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Bosonization in the presence of confinement: Calculation of the nucleon-nucleon interaction
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We describe an extended version of the Nambu–Jona-Lasinio~NJL! model that includes a description of
confinement. It is necessary to incorporate some description of confinement in order to discuss the properties
of the sigma, rho, and omega mesons in the NJL model. These mesons, in addition to the pion, are the
minimum needed to describe the salient features of the nucleon-nucleon interaction. In previous work we
considered the relation between the bosonized NJL model and the one-boson-exchange~OBE! model of the
nucleon-nucleon force. Most of our attention was given to pion and sigma exchange. We provide a review of
that work and extend our discussion to a consideration of rho and omega exchange. We also present a more
detailed discussion of the bosonization procedure. Our results depend upon the strength of the confining
interaction. Once that is fixed, we obtain good values for the omega-nucleon coupling constant,GvNN , and for
the tensor coupling constantf r , in the rho-nucleon interaction.~One limitation of the present version of the
model is that the ratiof r /gr53.70, instead of the empirical value off r /gr.6.1.) If we consider nucleon-
nucleon scattering for relatively small momentum transfer, we obtain good results for the processes of sigma,
pion, rho, and omega exchange. Remarkably, the description of pion exchange is very accurate up to
q2;22 GeV2. That is, the microscopic model reproduces the pion-exchange amplitude of the boson-
exchange model over a broad range of momentum transfer when we specify a single parameter than governs
the momentum-transfer dependence of the pseudoscalar-isovector form factor of the nucleon. In the other
channels (s,r,v), the nucleon form factors may be treated in the same manner. However, if we calculate the
form factors in our model, we find that they are too ‘‘soft’’ to fit the OBE amplitudes away fromq2.0. Further
work is needed to obtain good fits for the various amplitudes for large momentum transfer, although the OBE
amplitudes are well reproduced in the case of scattering at small momentum transfer (uq2u<0.1 GeV2).

PACS number~s!: 13.75.Cs, 12.39.Fe, 21.30.Fe, 24.85.1p
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I. INTRODUCTION

It is useful to review some aspects of the Nambu–Jo
Lasinio ~NJL! model @1# and our extension of that model t
include a description of confinement@2–4#. The Lagrangian
of our model is

L~x!5q̄~ i ]”2mq
0!q1

GS

2
@~ q̄q!21~ q̄ig5tYq!2#

2
Gr

2
@~ q̄gmtYq!21~ q̄g5gmtYq!2#2

Gv

2
~ q̄gmq!2

1Lconf~x!, ~1.1!

where we see that there are three coupling constants t
fixed in addition to the current quark massmq

0 . Lconf(x)
introduces two constants,k andm, wherek is essentially the
string tension andm is a parameter introduced to simplif
our momentum-space calculations@4#. More precisely, the
confinement Lagrangian serves to introduce a potential
tween the quark and antiquark of the formVC(r )5kre2mr

@2,3#. Typically, we expect values ofk.0.2 GeV2. ~Also,
we fix m at 0.050 GeV to soften the momentum-space s
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gularities ofVC.) We have fixedmq
0 andGS in an earlier

work @5#. The choice ofGS is also related to the choice of the
momentum-space cutoff needed in the NJL model. For e
ample, for calculations made in a Euclidean momentu
space, we chooseLE51.0 GeV.~That choice corresponds to
a Minkowski-space cutoff for the magnitude of the variou
three-momenta in the loop integrals of the model o
L350.702 GeV.! For example, ifLE51.0 GeV,mq

055.5
MeV, andGS57.91 GeV22

, we find the constituent quark
mass to bemq5262 MeV and the pion massmp5138 MeV.
That choice of the parameters also yields satisfactory valu
for the pion decay constant,f p , and the vacuum quark con-
densateŝ0uūuu0& and^0ud̄du0& @5#. ~In this work our nota-
tion is such thatq̄q5ūu1d̄d, which differs from the con-
ventional notation used in the discussion of QCD sum rule
where^0uq̄qu0& is either^0ūuu0& or ^0ud̄du0&.)

The analysis proceeds by introducing fundamental qua
loop integrals for the pion and sigma channels@2,3#,

JP~q2!5 incnfTrE d4p

~2p!4 F ig5SFS p1
q

2D ig5SFS p2
q

2D G
~1.2!

and

JS~q
2!5ncnfTri E d4p

~2p!4
SFS p1

q

2DSFS p2
q

2D .
~1.3!
1936 © 1996 The American Physical Society
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53 1937BOSONIZATION IN THE PRESENCE OF CONFINEMENT: . . .
~See Fig. 1.! The correspondingT matrices, are

TP52
GS

12GSJP~q2!
~1.4!

and

TS52
GS

12GSJS~q
2!
. ~1.5!

