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Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the general
effective chiral Lagrangian. The potential is obtained up to a certain order in chiral perturbation theory both in
momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are presented,
where satisfactory agreement is found for laboratory energies up to about 100 $4556-28186)04305-3

PACS numbgs): 21.30.Fe, 12.39.Fe, 13.75.Cs

[. INTRODUCTION andwp exchanges andww exchange. Agreement with data
is quite good.

The problem of deriving the interaction potential between Nevertheless, the justification for such approaches in
two nucleons continues to be one of the most fundamentakrms of quantum chromodynami@@CD) remains mysteri-
problems in nuclear physics. Early field theoretical work inous. In particular, it is not clear how to consistently deal with
this areg 1-4] encountered many difficulties, mostly due to the exchange of mesons which have masses of the order of
the nonrenormalizability of meson theory. This was followedthe typical inverse hadronic radius set by the QCD scale
by more phenomenological approaches which utilized emAqcp. This has led a number of researchgi$] to attempt
pirical forms for the medium- and short-range parts of thederivations of nucleon-nucleon scattering from quark models
interaction potential5,6]. During the last two decades a (€ither constituent or bagormulated in terms of some ef-
compromise approach has been developed in which mesdfctive degrees of freedom which carry the same quantum
exchange potentials provide the medium- and long-rangBUmbers as the current quarks and gluons. Although such
parts of the nucleon-nucleoN(N) potential while the short- Models are not derived from QCD either, they usually have
range dynamics is treated phenomenologicélly-9]. Al- only a few parameters, most of which are fixed by fitting

though the latter approaches have achieved very impressi\%]e":uc'io?t Fr)r%perti'ﬁ,[s'rGiP(Eg]'y ;h?‘:ﬁ rr;ogel_:, ;?]roduce ad-
empirical descriptions of nucleon-nucleon bound staey- ~ S4Yate short-range interactiopist, but the long-range po-

. . tential continues to be formulated in terms of pion exchange.
teron and scattering data the connection between the
It seems natural, therefore, to start a treatment of the

nucleop-nucleon interacf[ion anq the fundamental, undgrlying]uclear force problem by recognizing the unique role played
dynamlcs of the strong interaction remains uncleqr. It is forby the pion. Although we are largely ignorant of the nonper-
this reason that _the nucleon-nucleon problem continues to Bg p-+ye dynamics of QCD at low energies, we know there
of fundamental interest. exists an approximate chiral symmetry which is broken by
It has been argueid 0] that Regge phenomenology can be the vacuum. This symmetry restricts the form of the allowed
extended to low-energy nucleon-nucleon scattering withnteractions of pions among themselves and with other par-
Regge poles leading to a one-boson-excha@#E) poten-  ticles. Consequences of approximate chiral symmetryiare
tial where(i) the contributions of meson trajectoriésclud-  the small mass of the pion relative to the QCD scale,
ing scalare’s) are dominated by the particles with lowest AQCDi and its subsequent long-range contribution to the
spin which couple to nucleons with a Gaussian form factoNN potential and(ii) theorems relating processes involving
and(ii) Gaussian potentials arise from the Pomeron and tendifferent numbers of pions which yield some predictive
sor trajectories. Such a potential in a nonrelativistic expanpower. The pion is indeed the most important character, be-
sion has been constructed by the Nijmegen gifdj@nd fits  sides the nucleon, in the nuclear physics drama.
data very well. However, Regge cuts are simply neglected. The distinguished status of the pion in determining the
The Bonn group[8] made a serious attempt to include NN interaction has, of course, been emphasized before, par-
multiboson-exchange in the framework of old-fashioned periicularly by the Stony Brook and Paris grou®. The coor-
turbation theory. In addition to the OBE of known mesonsdinate space potential developed by the latter contajna
they included the following: Z andp exchange with both long-range, “theoretical” part constructed through unitarity,
nucleons and\ isobars in intermediate states, “correlated” analyticity, and crossing relations froms and =N phase
two-pion exchange in the form of @&’ scalar meson, shifts, which includes one, tw@ontinuum plusp, &), and
mooge €xchanggwith o ggg an approximation to 2, o, partially three pion exchangg the form of w) and (i)
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short-range, purely phenomenological spin and isospin demechanism, and we would be learning something about
pendent parts. Both groups evolved from this model-QCD.
independent but parameter-crowded approach to the other We emphasize that our aim here is not to obtain better fits
extreme, the two-parameter Skyrme model. Semiquantitativé9 the nucleon-nucleon data than the already excellent fits
success resulted, except for the lack of a centralachieved with meson exchange potentials. We do intend for
intermediate-range attractidi2]. (For a review of further this approach to help establish a bridge between QCD and
developments, sdd.3].) nuclear physics and to provide a sound model of the

What is fundamentally new in the present approacmucleon_—nucleon potential whose off _shell structure is fixed
[14,15 is the development of théIN potential within the ~@nd which may be used for calculating other nuclear pro-
framework of the general effective chiral Lagrangian. By CESSeS. In s_hort, the gengral chiral Lagrangian is a useful way
considering the most general Lagrangian which involves th&0 parametrize both our ignorance of QCD and our knowl-
pion and the nucleon, and transforms under chiral symmetr§fdge of nuclear physics. _ _ _
as the QCD Lagrangian, we divide theN problem into two General ingredients and _properties of effect!ve ch|rall
parts. The first task concerns QCD and its reformulation in-@grangians for nuclear physics applications are discussed in
terms of the relevant, low-energy degrees of freedom. Théec. II; the effectlve chiral Lagrangian expansion _used .here
resulting theory must have the form of the general chiralS present.ed in Se'c. III.' The two-nugleon poter_mal is derived
Lagrangian(because the latter contaiiadl the interactions t© & certain order in chiral perturbation theory in momentum
with the correct symmetly where the coupling constants SPace in S_ec. IV andin Sec. Vis transformed into coordmate_
are, in principle, known functions of fundamental quantitiesSPAC€, Using @ momentum space Gaussian cutoff. The special
like Aqcpand the quark masses. In other words, the dynamtechniques required to calculatéN scattering and bound
ics of QCD s buried in the couplings of the effective chiral state properties with the present coordlnaf[e_ space potential
Lagrangian. Since different models based on QCD represef{© discussed in Sec. VI and the results of fitting the nuc]eon—
different attempts to capture the essence of this underlyin§ucleon scattering and bound state data are presented in Sec.
dynamics, they will generally differ in the strengths of the V!l- Conclusions are given in Sec. VIIl. Finally, many de-
low-energy parameters. The second part of the problem is titils are deferred to the'Appendlces. An initial report of these
relate the parameters of the effective chiral Lagrangian to thEeSults was presented in Refg4,13.
measured, low-energyN scattering data and deuteron prop-
erties. Il. POWER COUNTING

Clearly, we do not attempt to “solve” QCD here, but
instead concentrate on the second task described in the pre- In this work the low-energfNN potential is expanded in
ceeding paragraph. We start with the general chiral Lagrangfowers of momentum divided by a QCD mass scale. Typical
ian with undetermined coefficients. Because chiral symmetryhree-moment&® exchanged in nuclei can be estimated as
is manifest(contrary to most meson exchange models, e.gthe inverse of the rms electromagnetic rad{u§)? of a
[7.,8]), our approach is priori compatible both with QCD light nucleus. For example, for the triton with
and with all known low-energy phenomenology, including<r§h>l’2:1.75 fm we find thatQ~m,, the pion mass. In
a, mN, andyN scattering, meson exchange currents, etcQCD the coupling becomes strong and is dominated by non-
Our scheme is model independent in the sense that we do nperturbative effects below a momentum scale that is
adopt either a massive meson exchange picture or a particaseughly given by a typical hadronic mass, 1 GeV. When-
lar quark model. When a systematic analysis based on a chéver we face such a two-scale problem it is useful to separate
ral Lagrangian is carried out for such processesrbisscat- the corresponding physics by considering an effective, low-
tering, a number of the unknown coefficients in our modelenergy theory which involves only the relevant degrees of
can be determined independently of theN data. In the freedom, all with small three-momenf@ Such theories can
meantime we keep these parameters free inNin¢ data  be formulated with a Lagrangian that is lodah the sense
fitting procedure. that it involves only operators containing fields at the same

