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Bosonization in the presence of confinement: Calculation of the nucleon-nucleon interaction
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We describe an extended version of the Nambu—Jona-Lagiib) model that includes a description of
confinement. It is necessary to incorporate some description of confinement in order to discuss the properties
of the sigma, rho, and omega mesons in the NJL model. These mesons, in addition to the pion, are the
minimum needed to describe the salient features of the nucleon-nucleon interaction. In previous work we
considered the relation between the bosonized NJL model and the one-boson-ex¢BBgenodel of the
nucleon-nucleon force. Most of our attention was given to pion and sigma exchange. We provide a review of
that work and extend our discussion to a consideration of rho and omega exchange. We also present a more
detailed discussion of the bosonization procedure. Our results depend upon the strength of the confining
interaction. Once that is fixed, we obtain good values for the omega-nucleon coupling cdBstant.and for
the tensor coupling constang, in the rho-nucleon interactiofOne limitation of the present version of the
model is that the ratid,/g,=3.70, instead of the empirical value bf/g,=6.1.) If we consider nucleon-
nucleon scattering for relatively small momentum transfer, we obtain good results for the processes of sigma,
pion, rho, and omega exchange. Remarkably, the description of pion exchange is very accurate up to
g?>~—2 GeV?. That is, the microscopic model reproduces the pion-exchange amplitude of the boson-
exchange model over a broad range of momentum transfer when we specify a single parameter than governs
the momentum-transfer dependence of the pseudoscalar-isovector form factor of the nucleon. In the other
channels §,p,), the nucleon form factors may be treated in the same manner. However, if we calculate the
form factors in our model, we find that they are too “soft” to fit the OBE amplitudes away f1&m0. Further
work is needed to obtain good fits for the various amplitudes for large momentum transfer, although the OBE
amplitudes are well reproduced in the case of scattering at small momentum trag&ferQ(1 Ge\?).

PACS numbds): 13.75.Cs, 12.39.Fe, 21.30.Fe, 24:8p.

[. INTRODUCTION gularities of VC.) We have fixedmg and Gg in an earlier
work [5]. The choice of5gis also related to the choice of the
It is useful to review some aspects of the Nambu—Jonamomentum-space cutoff needed in the NJL model. For ex-
Lasinio (NJL) model[1] and our extension of that model to ample, for calculations made in a Euclidean momentum
include a description of confinemef#—4]. The Lagrangian space, we choos&g=1.0 GeV.(That choice corresponds to
of our model is a Minkowski-space cutoff for the magnitude of the various
three-momenta in the loop integrals of the model of
Gs A3=0.702 GeV} For example, ifAg=1.0 GeV,mj=5.5
Z(x)=q(id—m g+ 7[(c_]q)2+(6i vs79)?] MeV, and Gg=7.91 GeV 2 we find the constituent quark
mass to ben,=262 MeV and the pion mass, =138 MeV.

G, — . _ R G, _ That choice of the parameters also yields satisfactory values
- 7[(qy“rq)2+(qy5yﬂrq)2]— T(QWQ)2 for the pion decay constant,, and the vacuum quark con-
densateg0|uu|0) and(0|dd|0) [5]. (In this work our nota-
+ Zeonf X)), (1.1)  tion is such thagg=uu+dd, which differs from the con-

ventional notation used in the discussion of QCD sum rules,
yuhere(0|qq|0) is either(Ouu|0) or (0|dd|0).)

The analysis proceeds by introducing fundamental quark-
loop integrals for the pion and sigma channés3),

sl

where we see that there are three coupling constants to
fixed in addition to the current quark maeﬁ. Lok X)
introduces two constantg,andu, wherex is essentially the
string tension angk is a parameter introduced to simplify d*p

our momentum-space calculatiofé]. More precisely, the Jp(q2)=incnfTrJ W[WSSF

p+5
confinement Lagrangian serves to introduce a potential be- 2 1.2
tween the quark and antiquark of the foliY(r)=«re # '
[2,3]. Typically, we expect values of=0.2 Ge\?. (Also, and
we fix u at 0.050 GeV to soften the momentum-space sin- 4
o) =naneTi [ 5 Pasi| pt 3 sp(p— g)
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FIG. 1. (& The basic quark-loop integral of the NJL model is
shown. (b) The functionJdg(q?) is defined by introducing a vertex
(cross-hatched argéor the confining interactio®. See[4] for a
detailed discussion of the construction of such vertex functi@)s.
The functionKAS(qz) is defined by the diagram show&ee[8].) (d)
The functionK<(g?) is defined by including a vertex function for
the confining interactioricross-hatched region