Here we have suppressed reference to the Dirac matrices
isospin operators that act in the quark-antiquark chann
The pion mass is zero ifmq

050. Otherwise, the pion mass is
obtained from the relation

FIG. 1. ~a! The basic quark-loop integral of the NJL model i
shown.~b! The functionĴS(q

2) is defined by introducing a vertex
~cross-hatched area! for the confining interactionVC. See@4# for a
detailed discussion of the construction of such vertex functions.~c!
The functionKS(q

2) is defined by the diagram shown.~See@8#.! ~d!
The functionK̂S(q

2) is defined by including a vertex function for
the confining interaction~cross-hatched region!.

FIG. 2. The functionJP(t) is shown. Heret5q2. The calcula-
tion is made by using a Euclidean momentum space withLE51.0
GeV. Heremq50.262 GeV andGS57.91 GeV22.
and
ls.

12GSJP~mp
2 !50. ~1.6!

The functionJP(q
2) is shown in Fig. 2, where we have put

q25t.
When we turn to the sigma meson, we find the solution o

12GSJS(ms
2)50 to lie in theqq̄ continuum which starts at

q254mq
2 . That suggests that we need a model of confine

ment@2#. The model we use is described in Fig. 1 and 3 an
their captions@2,3#. There we see thatqq̄ rescattering via the
confinement potential,VC, leads to the replacement of
JS(q

2) by ĴS(q
2). Note that, whileJS(q

2) is complex for
q2.4mq

2 , ĴS(q
2) is real. That is, the confinement vertex of

Fig. 3, which is introduced to defineĴS(q
2), removes the

unphysicalqq̄ cut in JS(q
2). ~See Fig. 1.!

It is also important to consider the amplitudes for
q1q̄→p1p. To take those amplitudes into account we in-
troduceKS(q

2) shown in Fig. 1. Consideration of confine-
ment replacesKS(q

2) by K̂S(q
2). The latter function has a

~physical! cut for q2.4mp
2 ; the qq̄ cuts for q2.4mq

2 are
again removed by the confinement vertex functions. With th
introduction ofK̂S(q

2), theT matrix of Eq.~1.5! becomes

T̂S~q
2!52

GS

12GS@ ĴS~q
2!1K̂S~q

2!#
, ~1.7!

which only has a physical cut starting atq254mp
2 , since

ĴS(q
2) is real, as noted above.

While the theory without confinement leads to
ms
254mq

21mp
2 in the simplest bosonization analysis@6#, it is

known that there is no low-mass sigma (ms.540 MeV! to
be found in the data tables. To see how the introduction o
confinement resolves that problem we may refer to Fig. 4
where we showĴS(t) for t5q2.0. The values fort,0 rep-
resentJS(t) calculated in the Euclidean moment space with
LE51.0 GeV. Note thatJS(t). ĴS(t) for t,0 and we do not
distinguish between these functions in that region. Fo
t.0, ĴS(t) is calculated in Minkowski momentum space
with L350.702 GeV andk50.20 GeV2. The dashed curve

s

FIG. 3. ~a! The diagram on the left is the basic quark integral of
the NJL model. The propagators areSF(p)5(p”2mq1 i e)21,
wheremq is the constituent quark mass. The additional diagram
show the introduction of a confining potential,VC. ~b! A vertex
function for the confining interaction~cross-hatches area! is given
by the equation shown@4#. ~c! Here the various terms summed in
the equation depicted in~b! are shown.
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1938 53GAO, CELENZA, SHAKIN, SUN, AND SZWEDA
showsJS(t) for t.0. It is useful to consider a horizontal line
that could be drawn with ordinate equal to 1/GS , since the
solution of

1

GS
2JS~ms

2 !50 ~1.8!

or

1

GS
2 ĴS~ms

2 !50, ~1.9!

yields the sigma mass. Note that we may generalize Eq.~1.9!
to read

1

GS
2@ ĴS~ms

2 !1ReK̂S~ms
2 !#50. ~1.10!

The solution of Eq.~1.9!, or Eq. ~1.10!, yields ms.900
MeV, which takes the sigma out of the low-energy regime.
Fig. 5, we showĴS(t) for t.0 and for various values of

FIG. 4. The dashed line and the solid line fort,0 denote the
values ofJS(t) calculated in a Euclidean momentum space wit
LE51.0 GeV. The solid line fort.0 represents the result of a
calculation of ĴS(t) in Minkowski space. There, a three-
dimensional cutoff ofL350.702 GeV is used for all the momentum
vectors in the integral. We usek50.2 GeV2, mq5262 MeV,
GS57.91 GeV22. Note that the inclusion of the confinement verte
function would hardly affect the result fort,0.