We do have to make one assumption, that of naturalnesspacetime pointand shares the symmetries of the underlying
which requires that the parameters be consistent with naiviheory, in this case QCD. The dynamical information for
dimensional analysis. With this one assumption a perturbamodes with momenta& M is contained in an infinite set of
tive treatment of the nuclear potential can be developed thgiarameters.
is lacking in other approaches. Here the perturbative expan- What then are the relevant degrees of freedom in the case
sion is in powers of momentum divided by a typical QCD of low-energy nuclear physics? Unlike the situation at high
mass scale. Up to a given order of expansion the effectivenergies where quark and gluon degrees of freedom are in-
chiral Lagrangian specifies precisely the terms which appeatirectly manifest in the datée.qg., jets, deep inelastic scatter-
in the NN potential. Of course, there is no guarantee that théng, quarkonium production, ej¢low-energy nuclear phys-
resulting potential will be sufficient to describe the data. If aics does not reveal this underlying QCD structure in any
good overall description of the data results, it means that thebvious way. Therefore the relevant fields for this study
perturbation expansion was carried out to the order the preshould represent mesons and baryons. Clearly, the lightest
cision of the data requires. If, on the other hand, an importanstable particles in each sector should be included. Thefion
phenomenological ingrediente.g., scalar-isoscalar attrac- has a mass that is small comparedMg and its pseudo-
tion) is missing, then this might indicate that a certain opera-Goldstone boson nature makes it a fundamental ingredient.
tor or diagram is more important than naively expected. ThisThe nucleorN has a masey which is not small but because
in turn would be indicative of some characteristic dynamicprotons and neutrons comprise the principle constituents of



2088 C. ORDONEZ, L. RAY, AND U. van KOLCK 53

nuclei they must be include@The explicit appearance of the momenta Q<my; nucleons and A’s are therefore
nucleon massny in the effective theory requires care as hasnonrelativistic*

been discussed previous[{16,17.) The effects of higher The first task is to organize the expansion in such a way
mass meson and baryon states will generally be suppresséd to eliminate time derivatives_of the fermions in interf_;lction
by the inverse of the meson masses or by the inverse of tH€'MS: since they would contribute large factors. This has

mass differences between the baryons and the nucleon gen done by redefining the fermiqn fields in_terms of veloc-
" Ity eigenstate$19], but also more simply by directly replac-

retain only those mass states for which J.[h'.s fa(_:tor IS much‘ng the time derivatives of fermion fields using the equations
larger than~1/M. In the meson sector, this implies that we o motion for the fermiong16,17. In so doing we generate
do not explicitly keep thep, , etc., whose masses are jpteraction terms that have already been accounted for,
=5.5m, which are closer taM than tom,. In the baryon  which simply result in a redefinition of existing coefficients.
sector we retain only thel isobar which has a mass  The second task is to distinguish between so-called reduc-

my~my+2m_, but do not include theN* with mass ible and irreducible diagrams. Reducible diagrams are those
My« ~My+3.5m_ nor any other higher mass baryon state.Which can be separated into two parts by cutting through an

The contributions of these additional fields could be includedntérmediate state which contains only the initial or final par-
in a similar way as is done for thk. The other octet pseudo- ticles. This type of intermediate state produces infrared di-

Goldstone bosons and the hyperons are also omitted. Fggrgences in the limit when the baryon kinetic energy is

e . ignored; when it is not, a small recoil energy denominator
simplicity we consider only S[Z)xXSU(2), however our results which makes the overall diagram bigger than ex-

treatment can be readily extended to(SIXSU(3) to en-  pected by a factomy/Q>1. The contributions of these re-
compass hypernuclear physics. ducible diagrams are automatically included by solving the
The requirement that the low-energy Lagrangian incorpoi_ippmann-Schwinger or Schdinger (in the nonrelativistic
rates the symmetries of QCD restricts the form of possibldimit) equations of motion.
interactions involvingsr, N, andA, but we are still left with The simplest way to isolate these two types of diagrams is
an infinite set of interactions with coupling constantsj; , to work in the framework of old-fashioned, time-ordered per-
which differ in the number of derivatives or powers of pion turbation theory. Irreducible diagrams are those that contain
massd,, fermion fieldsf,, etc. If we knew how to solve only intermediate states with energies that differ from the
initial energy by an amoun®(Q). For an irreducible dia-
gram withV; vertices of type, L loops,C separately con-
nected pieces and;=2A external fermion lines, the power
of Q can be conveniently written as

QCD at low energies, we could calculate these coupling con
stants directly. Since there is @opriori reason for the cou-
plings in the effective chiral Lagrangian to be small, @o
priori perturbation expansion for the infinite set of interac-
tions can be formulated.

We can proceed only by making an assumption of natu-
ralness which means that when a coupling constgpnbf
mass dimensior- &, is expressed ag=0;M ~ 9, the dimen-
sionless coupling constarg; will be of order unity. Of :
course this might not be true for all the couplings and this Aj=di+5 -2 2
will become apparent through phenomenological data analy-
sis. If a coupling constant is found to be anomalously largés called the index of vertex Any reducible diagram can be
or small, it may require special treatment at low energies, bugonstructed from irreducible diagrams by connecting the lat-
this may also indicate a particu'ar dynamica' or SymmetryFe.r.With intermediate states with enel’gieS that differ from the
effect at the level of QCD. initial energy by an am(_)urID(Qzl_mN) or smaller.

We now have a natural expansion parameter Here we deal Wlth o_Ilagrams involving only two ex_ternal
Q/M~m./M, the contribution of any diagram being char- nucleons. Irreducible diagrams are then two-nucleon irreduc-

. ible; any intermediate state contains at least one pion or iso-
actgrlzed by the power of the SfOft momentL_mQ. We or- har The two-nucleon potential is defined as the sum of such
ganize our perturbation expansion by counting power®of jrreducible diagrams, their contributions being ordered by

in the same way that is done to get the superficial degree qfq. (1). The full NN scattering amplitude is evaluated by
divergence of a graph, where special care is taken with baryiterating the nuclear potential in the Lippmann-Schwinger
ons due to explicit factors which contain their large massesequation, or equivalently, by solvingnumerically the cor-

In the present effective theory it is assumed that all threeresponding Schdinger equation.

v=4—A+2L—2C+, ViA;, (1)
|

where

ISince we do not knova priori what the scaléV is exactly, it is not clear how relativistic correctiofshich are suppressed bym)
compare to I corrections. A rough idea of their relative importance can be obtained from the following naive dimensional argument. The
nucleon-nucleon potential in momentum space can be writtdi(pg’) =l (p,p’) wherel (p,p’) is some dimensionless function of the
initial and final c.m. momenta and p’, respectively, andvr~272/M? if we count powers of 2 andr of [18]. Substituting this in the
Lippmann-Schwinger equation we obtain an expansion@my/2w2~Qmy/M?2. A shallow bound state indicates that this series barely
diverges, so we estimate th&t2~Qmy. This estimate is admittedly crude and it is not crucial for our approach but it suggests that
relativistic correctiongd(Q/my) are O(Q?/M?). If M is actually larger, it only indicates that relativistic corrections are relatively a little
larger than assumed here.
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lll. EFFECTIVE CHIRAL LAGRANGIAN where

In order to construct a perturbative expansionQ@hM,
Eq. (1) requiresA;=0, for in this case there is a lower bound
for v corresponding to diagrams with the maximum number E.
of separately connected pieces, no loops and all vertices hav-
ing A;=0. Corrections with higher are obtained by insert-
ing loops and interactions withh;>0, and decreasing the This is done by considering all possible isoscalar terms and
number of connected pieces. We will show that chiral symimposing the discrete spacetime symmetries of QCD, parity,
metry requires and time reversal.
That is not all though, because the quark masses break

Ai=0. B so4) explicitly. The symmetry breaking terms can be writ-
ten as a linear combination of the fourth component of a
chiral four-vector and the third component of another four-
vector, with coefficients 1/26,+my) and 1/2m,—my), re-
spectively. We account for this explicit symmetry breaking