(See Fig. 1. The correspondind matrices, are

Tp=— Lz (1.4
1-GsJp(a%)
and
TS (1.5
1-GsJs(a%)
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1-Gglp(m?)=0. (1.6)

T?e functionJp(q?) is shown in Fig. 2, where we have put
q’=t.

When we turn to the sigma meson, we find the solution of
1—GSJS(mi)=O to lie in theqq continuum which starts at
q2=4m§. That suggests that we need a model of confine-
ment[2]. The model we use is described in Fig. 1 and 3 and
their captiong2,3]. There we see thafq rescattering via the
confinement potential V¢, leads to the replacement of

Js(g?) by J<(g?). Note that, whiledg(g?) is complex for
q2>4m2 Js(qz) is real. That is, the confinement vertex of
Fig. 3, which is introduced to deflnés(q ), removes the
unphysicalqq cut in J5(q?). (See Fig. 1.

It is also important to consider the amplitudes for
q+qg—m+ . To take those amplitudes into account we in-
troduceKg(g?) shown in _Fig. 1. Consideration of confine-
ment replace&K g(q? ) by Ks(qz) The latter function has a
(physica) cut for g>>4m?2; the qq cuts forq2>4mq are
again removed by the conflnement vertex functions. With the
introduction ofK(q?), the T matrix of Eq.(1.5) becomes

Ts(9%)= - G (1.7
® 1-G4Js(0?) +Ks(0?)]’ ‘
which only has a physical cut starting af=4m2, since
S(qz) is real, as noted above.
While the theory without confinement leads to

m5,=4m;+m?. in the simplest bosonization analy$6, it is
known that there is no low-mass sigma =540 MeV) to

be found in the data tables. To see how the introduction of
confinement resolves that problem we may refer to Fig. 4,
where we showl(t) for t=q2>0. The values fot<0 rep-
resent)g(t) calculated in the Euclidean moment space with
Ag=1.0 GeV. Note thafg(t)=Jg(t) for t<0 and we do not
distinguish between these functions in that region. For
t>0, Jg(t) is calculated in Minkowski momentum space
with A;=0.702 GeV and=0.20 Ge\2. The dashed curve

Here we have suppressed reference to the Dirac matrices and

isospin operators that act in the quark-antiquark channels.

The pion mass is zero 'rhg:O. Otherwise, the pion mass is
obtained from the relation

016 |
< 0.12
]
e
- oosf
S

0.04}

° 15 1.0 05 0
t (GeVvd)

FIG. 2. The functionJp(t) is shown. Hered=q?. The calcula-
tion is made by using a Euclidean momentum space witk-1.0
GeV. Herem,=0.262 GeV and5s=7.91 GeV 2.

a2 +k

SEE

-g/2 +k

FIG. 3. (a) The diagram on the left is the basic quark integral of
the NJL model. The propagators a®:-(p)=(p— mq+ie)’
wherem, is the constituent quark mass. The additional diagrams
show the introduction of a confining potential®. (b) A vertex
function for the confining interactiotcross-hatches arg#& given
by the equation showf]. (c) Here the various terms summed in
the equation depicted itb) are shown.
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. : . k. It may be seen that the larger values«ofvill move the
0.16 1 sigma still higher in energy for fixe@g, as is to be expected

when a repulsive potential of increasing strength is intro-
< 012} 1 duced. We remark that use of Eq4.10 vyields slightly
8 ; higher values form,, since R&g(q?) is negative for
& 0.087 q°>0.25 GeV?, while Js(g?) is everywhere positive. How-
T oo04lk | ever, R&4(qg?) is small in this case and may be neglected in
b a first approximation[For example, forg®=0.8 Ge\?,
> % ] ReK<(g%)=—0.006 Ge\? while Jg(g?)=0.12 Ge\?, if