FIG. 5. The values ofĴS(t) are shown for three values ofk:
(a) k50.2 GeV2, (b) k50.3 GeV2, (c) k50.4 GeV2. The dotted
line represents 1/GS50.126 GeV2 and the intersections with the
solid lines represent the solution of the equatio
1/GS2 ĴS(ms

2)50.
In

k. It may be seen that the larger values ofk will move the
sigma still higher in energy for fixedGS , as is to be expected
when a repulsive potential of increasing strength is intr
duced. We remark that use of Eqs.~1.10! yields slightly
higher values forms , since ReK̂S(q

2) is negative for
q2.0.25 GeV2, while ĴS(q

2) is everywhere positive. How-
ever, ReK̂S(q

2) is small in this case and may be neglected
a first approximation.@For example, forq250.8 GeV2,
ReK̂S(q

2)520.006 GeV2 while ĴS(q
2).0.12 GeV2, if

k50.20 GeV2.#

II. BOSONIZATION OF THE EXTENDED NJL MODEL:
SCALAR-ISOSCALAR MODE

We will use a generalized version of the momentum-spa
bosonization scheme introduced in@6#. There it is shown that
one may write, for the scalar-isoscalar channel,

2
GS

12GSJS~q
2!

5
gsqq
2 ~q2!

q22ms
2~q2!

. ~2.1!

Explicit expressions are given forJS(q
2) and the

momentum-dependent coupling constant and mass in@6#.
In our extended version of the NJL model, we replac

JS(q
2) by ĴS(q

2) and also includeK̂S(q
2) in the denomina-

tor of theT matrix in some cases. It is then useful to writ
ĴS(q

2) as

ĴS~q
2!5s12

s2

q22m̃s
2
, ~2.2!

wheres1 , s2 , andm̃s are constants.@This form may be used
for spacelike values ofq2, even if we do not find a pole in
ĴS(q

2) for q2.0.# We now write

T̂S~q
2!52

1

GS
212 ĴS~q

2!
~2.3!

52
@~q22m̃s

2 !/~GS
212s1!#

q22@m̃s
22s2/~GS

212s1!#
.

~2.4!

Therefore, we may put

ms
25m̃s

22
s2

GS
212s1

, ~2.5!

and also define a momentum-dependent coupling const
~with q2,m̃s

2),

gsqq
2 ~q2!5

m̃s
22q2

GS
212s1

, ~2.6!

which arises naturally in this formalism. Note that we wil
definegsqq

2 5gsqq
2 (0), with

gsqq
2 ~0!5

m̃s
2

GS
212s1

. ~2.7!
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53 1939BOSONIZATION IN THE PRESENCE OF CONFINEMENT: . . .
With the various definitions given above, we have

T̂S~q
2!5

gsqq
2 ~q2!

q22ms
2 . ~2.8!

We also see that

1

GS
212 ĴS~0!

5
gsqq
2 ~0!

ms
2 , ~2.9!

which is a useful relation for obtaininggsqq
2 from knowledge

of GS and ĴS(0).
The situation in the case of the scalar-isoscalar chann

quite subtle, since the choice of parameters depends on
physical situation. For example, our studies have shown t
for spacelikevalues ofq2 nearq250, the value ofms in Eq.
~2.8! is 540 MeV andgsqq(0)52.58, in one case@5#. How-
ever, there is no pole in theT matrix for q25ms

2 , with
ms5540 MeV. For example, as we will see, fortimelike
q2 we find a pole atq25ms

2 , wherems.900 MeV, if
k50.20 GeV2. One way to understand this point is to no
that JS(q

2) and ĴS(q
2) are quite similar forq2,0, while

these functions are quite different for timelikeq2. ~See Fig.
4.! Note that the rapid rise ofJS(q

2) for q2.0 seen in Fig.
4 is due to the presence of aqq̄ cut starting at
q254mq

250.275 GeV2. Beyond that pointJS(q
2) is com-

plex. On the other hand,ĴS(q
2) is everywhere real and a

rapid rise in the value of that function could signal the pre
ence of a bound state in the~linear! confining potential.

