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Test of shell-model interactions for nuclear structure calculations
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The binding energy and excitation spectra of6Li are calculated in a no-core shell-model space giving
encouraging results. The results of this calculation are then treated as a theoretical experiment, against wh
different effective-interaction approximations are compared. In this way insight into the perturbation expansio
for the effective interaction is obtained.

PACS number~s!: 21.60.Cs, 21.10.Dr, 21.30.Fe, 27.20.1n
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Recently no-core shell-model calculations have been
formed@1,2#, in which all nucleons are active, so there are
hole states. This approach avoids the use of shell-mode
fective interactions involving excitations from an inert co
of nucleons~e.g., the core-polarization process!, and thereby
avoids the convergence problems of the standard effec
interaction approach@3#.

In this paper we take advantage of the fact that no-c
shell-model calculations have had considerable succes
reproducing the energy spectra and other properties of
nuclei ~i.e., A<7) @1# to propose a model for testing th
convergence properties of shell-model effective interacti
calculated in terms of perturbation theory. We first perform
no-core shell-model calculation for6Li in a large basis spac
and demonstrate that it reproduces the experimental bin
energy and spectrum quite well. We then take the result
this no-core calculation to be those of a ‘‘theoretical exp
ment’’ against which the results of standard shell-mo
effective-interaction calculations can be compared. In
way we can gain insight into how the standard calculati
succeed or fail, since we know what information went in
the no-core calculations.

In a very large model space the effective two-body int
action among the nucleons should essentially be theG ma-
trix plus all folded diagrams derived from it. TheG matrix is
simply the sum of all two-particle ladder excitations given
the expression

G~v!5V1V
Q

v2H0
G~v!, ~1!

whereV is the free nucleon-nucleon interaction. The start
energyv represents the initial energy of the two nucleons
the medium.H0 is the unperturbed Hamiltonian of the sy
tem, andQ is the Pauli projection operator, which projec
onto two-particle states that are not already occupied. In
study the Nijmegen II potential@4# is used for the nucleon
nucleon interaction.

In an earlier investigation Zhenget al. @5# showed that in
no-core calculations the sum of all folded diagrams can
reasonably approximated by calculating the two-body ma
elements ofG for different starting energies according to t
energies of the two-particle states. The approximation s
gested by them was
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wheree i is the harmonic-oscillator single-particle energy for
the statei andD represents the interaction energy betwee
the particlesa andb. In general,D is state dependent, but
Zhenget al. @5# found that good results could be obtained
using a constant value forD. In a later work Zhenget al. @1#
found thatG plus all of its folded diagrams tends to overbind
light nuclei, due to the omission of higher-order many-body
effects, if the model space is not sufficiently large. Conse
quently, they decided to treatD as a parameter to obtain the
correct binding energy for the model space utilized. In thi
way D also serves as a term to treat effectively the omitte
many-body effects. In this studyD is chosen to be225
MeV, so as to match the ground-state energy of6Li for the
no-core calculation having a model space of eight majo
shells. This sameD is used to determinev in all other model
spaces studied in this paper.

In the no-core calculations theG-matrix elements are cal-
culated for model spaces containing all two-particle state
with unperturbed energies up to 4\V, 6\V, and 8\V, cor-
responding to excitations of 2\V, 4\V, and 6\V above the
lowest-energy configuration of6Li, respectively. Harmonic-
oscillator states are used for computing the two-body matri
elements ofG, following the procedure of Barrett, Hewitt,
and McCarthy @6#, and a harmonic oscillator energy of
\V514 MeV is used. Using complete harmonic-oscillator
spaces allows us to project out the spurious center-of-ma
components in the wave functions@7#.