(10

3

Il
'I'I| N
3
X
O

Here, for simplicity, we work with QCD with only two
light flavors u and d with massesm, and my, but it is
straightforward to include the strange quark. In the limit of

vanishing qugrk masses there is an (St SU2)~SO4) by including in the chiral Lagrangian all the terms con-
symmetry which is spontaneously broken to(@ld- SQ3). structed out ofr, N, andA that transform under S@) in
As a result, there exist Goldstone bosons whose fields live i e same way 'I:hei'r coefficients will then be proportional to
3~ - . -
thet tthrte)e—tsrﬁ)her_s dSO(A’)/ SCX?)t)éF]WIEI:I 1a98|i1/lmt\e/telr:tfl1lat t_urns powers of these combinations of quark masses. That is the
oo e e s e oo 8y he o mass sy« my), 50 cacn power
gLo, grap is m,+mgy will count asQ?. For simplicity we neglect isospin

covariant derivative is then breaking terms proportional tar(,—my). When the latter
d,m are included along similar lines we begin to understand why
o

1 a,T
P =p1t- (4)  isospin violating effects are so feeble in most nuclear phe-

O TIT AR F, F

nomena 20]. Appendix A presents further details regarding

The baryons considered here provide the 1/2 and 3/2 re%eeretransformation properties of the field representation used

resentations of the spin and isospin(8JUgroups. A nucleon
N (isobar A) is described by a Pauli spinofa four-
component spingrin both spin and isospin spaces, the re-
spective generators being denoted by (&/2)1/2)c%/?)]
andt (1), There are also, of coursex2 transition op-

By writing operators that are chiral invariant or that break
chiral invariance proportional to the quark mass term, we
immediately see that all interaction terms have=0; opera-
tors involving only pions have at least two derivatives or two
- powers ofm, and nucleon bilinears have at least one deriva-
erators (1/2p andT, satisfying tive. Chiral symmetry therefore guarantees a natural pertur-

+ . bative low-energy theory

SS =3 (28~ izikow), (5) The index of interactiom\; provides a useful ordering
scheme for the chiral lagrangian. Below we denote by
(M referred to as thath order Lagrangian, the collection
of terms with indicesA;=n. We explicitly show only those
terms relevant for our application. Since we evaluate dia-
grams only up to one loop, interaction operators with more
pion fields or isobars than those exhibited below do not con-
tribute to this potential, although they are there in general, in

TaTtJ)r: % (Sab—i&apdec), (6)

which allow us to coupl& andA in bilinear terms with spin
and isospin transfer 1, respectively.

The effective chiral Lagrangian is constructed out of the
fieldsD,, N, andA and their covariant derivatives,

9 D.=3d D.+iE. XD 7) many cases to assure chiral invariance. Note also that we
n=v n=v 12 v L . .
eliminate some redundant terms by integrating by parts, by
Y ,N=(d,+t-E,)N, (8 using the equations of motiofe.g., to eliminate nucleon
time derivativey and by applying Fierz reorderif@1].
P,0=(3,+132.E A, 9) The lowest order Lagrangian is

7 O=_ 1D (Va)2— 7?]— D *m2m?+N[idy— 2D *F %t (mx 1) —my]N—2D " F_1gaN(t- o- V)N
— 3 CsNNNN— 3 CtNoN-NoN+Afidy— 2D " 1F 432 (X ) —my]A — 2D F - ha[NT- (S V) A +H.c]

T (1)

whereg, is the axial vector coupling of the nucledm, is the AN coupling,Cg andC+ are the parameters first introduced
by Weinberg[16,17, and as usual we work in units whetie= 1.
In this work we will also employ terms with more derivatives and powersrof he first-order Lagrangian is
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B — - . B — B —
%(1): - F_;DizNN[(Vﬂ')Z_’ﬂz]—F_22D728iijabCN0'ktcNO“i7Ta07j’7Tb_ F—gmiDilNNﬂz"‘ cey, (12)

where theB;’s are coefficients of orde®(1/M); in particular, the last interaction term proportionalBg contributes to a
scalar-isoscalar term similar to tleeterm in meson exchange potentials. The second-order Lagrangian is

! !

1 — A — L L L = . -
¥ (@ —NVZN—F—l[N(t-o-Vn)v2N+V2N(t-a-vw)N]—

- VN(t-&- V) - FN— CL[(NVN)2+ (VNN)?]
2my

2
Far
— CH(NVN)- (VNN)— C4NN[NVZN+ F2NN]—iC4INVN- (FNX &N) + (FN)N- (N X VN)]
— ich\J(ﬁ_N~ X VN)—iC{(NoN)- (VN VN)—(C} 8 8j1 + C8ii ¢+ C i Sur)

X [NoydiNNo N+ d;Na Na;NoyNT— (C1o8 81 + C118 S+ C1o6i; S)NoiediNG ;NN

—(5C14( 88y + 81 8¢j) + C146i; k) [ NN+ 9Ny i NINayN+ - - -, (13

where theA/ and C{ are additional undetermined coeffi- obtain values for all the parameters by fitting low-energy
cients of ordelO(1/M?). nucleon-nucleon data. It should be kept in mind, however,

Using this expansion for the Lagrangian and the rules fothat the number of parameters in the present potential could
diagrams in time-ordered perturbation theory, it is straightbe reduced when sufficient information from the one-nucleon
forward to construct the interaction potential. Because wesector is gathered. For the many-nucleon system the present
eliminated time derivatives in all interaction terms but four theory is consistent with the empirical observation that three-
(those that come together with the pion and fermion kinetidand morg body forces are smaller than two-body forces.
terms in% ©, and theB, term in. ¥ (1)), and because each Some of the implications of this result are discussed in Ref.
of these four terms involves at least two pion fields, the[29]. Furthermore, meson exchange currdB8, pion scat-
interaction Hamiltonian is just<1) times the interaction tering [31], and pion photoproductiof82] on nuclei have
Lagrangian, up to interactions with more pion fields that doalso been studied in the same approach. For the remainder of
not contribute to the order we are working. this work we restrict our study to the two-nucleon system.

For only two nucleons in the initial and final state=2
andC=1; Eq. (1) then simplifies to
IV. THE TWO-NUCLEON POTENTIAL

IN MOMENTUM SPACE ,,:2|_+2 VA, . (14
|

We are now in a position to calculate any process involv-
ing soft pions and nonrelativistic'nucleons._ Eq_uatioims As usual we work in the center-of-magsm) system and
(2), and(3) guarantee that the dominant contributions to S“dhenote the initial energy byrgy+E, initial (final) momen-
processes come from tree graphs with the maximum numb%;I > > e T s > > o,

m by p(p’) and defineg=p—p’ andk=(1/2)(p+p’) as

of connected pieces and constructed out of the Lagrangiathe transferred and average momenta, respectively. Sub-
£ (©), When applied to processes with at most one nucleon, ' '

this is equivalent to that given by current algebra. For ex-Scripts 1 and 2 on spin and isospin matriceandt refer to
ample, the Weinberg[22] pion-pion and Tomozawa- Nucleons 1 and 2. _ _ _ _
Weinberg[22,23 pion-nucleors-wave scattering lengths are  The leading order potential® (with »=0) is obtained
readily obtained. But in the late 1970s Weinbefg4]  from the graphs in Fig. 1 and interactions given #y() in
pointed out that chiral Lagrangians, in addition, provide aEd. (11). Note that to this order nucleons are static, so that
framework for evaluating corrections to the dominant contri-their energies in intermediate states are simply and the
butions. The systematic treatment of chiral perturbationd isobar does not contribute. One obtairis] the well-
theory in the mesonic sector began with the work of Gassenown static one-pion-exchang€OPE potential supple-
and Leutwyler[25] and has been extensively studied in themented by contact interactions where

case of SW3)X SU(3), up toL=1 andA;=2, and including oa. )2 . e -

electroweak effectgfor an introduction, see Ref26]). A 0)_ ga 01-4oz-q - -
systematic study of the SB)x SU(2) chiral Lagrangian for Vo= _(F_) bt G2+ me +Cs+Croy- 0. (15)
processes involving one nucleon was started by Gasser, i

Sainio, and 8arc [27] and is continuing with the work of The OPE term provides the longest-range part of ltHé
Bernard, Kaiser, and MeiRBner, and many othésa review  force, and it is well establishe®3] that it accounts for the
see Ref[28]). In principle, the coefficientgs, ha, B;, and  higher partial waves in nucleon-nucleon scattering and the
A/ can be determined from analyses of one-nucleon probulk of the properties of the deuteron, such as its quadrupole
cesses once all contributions through one loop are evaluatethoment. Of course thBIN potential has other sizable com-
Unfortunately, this has not yet been done. In Sec. VIl weponents, including a spin-orbit force, a strong short-range

ko
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4 \ (a) (b} (c) () (e)

e AR FIG. 2. One loop graphs contributing to the two-nucleon poten-
tial (double lines represent nucleons or isolpa@nly one time
ordering is shown for each type of graph. (& and (e) we only
consider those orderings that have at least one pion or one isobar in
intermediate states.