— s k=0.20 Ge\?.]
20 15 10 05 0 05 10

2
t(GeV?) Il. BOSONIZATION OF THE EXTENDED NJL MODEL:

SCALAR-ISOSCALAR MODE
FIG. 4. The dashed line and the solid line fer0 denote the

values ofJg(t) calculated in a Euclidean momentum space with ~We will use a generalized version of the momentum-space

Ag=1.0 GeV. The solid line fot>0 represents the result of a bosonization scheme introduced 8. There it is shown that
calculation of Jg(t) in Minkowski space. There, a three- One may write, for the scalar-isoscalar channel,
dimensional cutoff of\;=0.702 GeV is used for all the momentum 2 )

vectors in the integral. We use=0.2 Ge\?, m,=262 MeV, Gs _ ga—qq(q )

Gs=7.91 GeV 2. Note that the inclusion of the confinement vertex T 1- Ggls(a?)  q?— mi(q2) ' 2.)
function would hardly affect the result fax 0.

. _ . ~ Explicit expressions are given fords(q%) and the
showsJg(t) for t>0. It is useful to consider a horizontal line momentum-dependent coupling constant and ma$§]in
that could be drawn with ordinate equal td3l, since the In our extended version of the NJL model, we replace

solution of Js(g?) by J(g?) and also includ& (g?) in the denomina-
1 tor of the T matrix in some cases. It is then useful to write
— —Jg(m2)=0 19 Js(g?) as
Gs
. S,
or Io(@) =81 55, (2.2
G—S—js( m;)=0, (1.9  wheres;, s,, andm, are constantgThis form may be used

for spacelike values afi?, even if we do not find a pole in

yields the sigma mass. Note that we may generaliz§ E§.  Js(q?) for g?>0.] We now write
to read

-~ 1
T == 2.3
1 - A s 1
&~ [3s(m?) +Rekg(m?)]=0. (1.10 Gs'—Js(9?)
S
2—m2)/(Ggl-s
The solution of Eqg.(1.9), or Eqg. (1.10, yields m,=900 =— [2(q — o S_l )] .
MeV, which takes the sigma out of the low-energy regime. In q°—[m;—s/(Gg"—s1)]
Fig. 5, we showJg(t) for t>0 and for various values of 24
o6 Therefore, we may put
I - S
: . m2=m2— —G_lz_ : (2.9
< 04f s —S1
¢ | and also define a momentum-dependent coupling constant
= | w2 =2
5 o2f b (with g“<m?),
~ 2 2
m;—q
2 2\ — g
L I L ' g(r (q )_ ~—1 (2'6)
0 04 08 12 16 a9 Gs'—s;

t (GeV?
(e which arises naturally in this formalism. Note that we will
FIG. 5. The values ofig(t) are shown for three values af: deﬁneglzrqq:glzrqq(o)’ with
(a) k=0.2 GeV?, (b) k=0.3 Ge\?, (c) k=0.4 Ge\2. The dotted
line represents Bs=0.126 Ge\? and the intersections with the
solid lines represent the solution of the equation giqq(o):
G

g
~ 2 -1_
1/Gs*Js(mn.) =0.

2.7)

S;
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With the various definitions given above, we have
03}
2 2
al ga’ (q )
To(@?) =57 2.9 < a
g —m, ® 02}
a b
We also see that 2 7 /
04 ;;;222222222222
1 J5qq(0)
_ Yoqq
———= = —, (2.9
GS _\]3(0) m(r L 1 ! 1 1

