials for the 1S0 channel corresponding to th
L53.90 fm21 cutoff and the parameter values in Table
The radial potentialsW0, W1, andW2 are defined by taking
spin-angle matrix elements of the coordinate space poten
in Eq. ~29! where

^V&[W0~r ;E!1W1~r ;E!
]

]r
1W2~r ;E!

]2

]r 2
. ~35!

For coupled partial wave channels theW functions become
232 matrices. The values for the1S0 potentialsW

0, W1,
andW2 at 50 MeV incident laboratory kinetic energy~the
explicit energy dependence is weak! are shown in Fig. 9 by
the dashed, dash-dotted, and dotted curves, respectively.
units for W0, W1, andW2 are MeV, MeV fm and MeV
fm2, respectively. We also define an effective, local pote
tial, Veff(r ;E), according to

A~r ;E![
L~L11!

r 2
12mVeff~r ;E!22mE, ~36!

whereA(r ;E) was defined in Eq.~34!. The effective, local
potential for this case is shown in Fig. 9 by the solid curv
If the first and second derivative terms in Eq.~35! were set to
zero thenVeff(r ;E) would be identical toW0(r ;E). The

3We thank Prof. K. Holinde for suggesting there should be a m
take in our earlier value for the quadrupole moment.
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small difference between the solid and dashed curves in F
9 is due to the derivative terms.

Fits to the phase shifts and deuteron properties were a
obtained with cutoff parameter values of 2.50 fm21 and 5.00
fm21. The results for the phase shifts and mixing angles f
the L52.50, 3.90, and 5.00 fm21 potentials are shown in
Figs. 10 and 11 by the dashed, solid, and dotted curv
respectively. Using theL52.50 fm21 cutoff the 1P1 phase
shift ande1 mixing angle were better described than with th
L53.90 fm21 cutoff, however poorer fits to the1S0 ,
3P2 , and

3F2 phase shifts were obtained. Improved descri
tions of the1P1 and

3P2 phase shifts were achieved with th
L55.00 fm21 cutoff value compared to theL53.90
fm21 results, however poorer descriptions of thee1 ande2
mixing angles and the1S0 and 1D2 phase shifts resulted.
The corresponding deuteron parameter values forL52.50
fm21 and 5.00 fm21 are also given in Table II. Overall we
find qualitatively similar descriptions of theNN scattering
results and deuteron properties for a wide range of cut
parameters from 2.5 to 5.0 fm21 ~corresponding to a mass
range from 0.5 to 1.0 GeV!.

VIII. SUMMARY AND CONCLUSIONS

We derived a low-energy nucleon-nucleon potential, fro
an effective chiral Lagrangian for soft pions and nonrelati
istic nucleons using a perturbation expansion in powers
(Q/M ). We expressed the potential both in momentu
space and in coordinate space, solved the correspond
Schrödinger equation in coordinate space, and fitted scatt
ing phase shifts and deuteron properties by varying the u
determined parameters of the Lagrangian.

In spirit, our approach is similar to that of the Paris grou
@9# where information on pion dynamics was used to co
struct the longer-range parts of the potential, while mo
complicated dynamics was buried in unconstrained, sho
range parts. The fundamental difference between the
proach of the Paris group and that of the present work is o
use of effective field theory, rather than dispersion relation
Use of an effective chiral Lagrangian not only ensures th
our results are consistent with other aspects of pion pheno
enology ~chiral Lagrangians to the order we use genera
agree with data at the 20% level!, but more importantly,
explicitly incorporates the symmetries of QCD and provide
a natural perturbative expansion. In this way we, like th
Nijmegen group@7,10#, develop a potential within a theoreti-
cal framework, but unlike Refs.@7,10# we carry out a con-
trolled expansion. Our use of field theory and old-fashion
perturbation theory, on the other hand, causes our poten
to be similar to a low-energy version of the Bonn potenti
@8#.

The potential in momentum space shares several featu
with these and other potentials. The short-range parts h
all the necessary spin and isospin structure. The pio
exchange terms result in contributions that have been con
ered before, but also result in several new terms related
chiral symmetry. Energy dependence~which has implica-
tions for few-body forces@29#! arises naturally.