@ (b) This is a direct consequence of parity invariance. For the tree
graphs, we could only add a power of moment(m sub-
FIG. 1. Tree graphs contributing to the two-nucleon potentialtract one and add an extra powerrof) to V(®, but this is
(solid lines are nucleons, dashed lines pjons actually a three-momentum because we eliminated time de-
rivatives. This results in an odd number of three-momenta
repulsion, and an intermediate-range attraction. Clearly, thétom which parity conserving terms cannot be constructed.
lowest order result in Eq(15) does not account for these There are, however, many corrections of second order,
additional components. A test of the present approach is twhere v=2. This includes tree graph contributions from
determine whether higher order contributions yield such fea<~ (2) and a number of one-loop diagrams.
tures. First, we obtain corrections from the tree graphs in Fig. 1
First-order corrections ifQ/M (v=1) also come from where one vertex comes from the interaction&4ri?) in Eq.
the graphs of Fig. 1, but with one vertex from (). How-  (13) and the nucleons remain static. We also obtain tree level
ever, there are no suitable vertices in E#j2) for the tree  corrections where the vertices are fram(® in Eq. (11) but
graphs in Fig. 1 and we conclude that there are no correavhere recoil is included in the intermediate state. Order
tions to the leading order potentis(?) that are smaller by =2 tree level corrections using two factors froff (1)

just one power oR/M, i.e., cannot be formed because, as we noticed above, there are no
suitable vertices in Eq12). The tree grapi®[ (Q/M)?] cor-
vi=o. (16)  rection is therefore given by
|
2 o1-0o2-q E— (1/4my)(4Kk?+q? . 9 . IR
Vide — Dt 2028 asqze ke 2g, WIMEETD ) 1,60+ Coe+ (Cad+ CuR?) 0
F20 7 g?+m? Vg2 +m2
oyto, . L I I
+iCs > “(gXKk)+Cgq- 01q- 02+ C7k- 01K 07, (17

where theA;’s andC;’s are combinationgsee Appendix Bof the A/’s andC;'s of Eq. (13). The explicit energy dependent
term is discussed in Appendix C.

Second, there are contributions from the one-loop graphs in Fig. 2 with all vertex factors coming4f8m (Other
one-loop graphs only contribute to the renormalization of parameters in the Lagraumgienmediate states include those with
two nucleons, one nucleon and one isobar, and two isobars. Denoting

w.=\(q*1)2+4m?, (19

AErnA_ran (19)
straightforward calculation gives
vo 1 Bl 1 (0 —w )2 o[ 9 Zt : el 1 [ g2
'°°p'nm__ﬁtl.t2 2ml o o (0w ) F_i 2 2ml w0 \w,—o_
4
1(ga ddl 1 3 8t1ty | -y oy 3 8ty-tp) . . .. L
_Z(F_,,) JWW ey L i Proenh e LERC ISR O

(20



2092 C. ORDONEZ, L. RAY, AND U. van KOLCK 53

for the diagrams of Figs.(8)—(d) that do not include isobars in intermediate states,

2 hA d?) 1 q*-I?
Ioop ona T g |:4 ER (2m)° (witw_) (ws+2A0)(w_+2A)

_ L1
18 Fi

ddl o - P,
(3441 [ 5o (@274 20, (XD (§xT))

X

1 1 1
w,w_(wy+w_) (a)+(w+2A) * w_(w,+247)

1 1 1 1 1 1
* 2 Av,o_\w,o_ * w (w_+2A) * w_(wy+2A) * (w4 +2A)(w_+2A)

dl e I PSS N PE
+(3_4t1't2)fm[(q —19)%=201-(qX 1) oy (gX1)]

W0

1 1 1
X ortw 124 ( o (w++2A)(w_+2A))

1 1 1 1
* a)++w_+w++w_+2A)(w_(w_+2A)+w+(a)_+2A))H (21)
for the diagrams of Figs.(B)—(e) with one intermediate isobar, and
v LA t)f (@@= T2)2= G- (G ) (X 1)) : .
loop.was ™ g1F? V) (2m)?® v z ‘o 0 (0, +20) (0_+2A)
BB IyE j_g"' 122+ Gy (4% D (AX T
X w++w,+ﬂ +(3+2t;-tp) 2m) [(@°= 1)+ o1 (gX1) oz (gX )]w+w,(a)++w,+4A)
y 1 1 w,tw_+2A 1 1 27
(0. 120 (0 120) ' woto. (0 1202 (0, +20)2 (22)

for the diagrams of Figs.(2)—(e) that have two intermediata’s.

Finally, we consider corrections of ordeiQ/M)3] wherev= 3. Again, some terms could come from the tree graphs of Fig.
1 with one vertex from# (®), but the same argument used f#*) guarantees that

Viee=0. (23

Other third-order corrections would come from the one-loop graphs of Fig. 2 where one vertex ig fforin Eq. (12). Parity
invariance requires the contribution from FigaPto vanish, as can be confirmed by explicit calculation, and because there are
no NN couplings in% (), the diagrams in Figs.(2)—(e) also do not contribute. Figurel® gives

(3) 9a el 1 2 )
Vicop,nas = Ez j(_§_2_7{3(q — [ =By (g2~ %)+ 4m2B3]+ 16,01 (qX D op- (X Nty 1} (24)

for no A in the intermediate state, and

v® __1{ha L ! ! !
loop, on&d = T g F_i (2m)P wio_ (0t o) (0 +2A0)(0_+2A)

X{(ws+w_+20)[3(q%—?)(—By(q2— 12 +4mZB3) + 4B, - (X 1) oy (X Ny - t,]

+6BjAw,w_(q2—12)} (25)
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when there is one. arenot usually includedin meson exchange potentidisg.,

Further corrections are of higher order=4). They in- Refs.[7,8]). On the other hand, these terms are the only form
clude (i) two-loop graphs, like the ones in Fig. 3, that areof “correlated” pion exchange in our potential. The more
numerous and harder to calculate, ditgitree graphs with a  traditionals-wave correlated TPEFig. 3@] is higher order
vertex from & ), which would bringmany new undeter- in the formalism discussed here.
mined coefficients. We do not attempt to include them here. The loop integrals in Eqs20)—(22), (24), and (25) di-

The momentum space form of the potential, first pre-Verge. Moreover, iteration in the L|ppm_ann—SchW|rjger equa-
sented i 14], facilitates a discussion of its structure and thetion Of (even the lowest order terms)ithe potential pro-
comparison with other models. As usual the Iongest-rangguces further infinities. Regglarlzatlon is therefore necessary,
part of the potential is given by one-pion excharige. and counterterms are required to abs’orp the dependence on
(15)], including the dominant, static OPE potential first ob- the regulator. The contact terrﬁme Ci's in Eqs.(1_5) and
tained by Yukawd 1], plus correctiondEq. (17)]. The A, 7] perform exactly this function. ane renormalized, they
andA, terms in Eq.(17) derive from the leading corrections contain the effgct of exchange of hlgh-e'r-energy mo.des. and

— L ) ) are not constrained by chiral symmetry; i.e., all combinations
to the 7NN vertex that arise in an expansion of its form

f . p he f ; of spin operators and momen¢ap to second powgrthat
actor2|n powers of momenta over the form factor parametergayisty narity and time reversal invariance are included. This
Theg“ dependence is usu@ee, for example, Reff8] where

resul in in-orbi in-spin n nsor
monopple and dipole forms are u$ed(hereas th&? depen- %STU gs,C4,C6S:FC):7),CJ b ;ndCS)’SpmSp insd%pengercwjt t(?er?t?al
denc_e is not as common, however it too has been recent| Cs,C,,C,) forces. In order to compare with other ap-
conglderec{e.g., W|Illamsburg m(_)de_ﬂ34]). The other cor- roaches it will be convenient to “undo” our previous Fierz
rection to the static OPE potential is the energy dependerf%ordering[Zl] and rewrite the coefficient§; as
term in Eq.(17), which arises from the recoil of the nucleon
upon pion emission. 0~