The results for the no-core calculation depend on the siz
of the model space used, as shown in Fig. 1. In a 4\V space
the first excitedJ51,T50 state and the firstJ52,T51 state
are inverted, while the other states are in the correct orde
The correct ordering and general spacing of states is obtain
in 6\V and 8\V spaces. There is a significant difference
between the results obtained in the 4\V and 6\V spaces.
The difference in the binding energies and excitation spect
between the 6\V space and the 8\V space is minimal. Fig-
ure 1 shows the convergence of the binding energy and spe
trum as the size of the model space grows from 4\V to
8\V. The no-core calculations of the excitation spectrum
are seen to be converging as the size of the model spa
increases. The ordering of states matches the experimenta
determined ordering for the six lowest states@8#. The next
four calculated excited states are also shown.
1997 © 1996 The American Physical Society



six

1998 53BRIEF REPORTS
FIG. 1. No-core calculations of the binding energy and excitation spectrum of6Li. Model spaces of 4\V, 6\V, and 8\V are used. In
all casesD is chosen to be -25 MeV and a harmonic oscillator energy of\V514 MeV is used. These results are compared with the first
experimentally determined levels for6Li ~Ref. @8#!.
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The perturbation-expansion diagrams for the effective
teraction follow the work of Barrett and Kirson@9# and Kas-
sis @10#. These diagrams involve interactions of the valen
nucleons with particles from the core as well as interactio
between the valence particles themselves. The order o
given perturbation diagram depends upon the number of
teractions involved in that particular diagram. The first-ord
effective interaction is simply theG matrix. Second-order
terms for the effective interaction are obtained from all tw
body diagrams that have two interactions involvingG and
include the core-polarization, the two-particle-four-hole, an
the second-order-ladder diagrams@9,11#. Third-order terms
have three interactions involvingG and include the standard
diagrams@9# as well as third-order-ladder diagrams@11# and
folded diagrams. The total third-order effective interaction
taken to be the sum of all first-, second- and third-ord
diagrams.
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The perturbation-theory calculation of the effective inter
action begins by calculating the effective single-particle e
ergies, using the same two-bodyG-matrix elements as in the
8\V no-core calculation. The single-particle energies use
in evaluating the denominators of the two-body diagrams a
calculated using a second order perturbation expansion t
involves evaluating the three one-body diagrams shown
Fig. 2. The total single-particle energy to second order is

Ea
total5Ea

1st1Ea
2p21h1Ea

3p22h . ~3!

The effective Hamiltonian, which includes one- and two
body terms, is evaluated to third order in the perturbatio
expansion. All terms contributing to the two-body effective
interaction are computed with the sameG matrix elements
and starting energy used in the no-core calculation involvin
eight major shells, and intermediate excitations of up
FIG. 2. One-body diagrams used in determining the single-particle energies to second order:~a! is the first-order, inG, diagram,~b! is
the second-order two-particle-one-hole diagram, and~c! is the second-order three-particle-two-hole diagram.
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FIG. 3. Comparison of the order-by-order perturbation expansion results up to third order inG with the no-core results. The ground-sta
energy for the no-core calculation is taken to be the Coulomb-corrected binding energy of6Li relative to the binding energy of4He, which
is -4.700 MeV ~Ref. @12#!. All calculations are done with the sameG-matrix elements as used in the 8\V no-core calculation with
intermediate-state excitations up to 6\V. The model space, in which the effective Hamiltonian is diagonalized, is only the 0p shell.
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6\V are allowed in calculating all second- and third-ord
terms. This effective two-body interaction replaces th
simpleG-matrix in the final perturbation-expansion calcula
tion of the energy levels of6Li. Third-order terms contribut-
ing to the effective single-particle energies were calculat
for the two 0p states and were determined to be 4.652 Me
for the 0p1/2 state and 1.425 MeV for the 0p3/2 state. In
general, the sum of all 16 third-order terms was small, bei
only 8% of the sum of the second-order terms on avera
Consequently, it was decided not to calculate the third-ord
contributions to the single-particle energies used in calcul
ing the effective two-body interaction. Finally, the energ
spectrum of 6Li is determined by diagonalizing the com
puted single-particle energies and the effective two-body
teraction in the 0p shell.