L L L I
0 0.2 0.4 0.6 0.8 1.0

2
which is a useful relation for obtainirgf,qq from knowledge t(GeVT)

of Gg andJg(0). )
The situation in the case of the scalar-isoscalar channel is FIG. 6. The values o8,,(t) are shown for three values a&f
quite subtle, since the choice of parameters depends on tffg) k=0.16 GeV’, (b) k=0.22 GeV?, (c) k=0.28 Ge\’. The
physical situation. For example, our studies have shown thagotted line represents the value mf,= (0.783 GeV?. The inter-
for spacelikevalues ofg? nearq®=0, the value ofn, in Eq. sections of the dotted line with the solid lines yield&}/for the
(2.8) is 540 MeV andg,,q(0)=2.58, in one casf5]. How-  Various values ok. (See Table ).
ever, there is no pole in th& matrix for g2=m2, with
m,=540 MeV. For example, as we will see, ftimelike
g?> we find a pole atg?=m?, where m,=900 MeV, if
k=0.20 Ge\2. One way to understand this point is to note
that Jg(q?) and Jg(g?) are quite similar forg><0, while
these functions are quite different for timelik. (See Fig.
4.) Note that the rapid rise af(g?) for g>>0 seen in Fig.
4 is due to the presence of aq cut starting at
q?=4m?=0.275 Ge\.. Beyond that pointlg(q?) is com-

the result obtained when we neglelcg(qz). (We remark
that an easy way to obtain Reg(g?) is to calculate
ImMK<(g?) and then obtain Rég(q?) by use of a dispersion
relation[2].)

The rather complex situation that exists in the case of the
sigma meson is greatly simplified when we consider the
omega and rho mesons, since a single parametrization of the
form of Eq. (2.2 may be used in the spacelike and the time-

) like regions.
plex. On the other handlg(q?) is everywhere real and a
rapid rise in the value of that function could signal the pres- IIl. BOSONIZATION FOR THE OMEGA MESON
ence of a bound state in thignear confining potential.
As a specific example, relevant to tkpacelikeregion, It is useful to divide the omega propagator ahanatrix

consider the parameter§1§=0520 GeV, s,=0.0479 into transverse and longitudinal paft3]. For example, we

GeV?, and s,=0.0178 Ge\f. These values yield may write

m,=0.540 GeV,g,qq(0)=2.58, andJg(0)=0.0821 Ge\t. g - qhqUim? g —qrglla? g

This parametrization describes the behaviodgig?) rather o ————— 5.

well for —0.3 GeV?<g?<0; however, there is no pole at g —m, g —m, g m,

m2=0.520 Ge\? in the timelike region(See Fig. 7 of8].)
Note that, if we includef(SA(qz) in our considerations and

(3.9

One may also define the functié}@w)(qz), related to a ten-
sorJ#*(g?). Here,

usexk=0.22 Ge\?, we find J5(0)+Kg(0)=0.0917 Ge\r. (@
Therefore, usindg(0)+ Kg(0) instead oflg(0) in Eq.(2.9), - g“q”) ~
we find g,qq(0)=2.90, if we again us&s=7.91 GeV 2 (@) =—|g*"— e Jiwy(@?), (3.2
andm,=0.540 GeV. This modification serves to enhance the
magnitude of thd matrix atq?=0 by about 27% relative to where[3]
Fquv (42 d*k ; i v
—|Jf‘w)(q )=(—1)ncnfTrf W[lsp(q/2+ K)IT'#(q,k)iSg(—qg/l2+k)y"]. 3.3

In this casel'#(q,k) contains the vertex for the confining In Fig. 6 we showj(w (t) for k=0.16 Ge\?, k=0.22
field and GeV?, and«x=0.28 Ge\;g. A vertical line drawn at=m?
R intersects each of these curves at a point. The ordinate of that
y'=vy"—dq"lg’. (3.4 point then yields a value for ,,, since the(transverspT
. - matrix may be written
Note thatq,Jf.)(g%)=J{,)(9%)q,=0 in accord with Eq.

(w

(3.2, sinceq,I'"*=q,¥*=0 [3]. T4 = — (9%~ q“q"1q%]T (1) (9?), (3.9
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FIG. 7. The values oﬁ(p)(t)+ Rek(p (t) are shown for various
k: (a) k=0.16 GeV?, (b) k=0.22 GeV)Z, (c) k=0.28 Ge\2. The
dotted line denotes the value nf§=(0.770 GeV2. The intersec-
tion of the dotted line with the solid line yields the value of

FIG. 8. Values of Rﬁ(p)(t) are shown for several values of
k: (a) k=0.16 Ge\?, (b) k=0.22 Ge\?, (c) k=0.28 Ge\~.