The intermediate range parts of the potential are due to C=Cr+Ciut. (26)
two-pion exchang€TPE) and are determined by parameters
F., da, ha, my—my, By, B,, andB3. The contributions
from box and crossed box (zlagrat[rﬁgs. _Zc)—(e)] are stan- V. THE TWO-NUCLEON POTENTIAL
dard. The one in Eq20) (g _term) was f_|rst co_nS|dered by IN COORDINATE SPACE
Brueckner and Watsof2], while those withA’s in Eq. (21)
(gihf\ termg and Eq.(22) (hj termg are due to Sugawara Nucleon-nucleon scattering calculations, including those
and von Hippel4]. As a check, our results also agree with Presented here, very often use a coordinate space representa-
the appropriate limit of the expressions listed in R&5].  tion. In order to transform the momentum space potential in
But we would like to emphasize that there also exist TPEEJS.(15—(26) into coordinate space we first have to specify
contributions from the “pair” diagrams of Figs.(& and the regularization procedure. The use of dimensional regu-
2(b) that are less common. Those in E20) and theB, term  larization here poses a problem that we have not yet suc-
in Eq. (24) have also been suggested before by Sugawara arf¢eded in solving: how to iterate the potential to all orders in
Okubo[3], but with arbitrary coefficients. Here the terms in arbitrary dimension. Instead we use a momentum space cut-
Eq. (20) are fixed by chiral symmetry in terms of, and  Off A<M, as has been done in other potential models, be-
Fﬂ_ while the B3 term comes from therN o term. To the cause it is Conceptually and mathematica”y Simpler. The
same order, we also have in E¢4) two new terms form of the cutoff function and the value assumed foare
(B1,B,). The corresponding terms with in Egs.(21) and ~ Somewhat arbitrary and presumably not very importaee
(25) are also new. It is important to emphasize that theséesults in Sec. VIi; variations in the cutoff are compensated
contributions from the nonlinear coupling of the pion to theto some extent by a redefinition of the free parameters in the
nucleon are a consequence of chiral symmetry and that theffpeory. Again for simplicity, we follow the Nijmegen group
[7] and assume a Gaussian cutoff function exif{(A?),
which regulates the loop integrals in the potential. In order to
further regulate the loops arising from the iteration of the
potential, we also cutoff the transferred momentgrasing

. p e the same cutoff function, exp(ﬁzlAz).

N / P All integrals overﬁ and| can be reduced to simpler ex-
A " -7 pressions involving one-dimensional integrals that can easily

, N e °More recently, there has been some interest in the constraints of
chiral symmetry to the TPEIN force, but limited to the diagrams
corresponding to Eq(20). For example, in Ref[36] the scalar-
isoscalar component of these diagrams has been studied, although a
(a) (b) different definition of potential is considered; R¢R7] discussed
the relevance of energy dependence in OPEP to the definition of

FIG. 3. Examples of two-loop graphs that aret included in  these TPE potentials; and in R¢88], Eq. (20) was examined for

our potential. the unphysical case @,=1.
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be evaluated numerically. We use the formulas and tech- .1 . .
niques presented in Ref35,39, see Appendix D for de- S= 5(01+ o2),
tails. Only the final form is presented here.

The tensor, total spin, and relative orbital angular momen- = _irxyv
tum operators are defined, as usual, by '
. e o respectively. In terms of these operators and the Pauli matri-
oypropr - = cest in isospin space the present potential can be expressed
S1y=3———5—— 0y 09, (27 T pin sp p p p

r in terms of the following 20 operators:

- -

p=1,.. ., 20 > > s> > S5 s > >y =2 -5 - -y N
Kp —1,71‘72,0'1'0'2,0'1‘0'21'1'72,812,81271'Tz,L'S,L'S’Tl"Tz,L ,L Tl'Tz,L 0'1'0'2,|_ 010271 T,

(E'é)z,(t'é)zfl'721512|:'§7312|:'§71'72,312|:27512|:271‘Tz,Slz(E'é)z,Slz(E'é)le' . (28
|
The NN potential in coordinate space is written as By projecting onto the spin-angle basis a set of radial Schro
20 R dinger equations results which can be written schematically
Jd 0 as
= - 7' P
v pzl Vp(r,&r,&rz,E P, (29) 2
J d
where X<2>&7+x<1>a—r+x<°> R=0, (31
q d 9?
. —\/0/p- 1/.. . 2/ o where
Vp(ryﬁr;aerE) Vp(riE)+Vp(r:E)(9r+Vp(r1E){9r2
(30)

1
XO=_——51(L+1)+ >, VI P)—E,
is an energy dependent radial operator determined by the 2pur? ( ) Ep: p ()

radial functionsvV(r;E), Vi(r;E), andV5(r;E). These 60
functions(some vanishare listed in Appendix E. Each con- 1 1
sists of a sum of terms with coefficients determined by the X =~ _r+ > V(p (oP),
parameters of the chiral Lagrangian, and each term involves ® P
at most one one-dimensional integral of the functions from
Appendix D. They are smooth at the origin thanks to regu-
larization. The energy dependence in the radial functions of
Eq. (30) is linear(see Appendix €

The first eight operators; P~* - are standard and are ,; is the reduced mass, ard) denotes a matrix element
accompanied in most potentials by radial functions with nopetween spin-angle basis functions. Spin-singlet and -triplet
derivatives. In this model they receive contributions from|_ = j channels are uncoupled, so for these stRtésa single
pion exchanges and contact terms. The next six operatorgadial function. For the tensor coupled triplet states with
O P=F 14 complete the set used in the phenomenological — j+1 R has two components and quantitix&, X

. 1 2 1 1

Urbana v14 potential (6], where, V;=V;=0 for  andx@ become 2 matrices.
p=9,...,14. What is characteristic of the structure of our |n order to eliminate first derivative terms we define
potential is the presence of first and second derivative termR=K ¢ where the auxiliary functior is chosen such that
for p=1,...,8 and thepresence of the other six operators ¢ satisfies an equation with no first derivatives. This deter-

@~p:15 """ 2(? A" Of these additional terms al’ise from the mines a differential equation fd{ Wh|Ch depends Or)((l)
O(k?) dependence in thd,, C,, C4, C;, and recoil cor- andX®, given by
rection terms.

1
2 _ _— )5 p
X 2u+% V(P (32)

dK

. 1 _
VI. SOLUTION OF THE SCHRO DINGER EQUATION i E[X(z)] XK, (33

Having obtained a coordinate space representation of the
potential the next step is to solve the Salirger equation where DetX(®)#0 and asymptotically K~r~. The
numerically. The procedure is standard, but care must bboundary condition orK for triplet channels is fixed by
exercised with respect to the derivative terms. further requiring that the two components ap are
As usual, basis functions of definite total isospjntotal  linearly independent asr—oc which results in
orbital angular momenturh, total spinS, and total angular  lim,_..K;;(r)=(1/r)8;;, where §; is the Kronecker delta
momentumJ (and its third component) were used; the function. FunctiorK at finiter was obtained by Runge-Kutta
relative c.m.NN wave function was decomposed into a par-integration of Eq.(33).
tial wave sum of products of radial and spin-angle functions. The resulting differential equation fap is of the form
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TABLE |. Effective chiral Lagrangian potential model param-

2095

T I T 1 T
eters forA=3.90 fm~! based on the fit to the Nijmegen phase N+N I=0
shifts[41]. 00 | .