As a specific example, relevant to thespacelikeregion,
consider the parametersm̃s

250.520 GeV2, s150.0479
GeV2, and s250.0178 GeV4. These values yield
ms50.540 GeV,gsqq(0)52.58, andĴS(0)50.0821 GeV2.
This parametrization describes the behavior ofĴS(q

2) rather
well for 20.3 GeV2,q2,0; however, there is no pole a
m̃s
250.520 GeV2 in the timelike region.~See Fig. 7 of@8#.!
Note that, if we includeK̂S(q

2) in our considerations and
usek50.22 GeV2, we find ĴS(0)1K̂S(0)50.0917 GeV2.
Therefore, usingĴS(0)1K̂S(0) instead ofĴS(0) in Eq.~2.9!,
we find gsqq(0)52.90, if we again useGS57.91 GeV22

andms50.540 GeV. This modification serves to enhance
magnitude of theT matrix atq250 by about 27% relative to
g

l is
the
at,

e

s-

t
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the result obtained when we neglectK̂S(q
2). ~We remark

that an easy way to obtain ReK̂S(q
2) is to calculate

ImK̂S(q
2) and then obtain ReK̂S(q

2) by use of a dispersion
relation @2#.!

The rather complex situation that exists in the case of t
sigma meson is greatly simplified when we consider th
omega and rho mesons, since a single parametrization of
form of Eq.~2.2! may be used in the spacelike and the time
like regions.

III. BOSONIZATION FOR THE OMEGA MESON

It is useful to divide the omega propagator andT matrix
into transverse and longitudinal parts@3#. For example, we
may write

gmn2qmqn/mv
2

q22mv
2 5

gmn2qmqn/q2

q22mv
2 2

qmqn

q2mv
2 . ~3.1!

One may also define the functionĴ(v)(q
2), related to a ten-

sor Ĵ(v)
mn (q2). Here,

Ĵ~v!
mn ~q2!52S gmn2

qmqn

q2 D Ĵ~v!~q
2!, ~3.2!

where@3#

FIG. 6. The values ofĴ(v)(t) are shown for three values ofk:
(a) k50.16 GeV2, (b) k50.22 GeV2, (c) k50.28 GeV2. The
dotted line represents the value ofmv

25~0.783 GeV!2. The inter-
sections of the dotted line with the solid lines yields 1/Gv for the
various values ofk. ~See Table I.!
2 i Ĵ ~v!
mn ~q2!5~21!ncnfTrE d2k

~2p!4
@ iSF~q/21k!Gm~q,k!iSF~2q/21k!ĝn#. ~3.3!
hat
In this caseGm(q,k) contains the vertex for the confinin
field and

ĝn[gn2q”qn/q2. ~3.4!

Note that qmĴ(v)
mn (q2)5 Ĵ(v)

mn (q2)qn50 in accord with Eq.
~3.2!, sinceqmGm5qmĝm50 @3#.
In Fig. 6 we showĴ(v)(t) for k50.16 GeV2, k50.22
GeV2, andk50.28 GeV2. A vertical line drawn att5mv

2

intersects each of these curves at a point. The ordinate of t
point then yields a value for 1/Gv , since the~transverse! T
matrix may be written

T̂~v!
mn 52@gmn2qmqn/q2#T̂~v!~q

2!, ~3.5!
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with

T̂~v!~q
2!5

1

1/Gv2 Ĵ~v!~q
2!
. ~3.6!

A particularly useful representation forĴ(v)(q
2) that has a

simple physical interpretation is given by

Ĵ~v!~q
2!5v12

v2
q22m̃v

2
. ~3.7!

In terms of these parameters, we have

mv
25m̃v

22
v2

Gv
212v1

~3.8!

and

gvqq
2 ~0!5

m̃v
2

Gv
212v1

. ~3.9!

For example, if k50.22 GeV2, we find that with
Gv57.86 GeV22, v150.0284 GeV2, v250.0850 GeV4,
andm̃v

251.476 GeV2, we obtain an accurate representatio
of Ĵ(v)(q

2) for q2.0. This result may be understood b
interpretingm̃v as the mass of a bound state in the line
confining potential.~Note thatm̃v is obtained in the absence
of the short-range attraction parameterized byGv .) The in-
troduction of the short-range interaction then moves t
bound state down tomv50.783 GeV. As noted above, this
situation is much simpler than that in the scalar-isosca
channel, sincemv of Eq. ~3.8! is equal to 0.783 GeV in both
the timelike and spacelike domains ofq2.

IV. BOSONIZATION FOR THE RHO MESON

Here, the new feature relative to the previous section
the importance of a tensor that describes the coupling
qq̄ states to the two-pion continuum@3#,

FIG. 7. The values ofĴ(r)(t)1ReK̂ (r)(t) are shown for various
k: (a) k50.16 GeV2, (b) k50.22 GeV2, (c) k50.28 GeV2. The
dotted line denotes the value ofmr

25~0.770 GeV!2. The intersec-
tion of the dotted line with the solid line yields the value o
1/Gr . Note thatĴ(r)(t)5 Ĵ(v)(t). ~From our study of omega ex-
change we have fixedk50.22 GeV2.)
n

r

e

lar

is
of

K̂ ~r!
mn~q2!52S gmn2

qmqn

q2 D K̂ ~r!~q
2!, ~4.1!

in addition to the tensor

Ĵ~r!
mn~q2!52S gmn2

qmqn

q2 D Ĵ~r!~q
2!. ~4.2!