~ mAV
1/G,. Note thatJ,(t)=J,)(t). (From our study of omega ex- UV 2\ _( ny_ a’qg ) % 2
cha’Flge we have fixed=0.22 Ge\2.) Kin(a®) g q? K (a), “.1
in addition to the tensor
with . g“q”) ~
1 Ig?)=—|g""~ e )J<p>(q2)- (4.2
To)(@)=———— ~ (3.6)
1G,—Jw)(99) The (transverse T matrix is of the form
A particularly useful representation fafw)(qz) that has a ~ rg?\
simple physical interpretation is given by TH(a)=—|g*"~ P )T<p)(q2), (4.3
S (@) = 01— =5 @7  wih
(w) q (2] qz_fhi. .
In t f th t h T (0?) ! (4.4
n terms of these parameters, we have (A= —F= = ) .
! G, 1 =[3(p) (@) + K (0]
- U2
m, =~ G -0, 3.9 Sincemi is known, we find the appropriate value Gf, by
© solving the equation
and L
g 2 % 2\7—
, ﬁ]i G_p—[J(p)(mp)+ Rd((p)(mp)]—o (45)
Jqq(0)= Gl o, (3.9

Again, we may indicate how this solution appears in a

For example, if k=0.22 Ge\?, we find that with graphical form. For example, in Fig. 7, with- g°, we show
G,=7.86 GeV 2, v,=0.0284 GeV, v,=0.0850 GeVf,  J,)(a>)+ReK(,(g?) for various «. [Note that
andfniz 1.476 GeV?, we obtain an accurate representationJ(p)(qZ)=J(w)(q2).] Figure 8 shows Re,(t) for various
of J(w)(qz) for g2>0. This result may be understood by values of«. Since we have fixed=0.22 GeV? in our study
interpretingm,, as the mass of a bound state in the linearof the omega meson, we use that value here and find that
confining potential(Note thatm,, is obtained in the absence G,=7.12 GeV ? yields a rho meson witm,=0.770 GeV.
of the short-range attraction parameterizeddyy.) The in- In this case, we put
troduction of the short-range interaction then moves the

bound state down ton,=0.783 GeV. As noted above, this - ) - ) ro
situation is much simpler than that in the scalar-isoscalar Jp(a°)+ReK,(q%)=ry— 2_ (4.6
channel, sincen,, of Eq. (3.8) is equal to 0.783 GeV in both q P
the timelike and spacelike domains @f. S0 that
IV. BOSONIZATION FOR THE RHO MESON r
2_~2 2
. ) . mi=mi— —g—— 4.7
Here, the new feature relative to the previous section is N C it S

the importance of a tensor that describes the coupling of
gq states to the two-pion continuuff], and
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in the case of sigma exchange. To keep in mind that we sum
only the leading diagrams, we denoted the quark-quark
matrix astgq in Fig. 9(c) and in Eq.(5.2).

+ ... A. Pion exchange
With reference to Fig. 9, we write a scattering amplitude

for pion exchange in the OBE model as

I
—_ _ —
o K2 2

- 92N [ AZ—m2 1
O 47“7“( T ) ——= (63
=fOBE0)h 2B 1). (5.4)

FIG. 9. (@ The nucleon-nucleon interaction in the boson-
exchange model is set equal to an interaction that is defined in termis Eq. (5.3) we have included the form factors of the OBE

of the quark-quark matrix. (b) Leading diagrams in i are con-  model that appear at each pion-nucleon vertex. It is also
sidered as dlscussed[a] (c) TheT matrixt,q, expressed in terms yseful to define

of the |ntegraIsJ(t) and K(t) for the various channels, is used

instead of the more general quark-quarkmatrix of (a) to obtain GETNN giNN Ai— mi 2
the nucleon-nucleon interaction. yp = - ( Afr ) , (5.5
~ 2
mp q 48 with similar definitions for the sigma, rho, and omega me-
gpqq(q ) l ’ ( . ) . . BE, .
—TI1 sons. The amplitude corresponding ﬁﬁ (t) in the NJL
model is[see Fig. &)],
in analogy to what was done for the omega meson. Again, v
2 _ 32 . (77
Jpqq= Ypaq(0), with ()
rqq raq fL\ITJL(t) (F (t))Z (56)
O5qq(0) = M (4.9
paa G, —ry ' =fVh0)hN(t). (5.7