The potential was transformed into coordinate space us
a Gaussian cutoff function. TheO(k2) dependence in the

is-
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momentum space potential leads to first and second deri
tive terms in the coordinate space representation. Eliminati
of first derivative terms in the radial Schro¨dinger equation
through use of an auxiliary function permitted standard n
merical methods to be employed.

We obtained reasonable, qualitative fits to the deuter
properties together with quantitative fits to most of the sca
tering phase shifts up to 100 MeV incident nucleon kinet
energy. This shows that our approach accounts for the pr
ciple features of the nucleon-nucleon potential and that the
features can be naturally understood from the symmetries
QCD. However, the present work also makes clear that it
not practical for potential models derived from effective ch
ral Lagrangians to compete with more phenomenological a
proaches, with respect to obtaining quantitative descriptio
of NN data over a wide range of energies. Extension of th
present model to higher energies and further improvement
the description of data could only result by including highe
orders in chiral perturbation theory.
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APPENDIX A

Pions are~pseudo!Goldstone bosons of the spontaneou
breaking SO~4!→SO~3!. They are associated with the bro
ken generators of SO~4! and therefore live in the sphere
SO~4!/SO~3!;S3. If we embed it in the EuclideanE4 space,
SO~4! transformations can be viewed as rotations ofS3 in
E4 planes. For example, SU~2!V of isospin consists of rota-
tions in planes orthogonal to the fourth axis, while axia
SU~2!A are rotations through planes that contain the four
axis.

The sphere can be parametrized in a variety of ways, f
example with four Cartesian coordinates$w,w4[s% subject
to the constraint,

s21w25 1
4 Fp

2 . ~A1!

It is more convenient, however, to work with three uncon
strained coordinates; therefore we use stereographic coo
nates where

p[
2w

112s/Fp
. ~A2!

Under an SU~2!V transformation with parameter«, the p
coordinates rotate according to

dp5«3p, ~A3!
a-
n

-

n
t-

n-
se
of
is

p-
s
e
in
r

d

e-
y
d

d

s

l
h

r

-
di-

but they transform nonlinearly under SU~2!A with parameter
«̃ as given by

dp5FpS 12
p2

Fp
2 D «̃

2
1

1

Fp
~ «̃•p!p. ~A4!

A covariant derivative@see Eq.~4!# can be constructed
which is an isospin 1 object,

dDm5«3Dm , ~A5!

which transforms under axial rotations as if under SU~2!V
with a field-dependent parameter,

dDm5S «̃3
p

Fp
D3Dm . ~A6!

Fermions also transform linearly under the unbroken s
group

dN5 i«•tN, ~A7!

dD5 i«•t~3/2!D. ~A8!

In this case too, it is simplest to work with fields that reali
the whole group nonlinearly, i.e., that transform under ax
transformations as if under isospin with the same fie
dependent parameter as in Eq.~A6!. In this case

dN5 i S «̃3
p

Fp
D •tN, ~A9!

dD5 i S «̃3
p

Fp
D •t~3/2!D. ~A10!

It can be easily verified that the covariant derivatives of
pion, nucleon and isobar@Eqs.~7!–~9!, respectively# are in-
deed covariant; that is, they transform under SU~2!3SU~2!
in the same way the fieldsDm , N, andD do @see Eqs.~A5!–
~A10!#.

A consequence of this is that an isoscalar constructed
of Dm , N, D and their covariant derivatives will automat
cally be invariant under the whole SU~2!3SU~2!. On the
other hand, objects that transform under the full group
tensors involve also thep field itself. For example, an SO~4!
vector can be constructed according to

S 2~p/Fp!

11p2/Fp
2 ,
12p2/Fp

2

11p2/Fp
2 D , ~A11!

where its fourth component gives rise to the pion mass te
in Eq. ~11!.