The no-core calculation in the full 8\V model space is
used as the ‘‘theoretical experiment’’ against which th
perturbation-theory results are compared, as shown in Fig
The ground-state energy for the no-core calculation is tak
to be the Coulomb-corrected binding energy of6Li relative
to the binding energy of4He which is -4.700 MeV@12#. It is
seen that for the second- and third-order calculations the g
eral ordering and spacing of the states is correct, with
exception of the first excitedJ51, T50 state being pushed
below the firstJ52, T51 state in the third-order calculation
The spacing of states will be affected by states above th
with the sameJ and T values. The first excited (J50,
T51!, (J52, T51!, and (J51, T50! states are all pushed
down by their respective higher-lying excited states. In mo
cases the third-order effect is small compared to first- a
second-order effects. It can also be seen that as more
grams are included, by going to higher order inG, the
T50 states, in general, become more attractive, while
T51 states become more repulsive, which has been show
be the case for a wide range of nuclei@13#.
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Figure 4 shows the results for the sum to third order
G as the allowed intermediate-state excitations increase fr
2\V to 6\V. The third-order perturbation expansion for th
effective interaction becomes more attractive as grea
intermediate-state excitations are allowed. When compa
with the no-core calculation in the same model space,
perturbation expansion inG for intermediate-state excita-
tions of 6\V shows greater attraction for low-lying state
than the no-core calculations with the same allowed exci
tions. This discrepancy cannot be due to omitted higher-lyi
excitations, because the original no-core calculation only
volved excitations up to 6\V. Consequently, this difference
is probably due to missing higher-order folded diagram
which may account for neglected many-body forces. The
many-body forces are overall repulsive and would serve
bring the perturbation spectrum back up towards agreem
with the no-core spectrum@14#.

To summarize, a large basis-space no-core calculat
with all nucleons active gives a good reproduction of th
known spectrum of6Li. We can use the results of the no-cor
calculation as those of a theoretical experiment agai
which we can compare standard perturbation-theory calcu
tions for the effective interaction. Such a comparison is us
ful because we know the input to the no-core calculation a
how it differs from the calculation for the effective interac
tion. We find results consistent with previous effective
interaction investigations@13#, namely:~1! the second-order
terms ~e.g., the core-polarization process! generally lead to
attraction forT50 states and repulsion forT51 states, and
~2! the third-orderT50 contributions are sizable, while the
third-order T51 contributions are small and more or les
negligible.

Because we use the same harmonic-oscillator basis
both the no-core and effective-interaction calculations, w
know that differences in the calculations are not due
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FIG. 4. Comparison of the third-order perturbation-expansion results, for allowed intermediate-state excitations of 2\V, 4\V, and
6\V above the ground state, to the 8\V no-core result. Again, the ground-state energy for the no-core calculation is taken to be -4.70
All calculations are done with the sameG-matrix elements as used in the 8\V no-core calculation.
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mean-field effects. Also, because the no-core calculatio
truncated at 6\V excitations above the ground-state config
ration, we know that discrepancies in the effectiv
interaction calculation are not due to omitted higher-lyi
excitations. In fact, the only major difference between t
two calculations is the treatment of effective many-bo
forces.~There are no real many-body forces in either calc
lation.! The no-core calculation has effective three a
higher-body forces, due to diagonalization ofG in the space
of six nucleons being active for excitations up to 6\V. The
effective interaction is only for two-body interactions, whic
are diagonalized in the 0p shell for two active nucleons
Consequently, the results of our calculations clearly dem
strate that the failure of our effective interaction to reprodu
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the no-core results is due to the omission of these effec
many-body interactions, which are obviously repulsive f
T50, because the low-lying states are too attractive co
pared with the no-core results. Because all the features of
effective-interaction results are the same as previous, s
dard effective-interaction investigations, we conclude th
without adequate treatment of effective many-body inter
tions, effective-interaction shell-model calculations will fa
to accurately describe nuclear spectra. The disagreement
become worse as the number of valence nucleons increa
since the many-body effects will increase relative to the tw
body effects.
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