P
A 1.33 o r \\_/
ha 2.03 —100 | . i
F. (MeV) 192 .
L 1
A, (1076 MeV 2 -1.38 . me "
A, (1078 MeV 2 2.44 D 3
B, (1072 MeV Y 0.342 T ool 2 ]
B, (1072 MeV 1) 0.854 N7
B; (1072 MeV 1) 1.77 =
75) 0.0
=0 =1 D 00
O 0|
Cs (1074 MeV 2 1.12 0.135 & w0 |
Ct (1074 MeV 2 —0.266 —0.689 )
C, (1072 MeVv % 0.661 0.381 00
C, (107° MeV %) 3.39 2.97 _s0
C; (107° MeV ™) —-0.330 —0.0295
C, (107° MeV ™4 —0.144 0.453 -100 -
Cs (107° MeV ™% 2.10 —-0.910 D 40
Ce (107°° MeV %) 0.281 0.0998 s
C, (1079 Mev %) 0.581 1.36 .§) 301
20
<
o 10 b
2 £
a ¢(r) .5 0.0 1 1 | L 1
72—=A(r;E)¢(r), (34) = 0 20 40 60 80 100

Tiag MeV)

whereA(r;E) depends oiX(®, X1, X2, andK. The wave FIG. 4. Best fit(solid curves to thel = 0 np phase shifts and
function ¢(r) satisfies the usual boundary conditions; i.e.,e; mixing angle from Ref.[41] assuming a cutoff parameter
¢ vanishes ar=0 and for larger, ¢(r) matches to the A=3.90 fm 1. Errors in the phase shifts, where shown, are from
asymptotic wave functions appropriate for scattering orRef.[42].

bound states. Th& matrix or binding energy is obtained

from the latter boundary condition. TH&N Smatrix is ex- mized fit was obtained to receMN phase shift§41] (with
pressed in terms of the usual phase shifts and mixing anglemrors from Ref.[42]) and measured deuteron properties
as in Eq.(7) of Ref.[40]. Equation(34) was solved numeri- [43].
cally for several positive scattering energies and for negative
values ofE to determine the deuteron binding energy and
other properties. The calculated phase shifts and deuteron
properties depend on the undetermined parameters in the La-
grangian. The cutoff parametdr was fixed and the remain- The 26 parameters of the modas, ha, F,, A1, Ay,
ing parameters of the Lagrangian were varied until an optiB;, B,, B;, C?, c{@ c{®@ ... c® c® c®,

VII. FITTING RESULTS FOR PHASE SHIFTS
AND DEUTERON PROPERTIES

TABLE II. Experimental and effective chiral Lagrangian model fitted values for the deuteron binding
energy (BE), magnetic moment k), electric quadrupole momenQg), asymptoticd/s ratio (), and
d-state probability Pp).

Deuteron Fit to Nijmegen phase shif4l] SP89 Fit$
quantities Experimefit A=250fm ! A=390fm* A=500fm?! A=3.90fm"?
BE (MeV) 2.2245799) 2.15 2.24 2.18 2.18

wa (n) 0.8574061) 0.863 0.863 0.866 0.863
Qe (fm 2) 0.28593) 0.246 0.249 0.237 0.253

n 0.02714) 0.0229 0.0244 0.0230 0.0239
Pp (%) 2.98 2.86 2.40 2.89

&Corrected values given here for fit in REL5)].
bSee Ref[43].
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FIG. 5. Best fit(solid curves to thel=1pp phase shifts and
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FIG. 6. Predictiongsolid curve$ using theA =3.90 fm™? cut-
off and the parameters in Table | in comparison with the Nijmegen
phase shift solutiorj41] for the | = 0 np phase shifts and;
mixing angle to 300 MeV. Errors in the phase shifts, where shown,
are from Ref[42].

tal angular momentund<2 were included in the fits. In
addition thel=0, 3S,—3D; tensor coupled bound state
(deuteron binding energy, magnetic moment and electric
quadrupole moment were also used to constrain the fit. The
phase shifts for thd>2 partial waves are dominated by the
OPE potential at these low energies and were not used in the
fitting procedure. The masses for the pion, nucleon, and iso-
bar used werem_ =140 MeV, my=939 MeV, and
m,=1232 MeV, respectively. The principle results of this
study were obtained assuming the cutoff paramatdéo be
3.90 fm™! (equal to thep mas$. Sensitivity to the cutoff
parameter is discussed later in this section.

The recent Nijmeger41] phase shift solution was se-
lected for fitting; errors were taken from the 1994 Arndt

€; mixing angle from Ref.[41] assuming a cutoff parameter gt 5| [42] energy dependent phase shift analysislutions
A=3.90 fm~L. Errors in the phase shifts, where shown, are fromClo C25, C50, and C100The relative weighting of the

Ref.[42].

cV, ... c¥V, see Appendix Ewere varied in order to
optimize the fit to the isospin Qfrom np) and isospin 1
(pp) phase shifts of Ref41] at 10, 25, 50, and 100 MeV

chi-square contributions from the deuteron properti®sd-

ing energy, magnetic moment, and electric quadrupole mo-

meny and the scattering phase shifts was adjusted so as to
achieve a suitable balance. The model was fitted to the phase
shift parameters rather than directly to tié&l scattering data

laboratory kinetic energy. All partial wave channels with to- since our goal here is to demonstrate the capabilities of the
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80.0 T T T T 06
60.0 N+N I= ﬁf\ 0s L ' Deuteron .\'ch'e 1
[ Function
40.0 é 04 I l
200 .fc_f> 03
oo § 02 | -
. = o1} S
-20.0 S oo /\
S oo~
—0.1 | | | | | | | | l
10.0 01 2 3 45 6 7 8 91
r(frm)
5.0
— FIG. 8. Deuterors-state(upper curvg andd-state(lower curve
g 0.0 radial wave 1functions from the preseMN potential using the
\-g 15.0 A =3.90 fm™* cutoff and the parameters in Table I.
£ Bs, c?, c, c™, ... ,C%f’) and fitting thel =0 phase
T 00 shifts and deuteron properties was initially conducted fol-
7p) lowed by a similar grid search for paramet&§’, C{,
® cV, ... c® for thel =1 phase shifts using the previously
8 0.0 optimized values oh,, A;, A,, B, B,, andB;. The OPE
c ) ga and F . parameters were held fixed throughout the grid
a searches. A full, 26-parameter grid search was not feasible
-10.0 . AR ;
due to computational resource limitations. After locating a
minimum in the chi-square space via the grid searches, the
=200 fits were optimized by simultaneously varying all 26 param-
eters using the downhill simplex method of chi-square mini-
200 mization[44].
The best fits to the Nijmegen phase shifts witl 3.90
fm ! are shown forl=0 and 1 in Figs. 4 and 5, respec-
10.0 tively. Except for a few of the channels at 100 MeV, the fits
(solid lineg are in quantitative agreement with the phase
shifts (data points where the errors from42] are shown if
0.0 larger than the data symbol. The results are essentially the
same as shown previously in RgL5] but these new fits are
in significantly better agreement with the 25 and 50 MeV
10 1p, and e; Nijmegen phases than was obtained in this ear-
lier analysis of the older SP89 phase shift solufiég]. The
L=0 singlet and triplet scattering lengths are predicted by
S 00 our model to be—15.6 and 5.40 fm, respectively, in com-
@
) 2.0 | |
% 0.0 62 400.0 |- 1 . 1
= < | Sq Potentials |
o 20 - i . = 000 | at 50 MeV |
->_5 —40 ] | 1 ! L L __8 B ]
= - 5= _
50 100 150 200 250 300 % 00 %
\
T ag MeV) < /_/ \/
FIG. 7. Predictiongsolid curve$ using theA =3.90 fm™? cut- 2000 | | |
off and the parameters in Table | in comparison with the Nijmegen o 1 9 3

phase shift solutiof41] for the | = 1 pp phase shifts and,
mixing angle to 300 MeV. Errors in the phase shifts, where shown,
are from Ref[42].

r (frm)

FIG. 9. Radial potentials for théS, partial wave state at 50
MeV using theA =3.90 fm™* cutoff and the parameters in Table I.
effective chiral Lagrangian approach rather than to attempt the potentialsV®, W, W2, andV defined in Eqs(35) and (36)
generate a phenomenological description of data which comare indicated by the dashed, dash-dotted, dotted, and solid curves,
petes with other meson exchange mod&ls9]. respectively. The dash-dottédotted curve corresponds tév/fm
A grid search using parametetrs,, A;, A,, B;, B, (W?/fm?).
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FIG. 10. Best fits to thé = 0 np phase shifts and; mixing 5.0
angle from Ref[41] assuming\ =2.50 fm™* (dashed curvés3.90
fm~! (solid curveg, and 5.00 fmr! (dotted curves The solid 0.0
curves here and in Fig. 4 are identical.
parison with the measured values-616.4(1.9) fm[45] and 05 F
5.39611) fm [46]. The optimized values obtained here for
the 26 parameters are given in Table .
The predictedphase shifts and mixing angles from our = oo
model (solid curves for energies from 100 to 300 MeV are 8’ )
compared with the Nijmegen phase shift solutioftata NS~
points in Figs. 6 and 7. For most of the partial wave param- % -10
eters, exceptP;, €;, ande,, the model predictions and g
phase shift solutions are in qualitative agreement. Because of o -20
the low momentum nature of the model, as expressed in the % s
explicit (Q/M) expansion, no effort was made to fit the S -30 ‘ ‘ . : :
phase shifts at energies above 100 MeV. 0 20 40 60 80 100
The deuteron properties for the=3.90 fm~* model fit T aB (MeV)

are given in Table Il in comparison_with the measured valqes FIG. 11. Best fits to thé = 1 pp phase shifts and, mixing

from Ref. [43]. _Included are the binding energy, magnetic 5ngie from Ref[41] assumingh = 2.50 fm™ ! (dashed curves3.90
moment, electric quadrupole moment, asymptatistate 0 fm -1 (solid curvey, and 5.00 fmi! (dotted curves The solid
s-state wave function ratio, and-state probability. Thes-  curves here and in Fig. 5 are identical.

and d-state radial wave functions are also shown in Fig. 8.