The ~transverse! T matrix is of the form

T̂~r!
mn~q2!52S gmn2

qmqn

q2 D T̂~r!~q
2!, ~4.3!

with

T̂~r!~q
2!5

1

Gr
212@ Ĵ~r!~q

2!1K̂ ~r!~q
2!#

. ~4.4!

Sincemr
2 is known, we find the appropriate value ofGr by

solving the equation

1

Gr
2@ Ĵ~r!~mr

2!1ReK̂ ~r!~mr
2!#50. ~4.5!

Again, we may indicate how this solution appears in a
graphical form. For example, in Fig. 7, witht5q2, we show
Ĵ(r)(q

2)1ReK̂ (r)(q
2) for various k. @Note that

Ĵ(r)(q
2)5 Ĵ(v)(q

2).# Figure 8 shows ReK̂ (r)(t) for various
values ofk. Since we have fixedk50.22 GeV2 in our study
of the omega meson, we use that value here and find th
Gr57.12 GeV22 yields a rho meson withmr50.770 GeV.

In this case, we put

Ĵ~r!~q
2!1Re K̂ ~r!~q

2!5r 12
r 2

q22m̃r
2
, ~4.6!

so that

mr
25m̃r

22
r 2

Gr
212r 1

~4.7!

and

f

FIG. 8. Values of ReK̂ (r)(t) are shown for several values of
k: (a) k50.16 GeV2, (b) k50.22 GeV2, (c) k50.28 GeV2.



a

n
e
t

o
-
d
y

um

e

so

-

L
t

n

ns

n

d
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grqq
2 ~q2!5

m̃r
22q2

Gr
212r 1

, ~4.8!

in analogy to what was done for the omega meson. Ag
grqq
2 5grqq

2 (0), with

grqq
2 ~0!5

m̃r
2

Gr
212r 1

. ~4.9!

A good fit to Ĵ(r)(q
2)1ReK̂ (r)(q

2) for q2>0 is obtained
if r 150.0304 GeV2, r 250.0968 GeV4, and m̃r

251.476
GeV2. ~As noted above,Gr57.12 GeV22.)

V. THE NUCLEON-NUCLEON INTERACTION
OF THE OBE AND NJL MODELS

In Fig. 9~a! we represent meson exchange in the o
boson-exchange~OBE! model on the left-hand side of th
figure. There, the open circles are the form factors of
OBE model that are of the~monopole! form

Fi
OBE~ t !5S L i

22mi
2

L i
22t D ~5.1!

for a meson of massmi and OBE cutoffL i . On the right-
hand side of Fig. 9~a! we represent the interaction in terms
the quark-quark interaction,T. We do not consider all pos
sible diagrams, but isolate those diagrams that are of lea
order in 1/nc counting@8#. The interaction in that case ma
be expressed in terms of the functions,Ĵ(q2) andK̂(q2), for
the various mesons. For example, in Fig. 9~b! we show those
interactions that lead to the use of

tqq
~s!~ t !52

GS

12GSĴS~ t !
~5.2!

FIG. 9. ~a! The nucleon-nucleon interaction in the boso
exchange model is set equal to an interaction that is defined in te
of the quark-quarkT matrix. ~b! Leading diagrams in 1/nc are con-
sidered as discussed in@8#. ~c! TheT matrix tqq , expressed in terms
of the integralsĴ(t) and K̂(t) for the various channels, is use
instead of the more general quark-quarkT matrix of ~a! to obtain
the nucleon-nucleon interaction.
in,

e-

he

f

ing

in the case of sigma exchange. To keep in mind that we s
only the leading diagrams, we denoted the quark-quarkT
matrix astqq in Fig. 9~c! and in Eq.~5.2!.

A. Pion exchange

With reference to Fig. 9, we write a scattering amplitud
for pion exchange in the OBE model as

f p
OBE~ t !5

gpNN
2

4p S Lp
22mp

2

Lp
22t D 2 1

t2mp
2 ~5.3!

5 f p
OBE~0!hp

OBE~ t !. ~5.4!

In Eq. ~5.3! we have included the form factors of the OBE
model that appear at each pion-nucleon vertex. It is al
useful to define

GpNN
2

4p
5
gpNN
2

4p S Lp
22mp

2

Lp
2 D 2, ~5.5!

with similar definitions for the sigma, rho, and omega me
sons. The amplitude corresponding tof p

OBE(t) in the NJL
model is@see Fig. 9~c!#,

f p
NJL~ t !5

tqq
~p!~ t !