A good fit toJ(p)(qz) + ReK(p)(q2) for g?=0 is obtamed Here, t(”) is the quark-quark scattering amplitude of the NJL
if r;=0.0304 GeV, r,=0.0968 GeVf, and m 2-1.476 model andF (1) is a nucleon form factor defined such that

GeV2. (As noted aboveG,=7.12 GeV 2.) . . )
FA(Du(p+a,s")iysu(p,s)(t'[7]t)

=(p+4,s',t'[a(0)i ys7q(0)|p,s,1).

(5.9

V. THE NUCLEON-NUCLEON INTERACTION

OF THE OBE AND NJL MODELS It is useful to introduce a monopole form for the nucleon

In Fig. %a) we represent meson exchange in the oneform factor,

boson-exchangéOBE) model on the left-hand side of the

figure. There, the open circles are the form factors of the = (t)—f: (0) )\Er 5.9
OBE model that are of thémonopole form m )\i_t : :
oBE AZ—m? In a previous work8] we saw that if we tookn ,=0.8
Fim(t= AT ¢ (5.1 Gev, there was excellent agreement of the functions

h™Wh(t) and h985t). (See Fig. 10.Here, we also consider
for a meson of masen and OBE cutoffA;. On the right- the magnitude of the amplitude.in addition to tiye depen-
hand side of Fig. @) we represent the interaction in terms of d€nce. so that we have to provide a valuefi(0). In an
the quark-quark interactiorf,. We do not consider all pos- €arlier work, we foundr -(0)=4.78, when we calculated the
sible diagrams, but isolate those diagrams that are of leadinl§rm factorF ,(t) in a covariant soliton model of the nucleon
order in 1n, counting[8]. The interaction in that case may [9]. Neart=0, we may putty (t) = g2/ (t—m3), so that,
be expressed in terms of the functiodég?) andK(g?), for ~ in our model,

the various mesons. For example, in Fih)9ve show those

interactions that lead to the use of 9244 [F2(0)1?
L0y =— T = - (5.10

Gs (5.2)

t(ff)( t)=— ——<——
1-Gglg(t) =—676 GeV 2, (5.12)
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FIG. 10. Values ofh)" are given by the solid line and
hOB&(t) is represented by the dotted line. Hare=0.80 GeV and
A9BE=1.3 GeV.[See Egs(5.3), (5.6), and(5.9).]

where we have usegl,qq,=2.68 andlE,T(O)=4.78, as found
in our earlier work[5,9]. Noting that A ,=1.3 GeV and
g2\ n/4m=14.4 in typical OBE model calculatiorg], we
have

fOBE(0)=—727 GeV?, (5.12

which is only 8% greater thaf’(0) given in Eq.(5.11).

Thus we see that for pion exchange we fit both the value of

Gann [Gann=0mqdF 1T(O) 12.8] and theg? dependence of
the amplitude up to- g°=2 GeV?. However, if we try to

GAO, CELENZA, SHAKIN, SUN, AND SZWEDA 53

t(lf)
fNJL(t) — qq

[Fs<t>]2 (5.17
Now
2 2 2\ 2
go’NN Aa'_ma 1
OBE/(\ _ _ -
1250 = 477( 7z ) = (618
GZNN 1
T Tan m(, 519
while
£¥9L(0) = - g"q“ e [FSO2 (5.20
Thus, we would like to have
Gonn=UGoqqFs(0)- (5.21)

We note that, if we includeks(O) in the formalism,

calculateF =(t), we obtain a form factor that is too soft. For g,qq(0)=3.05 in our most recent analysis. In an earlier

example, the quark wave function [] yields a dipole form
for the form factor

. . 1 2
Fw(t):Fw(O)(m) , (5.13

wherelEW(O)=4.78 andt is in GeV? units. For a monopole
fit, the effective vertex parameter would be abayt=0.43

GeV, which may be compared to the value used above,

\,=0.80 GeV.