The negative portion of the state at small radii is also seen cance should be attached to this short-range part of the wave
in the deuteron wave function of the Bonn potenf#], al-  function. The depletion of the state at small radii, however,
though both the radial extent and magnitude are larger hereontributes to the lovd-state probability of~3% which we

We do not claim that the short-range, high momentum comebtain. Both the quadrupole moment and the asymptotic
ponents of our potential are realistic; no quantitative signifi-d/s ratio are about 10% too small.
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Also given in Table Il are corrected values for the deu-small difference between the solid and dashed curves in Fig.
teron parameters corresponding to the potential model re9 is due to the derivative terms.
ported previoushf15]. In these earlier calculations the deu-  Fits to the phase shifts and deuteron properties were also
teron wave function was computed incorrectly, resulting inobtained with cutoff parameter values of 2.50 ffnand 5.00
erroneous values for the calculated magnetic moment, quadm ~*. The results for the phase shifts and mixing angles for
rupole moment andi-state probability. For the corrected the A=2.50, 3.90, and 5.00 fm® potentials are shown in
values the magnetic moment increased slightly by 1.4%, th€&igs. 10 and 11 by the dashed, solid, and dotted curves,
quadrupole moment increased by 10% and is closer to theespectively. Using thé =2.50 fm~* cutoff the P, phase
measured value, while the predictdestate probability de- shift ande; mixing angle were better described than with the
creased from 5% to 3%. The scattering phase shifts, mixingh =3.90 fm~! cutoff, however poorer fits to the'S,,
angles, deuteron binding energy and asymptoftgratio in 3p,, and ®F, phase shifts were obtained. Improved descrip-
Ref.[15] are not affected. tions of the!P, and ®P, phase shifts were achieved with the

It is interesting to study the sensitivity of the calculated A=5.00 fm~! cutoff value compared to the\=3.90
phase shifts and deuteron parameters to the terms in the pfin ! results, however poorer descriptions of #eand e,
tential which are a direct consequence of chiral symmetrymixing angles and thé'S, and D, phase shifts resulted.
corresponding to the diagrams in Figga)2and (b). These  The corresponding deuteron parameter valuesAfer2.50
include the first two terms in Eq20), the first term in EQ.  fm ! and 5.00 fm * are also given in Table Il. Overall we
(21) and the potentials in Eq$24) and (25 which depend find qualitatively similar descriptions of thN scattering
on parameters;, B,, andB;. To study this sensitivity, results and deuteron properties for a wide range of cutoff
calculations for all partial wave channels were made inparameters from 2.5 to 5.0 fit (corresponding to a mass
which each of the above terms in the potential was individurange from 0.5 to 1.0 GeV
ally set to zero. The first two terms in E(0) and the first
term in Eq.(21) have minor effects on the scattering phase
shifts and mixing angles, however the chiral symmetry terms
in Eqg. (20) significantly affect the deuteron properties. The Vill. SUMMARY AND CONCLUSIONS
potentials in Eqs(24) and(25), with the values for the pa-  \ye derived a low-energy nucleon-nucleon potential, from
rametersB,, B,, andBs given in Table I, contribute sub- 5 effective chiral Lagrangian for soft pions and nonrelativ-
stantially to the scattering predictions and the deuterongiic nucleons using a perturbation expansion in powers of
This applies to Eqs(24) and (25)_ in_di_vidually and to the (Q/M). We expressed the potential both in momentum
(B1, Bp) terms andB; “ o term” individually as well. space and in coordinate space, solved the corresponding

The NN potential model presented here is, admittedly,schraiinger equation in coordinate space, and fitted scatter-
complicated. To assist the reader we show in Fig. 9 the radighg phase shifts and deuteron properties by varying the un-
potentials for the 'S, channel corresponding to the {etermined parameters of the Lagrangian.
A=3.90 fm™* cutoff and the parameter values in Table I. |y spirit, our approach is similar to that of the Paris group
The radial potential$°, W*, andW? are defined by taking 9] where information on pion dynamics was used to con-
spin-angle matrix elements of the coordinate space potentialyct the longer-range parts of the potential, while more

in Eq. (29) where complicated dynamics was buried in unconstrained, short-
P 2 range parts. The fundamental difference between the ap-

VY=WO(r:E) + WL(r:E) — +WA(r:E) —s 35 proach of the Paris group and that of the present work is our

(V) (:E) ( )&r ( )c?rz 39 use of effective field theory, rather than dispersion relations.

Use of an effective chiral Lagrangian not only ensures that
For coupled partial wave channels ti#é functions become  our results are consistent with other aspects of pion phenom-
2x 2 matrices. The values for thS, potentialsW®, W', enology (chiral Lagrangians to the order we use generally
and W? at 50 MeV incident laboratory kinetic enerdthe  agree with data at the 20% leyebut more importantly,
explicit energy dependence is weare shown in Fig. 9 by  explicitly incorporates the symmetries of QCD and provides
the dashed, dash-dotted, and dotted curves, respectively. Thenatural perturbative expansion. In this way we, like the
units for W, W*, and W? are MeV, MeV fm and MeV  Nijmegen groud7,10], develop a potential within a theoreti-
fm?2, respectively. We also define an effective, local potencal framework, but unlike Refg7,10] we carry out a con-

tial, Ve(r;E), according to trolled expansion. Our use of field theory and old-fashioned
perturbation theory, on the other hand, causes our potential
L(L+1) to be similar to a low-energy version of the Bonn potential

A(r;E)E—rz—+2,uVeﬁ(r;E)—2,uE, (36 8]

The potential in momentum space shares several features
whereA(r;E) was defined in Eq(34). The effective, local with these and other potentials. The short-range parts have
potential for this case is shown in Fig. 9 by the solid curve.all the necessary spin and isospin structure. The pion-
If the first and second derivative terms in E85) were setto  exchange terms result in contributions that have been consid-
zero thenVq(r;E) would be identical toW°(r;E). The ered before, but also result in several new terms related to

chiral symmetry. Energy dependenée&hich has implica-
tions for few-body force$29]) arises naturally.
3We thank Prof. K. Holinde for suggesting there should be a mis- The potential was transformed into coordinate space using
take in our earlier value for the quadrupole moment. a Gaussian cutoff function. Th@(k?) dependence in the
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momentum space potential leads to first and second derivdput they transform nonlinearly under 8), with parameter
tive terms in the coordinate space representation. Eliminatio& as given by

of first derivative terms in the radial Schiinger equation
through use of an auxiliary function permitted standard nu-
merical methods to be employed.

We obtained reasonable, qualitative fits to the deuteron
properties together with quantitative fits to most of the scatA covariant derivative[see Eq.(4)] can be constructed,
tering phase shifts up to 100 MeV incident nucleon kineticwhich is an isospin 1 object,
energy. This shows that our approach accounts for the prin-
ciple features of the nucleon-nucleon potential and that these
features can be naturally understood from the symmetrle's .%hich transforms under axial rotations as if under(8y
QCD. However, the present work also makes clear that it ig .. "~ field-dependent parameter
not practical for potential models derived from effective chi- '
ral Lagrangians to compete with more phenomenological ap-
proaches, with respect to obtaining quantitative descriptions oD, =
of NN data over a wide range of energies. Extension of the
present model to higher energies and further improvement in - Fermions also transform linearly under the unbroken sub-
the description of data could only result by including highergroup
orders in chiral perturbation theory.

g 1 _
§+F—W(£-1T)77. (A4)

L
517=F7,. 1- F—ET
6D, =&xD,, (A5)

~ 7
EX—
F

w

XD,. (AB)

SN=ie-tN, (A7)

SA=ig-t32A, (A8)
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APPENDIX A It can be easily verified that the covariant derivatives of the

pion, nucleon and isobdEgs. (7)—(9), respectively are in-
deed covariant; that is, they transform under(3 SU(2)
in the same way the field3,, , N, andA do[see Eqs(A5)—
(A10)].