4p
~ F̃p~ t !!2 ~5.6!

5 f p
NJL~0!hp

NJL~ t !. ~5.7!

Here,tqq
(p) is the quark-quark scattering amplitude of the NJ

model andF̃p(t) is a nucleon form factor defined such tha

F̃p~ t !ū~pY 1qY ,s8!ig5u~pY ,s!^t8utY ut&

5^pY 1qY ,s8,t8uq̄~0!ig5tYq~0!upY ,s,t&.
~5.8!

It is useful to introduce a monopole form for the nucleo
form factor,

F̃p~ t !5F̃p~0!S lp
2

lp
22t D . ~5.9!

In a previous work@8# we saw that if we tooklp50.8
GeV, there was excellent agreement of the functio
hp
NJL(t) andhp

OBE(t). ~See Fig. 10.! Here, we also consider
the magnitude of the amplitude in addition to theq2 depen-
dence, so that we have to provide a value forF̃p(0). In an
earlier work, we foundF̃p(0)54.78, when we calculated the
form factorF̃p(t) in a covariant soliton model of the nucleon
@9#. Near t.0, we may puttqq

(p)(t)5gpqq
2 /(t2mp

2 ), so that,
in our model,

f p
NJL~0!52

gpqq
2

4p

@ F̃p~0!#2

mp
2 ~5.10!

52676 GeV22, ~5.11!

-
rms
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where we have usedgpqq52.68 andF̃p(0)54.78, as found
in our earlier work @5,9#. Noting thatLp51.3 GeV and
gpNN
2 /4p514.4 in typical OBE model calculations@7#, we
have

fp
OBE~0!52727 GeV22, ~5.12!

which is only 8% greater thanf p
NJL(0) given in Eq.~5.11!.

Thus, we see that for pion exchange we fit both the value
GpNN @GpNN5gpqqF̃p(0)512.8# and theq2 dependence of
the amplitude up to2q2.2 GeV2. However, if we try to
calculateF̃p(t), we obtain a form factor that is too soft. Fo
example, the quark wave function of@9# yields a dipole form
for the form factor

F̃p~ t !5F̃p~0!S 1

12t/0.36D
2

, ~5.13!

whereF̃p(0)54.78 andt is in GeV2 units. For a monopole
fit, the effective vertex parameter would be aboutlp50.43
GeV, which may be compared to the value used abo
lp50.80 GeV.

B. Sigma exchange

To study sigma exchange we need the nucleon form f
tor, FS(t), defined by the relation

FS~ t !u~pY 1q,s8!u~pY ,s!d tt85^pY 1qY ,s8,t8uq̄~0!q~0!upY ,s,t&.
~5.14!

We may write

f s
OBE~ t !5

gsNN
2

4p S Ls
22ms

2

Ls
22t D 2 1

t2ms
2 ~5.15!

5 f s
OBE~0!hs

OBE~ t !, ~5.16!

and

FIG. 10. Values ofhp
NJL are given by the solid line and

hp
OBE(t) is represented by the dotted line. Herelp50.80 GeV and

Lp
OBE51.3 GeV.@See Eqs.~5.3!, ~5.6!, and~5.8!.#
of

r

ve,

c-

f s
NJL~ t !5

tqq
~s!~ t !

4p
@FS~ t !#

2. ~5.17!

Now

f s
OBE~0!52

gsNN
2

4p S Ls
22ms

2

Ls
2 D 2 1

ms
2 ~5.18!

52
GsNN
2

4p

1

ms
2 , ~5.19!

while

f s
NJL~0!52

gsqq
2

4p

1

ms
2 @FS~0!#2. ~5.20!

Thus, we would like to have

GsNN5gsqqFS~0!. ~5.21!

We note that, if we includeK̂S(0) in the formalism,
gsqq(0)53.05 in our most recent analysis. In an earlie
work, we calculatedFS(0)51.94 @9#, so that, from Eq.
~5.21!, we findGsNN.5.9. This value is in fair agreement
with the phenomenological value, if we consider the cas
where the effects of excitation of the delta are treated expl
itly in the OBE model. For example, consider Table B.1 o
@7#. For model I listed there, we findgsNN

2 /4p56.32,
Ls51.5 GeV, andms5550 MeV. Therefore, for that case

GsNN
2

4p
5
gsNN
2

4p S Ls
22ms

2

Ls
2 D 2 ~5.22!