APPENDIX B

Here we list the relations between theAi ’s andCi ’s of Eq.
~17! and theAi8’s, andCi8’s of Eq. ~13!:

A152~A182 1
2A28!,

A252~A181 1
2A28!,
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C152C181C382
1

2
C28 ,

C254~2C181C381 1
2C28!,

C352C982
1

2
~C128 1C148 !,

C454@2C981 1
2 ~C128 1C148 !#,

C552~2C481C582C68!,

C652~C781C881 1
2C108 2C118 2C138 !,

C7524~C781C882 1
2C108 1C118 1C138 !.

APPENDIX C

The origin of the explicit energy dependence of t
present nucleon-nucleon potential is discussed here. On
the nice features of the chiral Lagrangian approach is th
allows systematic inclusion of nucleon recoil correctio
i.e., energy dependent terms, as exemplified by Eq.~17! of
Sec. IV. Here we give a somewhat general, though b
description of how these terms arise. The systematic in
sion of recoil corrections has recently been shown to resu
cancellations between reducible and irreducible graphs in
three-nucleon problem@29,31#. This justifies, within this ap-
proach, certain approximations often made in nuclear ph
ics.

The Lippmann-Schwinger equation for this case is giv
by

TAB
Ẽ65VAB1(

C

VACTCB
Ẽ6

ẼB2ẼC6 i e
, ~C1!

where 6 refer to outgoing and incoming wave bounda
conditions,

VAB5~FB ,V̂FA!, ~C2!

Ĥ5Ĥ01V̂, ~C3!

and the labelsA, B, andC denote quantum numbers for th
free many-nucleon, pion, and isobar statesFA . The energy
parameters in Eq.~48! are the sum of the individual energie
of these particles.

As is well known, Eq.~C1! can be iterated to give th
so-called ‘‘old-fashioned’’ perturbation theory, represen
by the expansion
he
e of
t it
s,

ief,
clu-
lt in
the

ys-

en

ry

e

s

ed

TAB
Ẽ 5VAB1(

C
VAC

1

~ẼB2ẼC!
VCB

1(
C,D

VAC

1

~ẼB2ẼC!
VCD

1

~ẼB2ẼD!
VDB1•••,

~C4!

where the6 and thei e are omitted to simplify the notation.
Notice thatVAB in Eq. ~C4! is notenergy dependent.

Since we are interested in describing the low-energ
nucleon-nucleon potential we choose the external particles
be only nonrelativistic nucleons. As in Sec. II, it is conve
nient to introduce the effective potential as the sum of th
irreducible diagrams of the series in Eq.~C4!. In the two-
nucleon case this means diagrams where there is at least
pion or one isobar in the intermediate states~see Figs. 1 and
2!. The complete set of diagrams can now be obtained
iterating this effective potential where the internal lines ar
two-nucleon lines (A→a, nucleons only!:

Tab
Ẽ 5Veff,ab~Ẽ!1(

g
Veff,ag~Ẽ!

1

~Ẽb2Ẽg!
Veff,gb~Ẽ!1•••.

~C5!

Notice thatVeff,ab(Ẽ) does depend,by definition, on the en-
ergy Ẽ (Ẽb in the energy denominators!. To make contact
with the nonrelativistic Schro¨dinger equation we recall that,
for n heavy nucleons,

Ẽb2Ẽa5(
i51

n

AmN
21pi

22(
i51

n

AmN
21p8i

2

5(
i51

n pi
2

2mN
2(

i51

n p8i
2

2mN
1small corrections

5Eb2Ea1small corrections. ~C6!

Up to small corrections, which can be systematically a
counted for, the effective potential depends o
E5( i

npi
2/(2mN), the nonrelativistic kinetic energy. Clearly,

in the infinite nucleon mass limit~static limit! this depen-
dence vanishes and it is only in theO (Q/M )2 corrections to
the lowest order term that they appear@Eq. ~17!#.