A consequence of this is that an isoscalar constructed out
E* planes. For example, SB)y of isospin consists of rota- of D,, N, A and their covariant derivatives will automati-

P . p'e, v P cally be invariant under the whole $2)x SU(2). On the

tions in planes prthogonal to the fourth aX|s,'wh|Ie axial other hand, objects that transform under the full group as
SU(2) 5 are rotations through planes that contain the fourth{ensors involve also the field itself. For example, an S@)

Pions are(pseudgGoldstone bosons of the spontaneous
breaking S@®)— SO(3). They are associated with the bro-
ken generators of S@ and therefore live in the sphere
SO4)/SO(3)~S°. If we embed it in the EuclideaB* space,
SO(4) transformations can be viewed as rotationsSdfin

axis. :
The sphere can be parametrized in a variety of ways, fo\r/ector can be constructed according to
example with four Cartesian coordinatg, ¢,= o} subject 2(mlF,) 1—m?IF?

to the constraint, (Al11)

1+ w2IF2 1+ #?IF2 )’

24 Pf=1F2. . . . .
e =iy (A1) where its fourth component gives rise to the pion mass term
It is more convenient, however, to work with three uncon-"" Eq. (1D.
strained coordinates; therefore we use stereographic coordi-
nates where

APPENDIX B
2¢
= T oalF (A2) Here we list the relations between tAgs andC;'s of Eq.
i (17) and theA/’s, andC/’s of Eq. (13):

Under an SW), transformation with parametes, the =

— (Al _1p7
coordinates rotate according to Ar=—(A1—2A)),

Sm=exm, (A3) Ar=—(A1+3A),
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1 ~ 1
Clz_Ci—i_Cé__Cé’ TE =Vap+ Vv —V
2 AB= VAB ; AC(EB_EC) cB
C,=4(—C,+C}+iC)) +> Vv ! Y, ! Vpg+
2= 1 3T 2%2) ACT= = Ch = = DB """y
CD (Eg—Ec) (Eg—Ep)

1 (C4
Cs=—Co— E(Ciz"' C1d),
where the* and thei e are omitted to simplify the notation.
Notice thatV,g in Eq. (C4) is notenergy dependent.
Cy=4[—Cg+3(CiptCiyl, Since we are interested in describing the low-energy,
nucleon-nucleon potential we choose the external particles to
be only nonrelativistic nucleons. As in Sec. I, it is conve-
Cs=—(2C,+C¢—Cy), nient to introduce the effective potential as the sum of the
irreducible diagrams of the series in E&@4). In the two-
nucleon case this means diagrams where there is at least one
Ce=—(Cy+C4+3Cip—C1;—Clo), pion or one isobar in the intermediate statese Figs. 1 and
2). The complete set of diagrams can now be obtained by
iterating this effective potential where the internal lines are
C;=—4(C7+Cyg—3Cio+Ci4+Chy). two-nucleon lines A— «, nucleons only.

TE Ve B4 S Vg o (B) eV
aB™ eﬁ,aﬁ( )+ ef‘f,ay( ) = = eff,yB(E)+ Tt
Y (Es—E,)

APPENDIX C —
(CH

B b

The origin of the explicit energy dependence of the
present nucleon-nucleon potential is discussed here. One of | ~ .
the nice features of the chiral Lagrangian approach is that i/0tiC€ thatVer,.4(E) does dependyy definition on the en-
allows systematic inclusion of nucleon recoil corrections,erdy E (Eg in the energy denominatgrsTo make contact
i.e., energy dependent terms, as exemplified by (E@). of with the nonrelativistic Schidinger equation we recall that,
Sec. IV. Here we give a somewhat general, though brieffor n heavy nucleons,
description of how these terms arise. The systematic inclu-
sion of recoil corrections has recently been shown to result in _ n n
cancellations between reducible and irreducible graphsinthe  Eg— Ea=2 \/mN2 + p? - 2 \/mzNJr p’?
three-nucleon probler29,31]. This justifies, within this ap- =1 =1
proach, certain approximations often made in nuclear phys- p? " p2
ics. => > —_ +small corrections

The Lippmann-Schwinger equation for this case is given =12my =1 2my

S5

by =Eg—E,+small corrections. (Co)
=, VACTEE Up to small corrections, which can be systematically ac-
The=Vagt 2 =——=——, (C)  counted for, the effective potential depends on

C Eg—Ec*ie E=3p?/(2my), the nonrelativistic kinetic energy. Clearly,

in the infinite nucleon mass limifstatic limit) this depen-

where + refer to outgoing and incoming wave boundary dence vanishes and it is only in tiie(Q/M)? corrections to
conditions, the lowest order term that they app¢&q. (17)].

Vag=(Pe,VP4), (€2 APPENDIX D

~ A In order to obtain a potential in coordinate space we take

H=Ho+V, (€3 Fourier transforms with a Gaussian cutoff function with pa-
rameterA (see Refs[35,39 for detailg. With

and the label#\, B, andC denote quantum numbers for the
free many-nucleon, pion, and isobar stades. The energy 2 [« 5
parameters in Eq48) are the sum of the individual energies erfa(x) = —f dte™
of these particles. Jmdx
As is well known, Eq.(C1) can be iterated to give the
so-called “old-fashioned” perturbation theory, representeddenoting the complementary error function, we define and
by the expansion use the following functions:
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rA/2)2

- erfc(—+—

Go(A, )= M, (r Jm2HND),  Fo(N,r)=1,(r,m,)—Gy(\,r),

(r)_ 77\/—

Ar
e‘mv’erfc( i + -

1
Iy(r,m,)= =— e(Mr/A)? >

8mr

5 L 4wA2[3  [Ar)?
d)C(r m7T) _IZ(r m"IT) ¢C(r m']T) ¢C(r m ) O(r) ¢C(r1mw):¢C(rvmﬂ')+ m5 5 | T IO(r)v

1 1 2} oMo orf Ar  m, 1 1 2mrfAr My
+m,,r+§(m,,r) e Ma'er _7+T_ —mﬂr+§(m,,r) eM'er 7+T

6
1+ A2y 2) lo(r),

e(mW/A)Z

)= 3

477
3md

I'2A4

BHr M) = G3(r M)~ s lo(r),

m

101, 0)=m32(r,m,) — (M2 +\2) 3% A0 (JmZ+)\2),
S,(rN)= Emgh(r,m,) — 3 (M2+22) e MV gl(r \m2+)\?),
Q(r, ) =mSgk(r,m,) — (m2+\2)¥%e MV gl(r m2+)\2),

Qar M) = 3 MEGR(r,M,) — § (340D Vg2 (1, ymZ+232),
plus the integrals
_o(n,m) 2 (= A2 ~, (1,0 — 1 —
Sy = — Odhmf()\), (N =AF Gl Aa(r)= 3 [a(r,my) = 7(n)],

wheref is any function ofA andA=m,—my.

APPENDIX E

Here we give the explicit forms of the 60 radial potential functimﬁﬁr), p=1,...,20;i=0,1,2, which appear in the

coordinate space version of the potential in E@®) and(30). To save space the following combinations of functions and
derivatives of functions are defined:

!

f
Dy(f)=—

n 1 I _f, n 1 ! J— ! 2 — i 1
2f +Ff , DZ(f):T f _Ff ,  gq(f)=f +Ff’ e,(f)=f _Ff’

2, "~ 2 ! ! 77 1 n ! i n 1 ! i A 2 i ! 1 ! n n !
Af,g)=f"g +r—2f a’, ./(f,g)EF(f g'+f'g )+r—2f a’, .f%(f,g)zr—zf g _F(f g"+f"g’),

5 4 ’ ” 2
o(f,g)= _Ff =2f"+2m f—1y|0,

wheref=f(r) andg=g(r) are any of the functions defined in Appendix D, and a prime denotes differentiation with respect
tor.

We then havéwherefic=1)
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