54.73 ~5.23!

so thatGsNN57.71 which is somewhat larger than the valu
of GsNN.5.9 given above. Of course, the result is quit
sensitive to the value chosen forFS(0). @It is possible that
vertex corrections enhanceFS(0) to yield a value closer to 3.
Such a value would place our analysis in better accord w
the phenomenology of the OBE model.#

C. Omega exchange

In the simplest approximation, the omega has as its sou
the isoscalar currentj m(x)5q̄(x)gmq(x), which is six times
the isoscalar electromagnetic current. We define two for
factors,F10

(v)(q2) andF20
(v)(q2), which are proportional to the

isoscalar electromagnetic form factors of the nucleon
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^pY 1qY ,s8,t8uq̄~0!gmq~0!upY ,s,t&5d tt8ū~pY 1qY ,s8!FgmF10
~v!~q2!1

ismnqn

2mN
F20

~v!~q2!Gu~pY ,s!. ~5.24!
ho
nt
-

e

x-

he
Note thatF10
(v)(0)53 and thatF20

(v)(q2) is quite small and
may be dropped.

Then, in analogy to Eqs.~5.15! and ~5.17!, we define

f v
OBE~ t !52

gvNN
2

4p S Lv
22mv

2

Lv
22t D 2 1

t2mv
2 ~5.25!

5 f v
OBE~0!hv

OBE~ t !, ~5.26!

and

fv
NJL~ t !5

tqq
~v!~ t !

4p
@F10

~v!~ t !#2. ~5.27!

Now

fv
OBE~0!5

gvNN
2

4p S Lv
22mv

2

Lv
2 D 2 1

mv
2 , ~5.28!

so that, if we setfv
OBE(0) equal tof v

NJL (0), wehave

gvNN
2

4p S Lv
22mv

2

Lv
2 D 259

gvqq
2

4p
. ~5.29!

This equation is used to define the theoretical value
gvNN in terms ofgvqq . In empirical OBE potentials@7# one
has gvNN

2 /4p520.0, Lv51.5 GeV, andmv50.783 GeV.
The bosonization scheme, in conjunction with Fig. 6 a
Table I, shows that, if we choosek50.22 GeV2, we have
gvqq
2 /4p51.19. Then use of Eq. ~5.29! yields
gvNN
2 /4p520.2. Thus, Eq.~5.29! is well satisfied when

k50.22 GeV2 and is satisfied to about 10% accuracy
k50.20 GeV2. ~See Table I.!

When we compare theq2 dependence off v
OBE(t) and

f v
NJL(t), we find that if we write

hv
NJL~ t !5S lv

2

lv
22t D

2 tqq
~v!~ t !

tqq
~v!~0!

, ~5.30!

we would need to putlv50.93 GeV to obtain a very good
fit for 2q2<2 GeV2 @8#. However, since the electromag
netic form factors of the nucleon are of the dipole form, f
example,

GE
p~ t !5

1

@12t/~0.84!2#2
, ~5.31!

we again see that the effective value oflv for a monopole
form factor in our model is about 600 MeV, rather than t
930 MeV needed to fitf v

OBE(t) over a broad range of space
like values ofq2.
for

nd

if

-
or

he
-

D. Rho exchange

In the simplest model of the rho-nucleon vertex, the r
has as its source the isovector curre
jYm(x)5q̄(x)gmtYq(x), which may be related to the isovec
tor electromagnetic currentj em

m (x)5q̄(x)gm(t3 /2)q(x). We
again define two factors:

^pY 1qY ,s8,t8u jYm~0!upY ,s,t&5^t8utY ut&ū~pY 1qY ,s8!FgmF11
~r!~q2!

1 i
smnqn

2mN
F21

~r!~q2!Gu~pY ,s!,

~5.32!

with F11
(r)(0)51 andF21

(r)(0)53.70. Our strategy will be to
assume thatF10

(r)(q2) andF21
(r)(q2) have similar dependence

on q2, so that we may writeF21
(r)(q2)53.70F11

(r)(q2). With
that in mind, we will concentrate on the first term on th
right-hand side of Eq.~5.32!. In this approximation, our
study of rho exchange is similar to our study of omega e
change.

We define

f r
OBE~ t !52

grNN
2

4p S Lr
22mr

2

Lr
22t D 2 1

t2mr
2 ~5.33!

5 f r
OBE~0!hr

OBE~ t ! ~5.34!

and

f r
NJL~ t !5

tqq
~r!~ t !

4p
@F10

~r!~ t !#2 ~5.35!

5 f r
NJL ~0!hr

NJL~ t !. ~5.36!

