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Test of shell-model interactions for nuclear structure calculations
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The binding energy and excitation spectra %fi are calculated in a no-core shell-model space giving
encouraging results. The results of this calculation are then treated as a theoretical experiment, against which
different effective-interaction approximations are compared. In this way insight into the perturbation expansion
for the effective interaction is obtained.

PACS numbsds): 21.60.Cs, 21.10.Dr, 21.30.Fe, 27.20.

Recently no-core shell-model calculations have been per- w=€e,+eptA, 2
formed[1,2], in which all nucleons are active, so there are no
hole states. This approach avoids the use of shell-model eWheree; is the harmonic-oscillator single-particle energy for
fective interactions involving excitations from an inert core the statei and A represents the interaction energy between
of nucleons(e.g., the core-polarization procgsand thereby the particlesa andb. In general A is state dependent, but
avoids the convergence problems of the standard effectiveZhenget al. [5] found that good results could be obtained
interaction approacfs]. using a constant value far. In a later work Zhengt al. [1]

In this paper we take advantage of the fact that no-coréound thatG plus all of its folded diagrams tends to overbind
shell-model calculations have had considerable success light nuclei, due to the omission of higher-order many-body
reproducing the energy spectra and other properties of lighgffects, if the model space is not sufficiently large. Conse-
nuclei (i.e., A<7) [1] to propose a model for testing the quently, they decided to treat as a parameter to obtain the
convergence properties of shell-model effective interactiongorrect binding energy for the model space utilized. In this
calculated in terms of perturbation theory. We first perform away A also serves as a term to treat effectively the omitted
no-core shell-model calculation f8L.i in a large basis space many-body effects. In this stud is chosen to be-25
and demonstrate that it reproduces the experimental bindinifleV, so as to match the ground-state energyldffor the
energy and spectrum quite well. We then take the results ofio-core calculation having a model space of eight major
this no-core calculation to be those of a “theoretical experi-shells. This sama is used to determine in all other model
ment” against which the results of standard shell-modelspaces studied in this paper.
effective-interaction calculations can be compared. In this In the no-core calculations th@-matrix elements are cal-
way we can gain insight into how the standard calculationsulated for model spaces containing all two-particle states
succeed or fail, since we know what information went intowith unperturbed energies up tafQ, 64, and 8, cor-
the no-core calculations. responding to excitations ofid), 4% (), and & () above the

In a very large model space the effective two-body inter-lowest-energy configuration dfLi, respectively. Harmonic-
action among the nucleons should essentially beGhma-  oscillator states are used for computing the two-body matrix
trix plus all folded diagrams derived from it. Ti& matrix is  elements ofG, following the procedure of Barrett, Hewitt,
simply the sum of all two-particle ladder excitations given byand McCarthy[6], and a harmonic oscillator energy of
the expression Q=14 MeV is used. Using complete harmonic-oscillator

spaces allows us to project out the spurious center-of-mass

components in the wave functiohg].
G(w), (1) The results for the no-core calculation depend on the size

of the model space used, as shown in Fig. 1. Ih&4space

the first excited)=1, T=0 state and the first=2, T=1 state
whereV is the free nucleon-nucleon interaction. The startingare inverted, while the other states are in the correct order.
energyw represents the initial energy of the two nucleons inThe correct ordering and general spacing of states is obtained
the mediumH, is the unperturbed Hamiltonian of the sys- in 64} and 8 spaces. There is a significant difference
tem, andQ is the Pauli projection operator, which projects between the results obtained in thé@ and & spaces.
onto two-particle states that are not already occupied. In thiShe difference in the binding energies and excitation spectra
study the Nijmegen Il potentidH] is used for the nucleon- between the 6} space and the7&) space is minimal. Fig-
nucleon interaction. ure 1 shows the convergence of the binding energy and spec-

In an earlier investigation Zheret al. [5] showed thatin  trum as the size of the model space grows from(4to
no-core calculations the sum of all folded diagrams can b&%(Q. The no-core calculations of the excitation spectrum
reasonably approximated by calculating the two-body matrixare seen to be converging as the size of the model space
elements ofG for different starting energies according to the increases. The ordering of states matches the experimentally
energies of the two-particle states. The approximation sugdetermined ordering for the six lowest staf@3. The next
gested by them was four calculated excited states are also shown.