B. Sigma exchange

work, we calculatedFg(0)=1.94 [9], so that, from Eg.
(5.21, we find G,yny=5.9. This value is in fair agreement
with the phenomenological value, if we consider the case
where the effects of excitation of the delta are treated explic-
itly in the OBE model. For example, consider Table B.1 of
[7]. For model | listed there, we finady?y/4m=6.32,
A,=1.5 GeV, andn, =550 MeV. Therefore, for that case

GUNN ngTNN Az—mi 2 (5.2
47 A A(zr ’
—473 (5.23

To study sigma exchange we need the nucleon form fac-

tor, F4(t), defined by the relation

Fs(t)u(5+q,sl)u(5,5)5ttr:<5+q,s/,t/|a(0)q(0)|5,s,t>-

(5.14
We may write
2 2 2\ 2
ga’NN Aa'_mo 1
OBE, _
o (=" ( AZ—t ) t—m? .19
=fOB50)h 9B 1), (5.16

and

so thatG ,nn="7.71 which is somewhat larger than the value
of G,yn=5.9 given above. Of course, the result is quite
sensitive to the value chosen fBig(0). [It is possible that
vertex corrections enhanégy(0) to yield a value closer to 3.
Such a value would place our analysis in better accord with
the phenomenology of the OBE model.

C. Omega exchange

In the simplest approximation, the omega has as its source
the isoscalar currerjt*(x) =q(x) y*q(x), which is six times
the isoscalar electromagnetic current. We define two form
factors F(“’)(qz) andF(“’)(qZ) which are proportional to the
isoscalar electromagnetic form factors of the nucleon
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at’q

. 3 _ iot'a, ]
(P+0,s.1'1a(0) y*a(0)[B,s,t)= b U(P+G.8")| ¥ F15(4%) + 5= F35'(0) |u(.s). (5.24

Note thatF{%)(0)=3 and thatF{?(q?) is quite small and D. Rho exchange
may be dropped. . In the simplest model of the rho-nucleon vertex, the rho
Then, in analogy to Eqg5.15 and(5.17), we define has as its source the isovector  current

5 s oo 4(x)=q(x) ¥*7q(x), which may be related to the isovec-
fOBE(t) = — JonN ( Ay~ mw) 1 (5.2 tor electromagnetic curreqt, (x) =q(x) y*(73/2)q(x). We
) t— " '

4w | A%t again define two factors:
=fo" O™, (626 (5+q,s ,U]j#(0)|B,st)=(t'|FU(P+d.s)| FE(a?)
and mv
A Z w2 |uGps),
(w)( t) 2my
fo (==, —[Fig()]* (5.27) (5.32

with F{?(0)=1 andF{)(0)=3.70. Our strategy will be to
assume thak{?)(g?) andFY)(g?) have similar dependence
ngN AZ-m2\2 1 on q2., so that we may WriteF(z’Jl)(qz)=3.7(F_(1”1)(q2). With
A A2 —, (5.28 that in mind, we will concentrate on the first term on the
& @ right-hand side of Eq(5.32. In this approximation, our

study of rho exchange is similar to our study of omega ex-
(0), we have change.

We define

Now

OBE
985(0) = m

fOBE(

so that, if we sef® fhIL

0) equal tof |

giNN Ai_mi zzngiqq (5.29
4w\ A? Y am '

2 2 2\ 2
f,‘?BE(t)=—g"”N(A/;’2_T") S 539
This equation is used to define the theoretical value for ?
gonn in terms ofg,,qq. In empirical OBE potentialf7] one
has g2\ \/47=20.0, A,=1.5 GeV, andm,=0.783 GeV.

The bosonization scheme in conjunction with Fig. 6 and
Table 1, shows that, if we choose=0.22 Ge\?, we have &"
gwqq/4q-r 1.19. Then wuse of Eq. (5.29 vyields (p)
g2an/4m=20.2. Thus, Eq.(5.29 is well satisfied when L) q(t )[F(")(t)]z (5.35
k=0.22 Ge\? and is satisfied to about 10% accuracy if p ’

k=0.20 Ge\2. (See Table ).