TABLE I. Bosonization parameters for the omega meson, if t
meson mass is fixed atmv50.783 GeV andk is varied. From OBE
studies one hasgvNN

2 /4p520 whenLv
OBE51.5 GeV@7#. ~The theo-

retical value closest to the empirical value is found fork50.22
GeV2.)

k
~GeV2)

Gv

~GeV22) gvqq

gvqq
2

4p
Ĵ(v)(0)
~GeV2)

Ĵ(v)(mv
2 )

~GeV2!

gvNN
2

4p

0.16 7.10 3.39 0.917 0.0877 0.141 15.6
0.18 7.37 3.55 1.00 0.0872 0.136 17.1
0.20 7.62 3.71 1.10 0.0866 0.131 18.6
0.22 7.86 3.86 1.19 0.0861 0.127 20.2
0.24 8.08 4.01 1.28 0.0856 0.124 21.8
0.26 8.29 4.16 1.38 0.0852 0.121 23.4
0.28 8.49 4.31 1.48 0.0847 0.118 25.2
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We may obtain a theoretical value forgrNN
2 /4p by equat-

ing the amplitudes fort50,

grNN
2

4p S Lr
22mr

2

Lr
2 D 25grqq

2

4p
, ~5.37!

where we have used the fact thatF11
(r)(0)51. To obtain

grNN
2 /4p we proceed as in the case of the omega meson
use the formalism of Sec. IV. Since we have setk50.22
GeV2, we need values ofĴ(r)(t)1K̂ (r)(t) for that value of
k. Those values are exhibited in Fig. 7. Requiring th
mr50.770 GeV, we obtainGr57.12 GeV22 from Eq.~4.5!,
and then use

1

Gr
212@ Ĵ~r!~0!1K̂ ~r!~0!#

5
grqq
2

mr
2 . ~5.38!

This procedure yieldsgrqq
2 /4p51.05. Then, the use of Eq

~5.35!, with Lr51.3 GeV, yields grNN
2 /4p52.48, or

grNN55.58. Finally, we obtainf rNN53.70, grNN520.6,
which is quite close to the empirical value used in the OB
model. For example, in@7# we see thatgrNN

2 /4p50.99, or
grNN
OBE53.53. Since the ratiof rNN

OBE/grNN
OBE56.1, we have

f rNN
OBE521.5, which is close to the value off rNN520.6 we
have found in our model whenk50.22 GeV2.

It should be noted thatGvÞGr in our model, since
K̂ (r)(q

2) is finite andK̂ (v)(q
2)50 to a good approximation

Therefore, the success in obtaining good values for b
gvNN
2 /4p and f rNN for the same value ofk is in part due to
the importance ofK̂ (r)(q

2) in this analysis. We also remar
thatgrNN

2 /4p!gvNN
2 /4p in the OBE model, since the first o

these values is close to 1 and the second is 20. Therefore
fact that we overestimategrNN

2 /4p by about a factor of 2.5
~while obtaining a good value forf rNN) may not be a par-
ticularly serious problem for our analysis.

VI. DISCUSSION

It is generally understood that the longest-range part
the nucleon-nucleon interaction is due to the exchange of
lightest meson in each channel. These mesons are desc
in the extended NJL model and we have seen that
and

at

.

E

.
oth

k
f
, the

of
the
ribed
the

bosonized model provides a good account of the nucle
nucleon interaction for small momentum transfer. We a
have the surprising result that the amplitude describing p
exchange is well described in our model over a broad ra
of momentum transfer if we specify the single parame
l. ~See Fig. 10.! However, we do not know why our result
for pion exchange at large2q2 are so much better than ou
description ofs, r, andv exchange at large2q2. It may be
that the quark-quarkT matrix is more adequately represent
at large2q2 in the case of the pion because of the pion
small mass. That is, higher-mass pseudoscalar mesons
be relatively less important than higher-mass mesons ar
the other channels (r,s,v). It is possible that the consider
ation of the exchange of more massive mesons, or the ca
lation of more complex diagrams, will improve our resu
for the short-range aspects of the interaction.

We remark that another approach to the calculation of
nucleon-nucleon interaction is based upon baryon chiral p
turbation theory@10#. That formalism does provide a good fi
to the data; however, about 26 parameters are needed, in
ing numerous contact interactions. Such an analysis is
sumably more fundamental than that based upon OBE m
els, which require the specification of about 10 parame
@7#.

We may note that our work has provided a theoreti
value forms5540 MeV. In the OBE model,ms is put equal
to 550 MeV and thep, r, andv mesons are assigned the
experimental mass. We have also provided reasonably
cessful calculations ofgpNN , gsNN , gvNN , and f rNN . How-
ever, there are still a number of additional paramet
needed:Lr , Lp , Lv , Ls , and grNN . Therefore, after
adopting our theoretical results, there are still about four
five parameters that need to be specified when attemptin
fit nucleon-nucleon scattering data using the OBE mod
However, our analysis provides a significant reduction in
number of free parameters of that model.
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