G(w)=v+vw_H0
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FIG. 1. No-core calculations of the binding energy and excitation spectruthioModel spaces of #Q, 6#Q, and 8:Q are used. In
all casesA is chosen to be -25 MeV and a harmonic oscillator energly@f14 MeV is used. These results are compared with the first six
experimentally determined levels f6ti (Ref.[8]).

The perturbation-expansion diagrams for the effective in- The perturbation-theory calculation of the effective inter-
teraction follow the work of Barrett and Kirsd®] and Kas-  action begins by calculating the effective single-particle en-
sis[10]. These diagrams involve interactions of the valenceergies, using the same two-bo@ymatrix elements as in the
nucleons with particles from the core as well as interaction8#() no-core calculation. The single-particle energies used
between the valence particles themselves. The order of ia evaluating the denominators of the two-body diagrams are
given perturbation diagram depends upon the number of inealculated using a second order perturbation expansion that
teractions involved in that particular diagram. The first-orderinvolves evaluating the three one-body diagrams shown in
effective interaction is simply th€& matrix. Second-order Fig. 2. The total single-particle energy to second order is
terms for the effective interaction are obtained from all two-

body diagrams that have two interactions involviGgand Eloal_ g% p2p-ih, g3p-2h )
include the core-polarization, the two-particle-four-hole, and
the second-order-ladder diagraf®11]. Third-order terms The effective Hamiltonian, which includes one- and two-

have three interactions involving and include the standard body terms, is evaluated to third order in the perturbation
diagramg 9] as well as third-order-ladder diagrafid] and  expansion. All terms contributing to the two-body effective
folded diagrams. The total third-order effective interaction isinteraction are computed with the sar@ematrix elements

taken to be the sum of all first-, second- and third-orderand starting energy used in the no-core calculation involving
diagrams. eight major shells, and intermediate excitations of up to

aN

a
W\f@h P2 h P P
a

(a) (b) ©
FIG. 2. One-body diagrams used in determining the single-particle energies to secondayndethe first-order, inG, diagram,(b) is
the second-order two-particle-one-hole diagram, @mds the second-order three-particle-two-hole diagram.
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FIG. 3. Comparison of the order-by-order perturbation expansion results up to third of@evith the no-core results. The ground-state
energy for the no-core calculation is taken to be the Coulomb-corrected binding enétigiyrefative to the binding energy ofHe, which
is -4.700 MeV (Ref. [12]). All calculations are done with the san@-matrix elements as used in théi8 no-core calculation with
intermediate-state excitations up t6@. The model space, in which the effective Hamiltonian is diagonalized, is only ghehell.