APPENDIX D

In order to obtain a potential in coordinate space we ta
Fourier transforms with a Gaussian cutoff function with pa
rameterL ~see Refs.@35,39# for details!. With

erfc~x!5
2

Ap
E
x

`

dte2t2

denoting the complementary error function, we define an
use the following functions:
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I 0~r !5
1

8pAp
L3e2~rL/2!2,

I 2~r ,mp!5
1

8pr
e~mp /L!2Fe2mprerfcS 2

Lr

2
1
mp

L D2emprerfcS Lr

2
1
mp

L D G ,
G2~l,r !5e2l2/L2

I 2~r ,Amp
21l2!, F2~l,r !5I 2~r ,mp!2G2~l,r !,

fC
0 ~r ,mp!5

4p

mp
I 2~r ,mp!, fC

1 ~r ,mp!5fC
0 ~r ,mp!2

4p

mp
3 I 0~r !, fC

2 ~r ,mp!5fC
1 ~r ,mp!1

4pL2

mp
5 F322S Lr

2 D 2G I 0~r !,

fT
0~r ,mp!5

1

2~mpr !3
e~mp /L!2F S 11mpr1

1

3
~mpr !2De2mprerfcS 2

Lr

2
1
mp

L D2S 12mpr1
1

3
~mpr !2DemprerfcS Lr

2
1
mp

L D G
2

4p

3mp
3 S 11

6

L2r 2D I 0~r !,

fT
1~r ,mp!5fT

0~r ,mp!2
pr 2L4

3mp
5 I 0~r !,

S1~r ,l!5mp
3fT

0~r ,mp!2~mp
21l2!3/2e2l2/L2

fT
0~r ,Amp

21l2!,

S2~r ,l!5 1
3 mp

3fC
1 ~r ,mp!2 1

3 ~mp
21l2!3/2e2l2/L2

fC
1 ~r ,Amp

21l2!,

V1~r ,l!5mp
5fT

1~r ,mp!2~mp
21l2!5/2e2l2/L2

fT
1~r ,Amp

21l2!,

V2~r ,l!5 1
3 mp

5fC
2 ~r ,mp!2 1

3 ~mp
21l2!5/2e2l2/L2

fC
2 ~r ,Amp

21l2!,

plus the integrals

RD
~n,m!@ f #5

2

pE0
`

dl
l2m

~l21D2!n
f ~l!, H1~r !5DRD

~1,0!@G2#, H2~r !5
1

D
@ I 2~r ,mp!2H1~r !#,

where f is any function ofl andD5mD2mN .

APPENDIX E

Here we give the explicit forms of the 60 radial potential functionsVp
i (r ), p51, . . .,20; i50,1,2, which appear in th

coordinate space version of the potential in Eqs.~29! and ~30!. To save space the following combinations of functions
derivatives of functions are defined:

D1~ f ![
f 8

r S 2 f 91
1

r
f 8D , D2~ f ![

f 8

r S f 92
1

r
f 8D , «1~ f ![ f 81

2

r
f , «2~ f ![ f 82

1

r
f ,

S ~ f ,g![ f 9g91
2

r 2
f 8g8, T ~ f ,g![

1

r
~ f 9g81 f 8g9!1

1

r 2
f 8g8, P ~ f ,g![

2

r 2
f 8g82

1

r
~ f 8g91 f 9g8!,

Q~ f ,g![S 2
4

r
f 822 f 912mp

2 f2I 0Dg,
where f5 f (r ) andg5g(r ) are any of the functions defined in Appendix D, and a prime denotes differentiation with re
to r .

We then have~where\c51)
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Côté, P. Pirès, and R. de Tourreil, Phys. Rev. C21, 861
~1980!; R. Vinh Mau, inMesons in Nuclei, edited by M. Rho
and D. Wilkinson~North-Holland, Amsterdam, 1979!, Vol. I,
pp. 151–196.

@10# T.A. Rijken, Ann. Phys.164, 1 ~1985!; 164, 23 ~1985!.
@11# F. Myhrer and J. Wroldsen, Rev. Mod. Phys.60, 629 ~1988!;

K. Yazaki, in Few-Body Problems in Physics, edited by F.
Gross~AIP, New York, 1995!, pp. 225–238.

@12# A. Jackson, A.D. Jackson, and V. Pasquier, Nucl. Phys.A432,
567 ~1985!; R. Vinh Mau, M. Lacombe, B. Loiseau, W.N
Cottingham, and P. Lisboa, Phys. Lett.150B, 259 ~1985!.

@13# J. Wambach, Acta Phys. Pol. B23, 1163~1992!.
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