67.() are allowed in calculating all second- and third-order Figure 4 shows the results for the sum to third order in
terms. This effective two-body interaction replaces theG as the allowed intermediate-state excitations increase from
simple G-matrix in the final perturbation-expansion calcula- 24 to 64(). The third-order perturbation expansion for the
tion of the energy levels ofLi. Third-order terms contribut-  effective interaction becomes more attractive as greater
ing to the effective single-particle energies were calculatedntermediate-state excitations are allowed. When compared
for the two Qp states and were determined to be 4.652 MeVWwith the no-core calculation in the same model space, the
for the Opy, state and 1.425 MeV for thepd,, state. In  perturbation expansion G for intermediate-state excita-
general, the sum of all 16 third-order terms was small, beingions of 62} shows greater attraction for low-lying states
only 8% of the sum of the second-order terms on averagehan the no-core calculations with the same allowed excita-
Consequently, it was decided not to calculate the third-ordetions. This discrepancy cannot be due to omitted higher-lying
contributions to the single-particle energies used in calculatexcitations, because the original no-core calculation only in-
ing the effective two-body interaction. Finally, the energy volved excitations up to &Q. Consequently, this difference
spectrum of®Li is determined by diagonalizing the com- is probably due to missing higher-order folded diagrams,
puted single-particle energies and the effective two-body inwhich may account for neglected many-body forces. These
teraction in the @ shell. many-body forces are overall repulsive and would serve to
The no-core calculation in the full/) model space is bring the perturbation spectrum back up towards agreement
used as the “theoretical experiment” against which thewith the no-core spectrufi4].
perturbation-theory results are compared, as shown in Fig. 3. To summarize, a large basis-space no-core calculation
The ground-state energy for the no-core calculation is takewith all nucleons active gives a good reproduction of the
to be the Coulomb-corrected binding energy®i relative  known spectrum ofLi. We can use the results of the no-core
to the binding energy ofHe which is -4.700 Me\[12]. Itis  calculation as those of a theoretical experiment against
seen that for the second- and third-order calculations the genvhich we can compare standard perturbation-theory calcula-
eral ordering and spacing of the states is correct, with théons for the effective interaction. Such a comparison is use-
exception of the first excited=1, T=0 state being pushed ful because we know the input to the no-core calculation and
below the firstJ=2, T=1 state in the third-order calculation. how it differs from the calculation for the effective interac-
The spacing of states will be affected by states above therion. We find results consistent with previous effective-
with the sameJ and T values. The first excitedJEO, interaction investigationgl3], namely:(1) the second-order
T=1), (J=2, T=1), and =1, T=0) states are all pushed terms(e.g., the core-polarization proc¢ggenerally lead to
down by their respective higher-lying excited states. In mosattraction forT=0 states and repulsion fdr=1 states, and
cases the third-order effect is small compared to first- and2) the third-orderT=0 contributions are sizable, while the
second-order effects. It can also be seen that as more dithird-order T=1 contributions are small and more or less
grams are included, by going to higher order @& the negligible.
T=0 states, in general, become more attractive, while the Because we use the same harmonic-oscillator basis for
T=1 states become more repulsive, which has been shown twth the no-core and effective-interaction calculations, we
be the case for a wide range of nudl&B]. know that differences in the calculations are not due to
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FIG. 4. Comparison of the third-order perturbation-expansion results, for allowed intermediate-state excitatibgk, ), and
6%.() above the ground state, to th#@ no-core result. Again, the ground-state energy for the no-core calculation is taken to be -4.700 MeV.
All calculations are done with the san@ matrix elements as used in th& 8 no-core calculation.

mean-field effects. Also, because the no-core calculation i§1€ no-core results is due to the omission of these effective

truncated at 6 excitations above the ground-state configu-many-body interactions, which are obviously repulsive for
ration, we know that discrepancies in the effective- 1 =0, because the low-lying states are too attractive com-

interaction calculation are not due to omitted higher-lyingpared. with the no-core results. Because all the features of our
excitations. In fact, the only major difference between theeffectlve-ln'gera_ctlon re_sult_s are _the_same as previous, stan-
dard effective-interaction investigations, we conclude that,

e e o e anarY oot ackquate reament of cecive many by merac.
AR ) . tions, effective-interaction shell-model calculations will fail
'?“0”-) The no-core calculgtlon h?‘s _effect|ve three andto accurately describe nuclear spectra. The disagreement will
higher-body forces, due to diagonalization®fin the space  hecome worse as the number of valence nucleons increases,
of six nucleons being active for excitations up (®. The  gjnce the many-body effects will increase relative to the two-

effective interaction is only for two-body interactions, which body effects.

are diagonalized in the @ shell for two active nucleons.

Consequently, the results of our calculations clearly demon- This work was supported in part by the National Science
strate that the failure of our effective interaction to reproduce~oundation Grant No. PHY93-21668.
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