=f9°50)hP5(1) (5.39

When we compare thg? dependence of 2®5(t) and — £NIL ()N (5.39
fML(t), we find that if we write g P
2 (@) TABLE |. Bosonization parameters for the omega meson, if the
hNJL(t) _ Ao t (t) (5.30 meson mass is fixed at,=0.783 GeV andc is varied. From OBE
No—t) oty t)(0)’ ' studies one hag2 /47 = 20 whenA 9%F=1.5 GeV[7]. (The theo-

retical value closest to the empirical value is found for0.22

2
we would need to puk ,=0.93 GeV to obtain a very good GeVv*.)
fit for —q?<2 GeV? [8]. However, since the electromag-

. 2 ~ 2
netic form factors of the nucleon are of the dipole form, for « G, Yoaa  J(,)(0) J(w)(m ) Yonn
example, (GeV?) (GeV'?) g,qq 47  (GeV?) (GeV?) 4x

1 0.16 7.10 3.39 0.917 0.0877 0.141 15.6
B(t)= s, (5.3) 018 737 355 1.00 00872 0.136 17.1
[1-1/(0.847] 0.20 762 371 110 00866 0.131 18.6
0.22 7.86 386 119 0.0861  0.127 20.2
we again see that the effective valueXgf for a monopole .24 8.08 401 1.28 0.0856 0.124 21.8
form factor in our model is about 600 MeV, rather than theg g 8.29 4.16 1.38 0.0852 0.121 23.4
£ OBE,
930 MeV needed to fit ;= (t) over a broad range of space- g 2g 8.49 431 148 0.0847 0.118 2592

like values ofg?.
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We may obtain a theoretical value fgﬁNN/47r by equat- bosonized model provides a good account of the nucleon-

ing the amplitudes fot=0, nucleon interaction for small momentum transfer. We also
have the surprising result that the amplitude describing pion
2 2 2\ 2 2 . . .
Opnn [ Ap—m _ 9qq exchange is well described in our model over a broad range
A1 A2 T A (539 of momentum transfer if we specify the single parameter
P

\. (See Fig. 10.However, we do not know why our results

where we have used the fact thﬁfﬁ)(o):l, To obtain for pion exchange at large g% are so much better than our
g2nn/4 we proceed as in the case of the omega meson ar@@scription ofo, p, andw exchange at large g°. It may be
use the formalism of Sec. IV. Since we have get0.22 thatthe quark-quark matrix is more adequately represented

GeV?, we need values O}(p)(t)+f<(p)(t) for that value of @&t large —qg? in the_ case of the pion because of the pion’s
k. Those values are exhibited in Fig. 7. Requiring thatSmall mass. That is, higher-mass pseudoscalar mesons may

m,=0.770 GeV, we obtail,=7.12 GeV 2 from Eq.(4.5), be relatively less important than higher-mass mesons are in

and then use

This procedure yieldgiqq/4w=1.05. Then, the use of Eq.
. _ . 2 _
(5.39, with A, =13 GeV, yields g,yw/4m=2.48, OF (4 he data; however, about 26 parameters are needed, includ

the other channelsp(o,w). It is possible that the consider-
ation of the exchange of more massive mesons, or the calcu-

1 g2 lation of more complex diagrams, will improve our results
S a— = = pqzq. (5.38  for the short-range aspects of the interaction.
G, [0 +K,(0)] M, We remark that another approach to the calculation of the

nucleon-nucleon interaction is based upon baryon chiral per-
turbation theory 10]. That formalism does provide a good fit

gpnn=5.58. Finally, we obtainf,yy=3.70, 9,nn=20.6, ing numerous contact interactions. Such an analysis is pre-
which is quite close to the empirical vazlue used in the OBEg,maply more fundamental than that based upon OBE mod-
model. For example, ii7] we see thaty,\\/47=0.99, or  els, which require the specification of about 10 parameters
goun=3.53. Since the ratiof S3t/g5iN=6.1, we have [7].

f

oNN=21.5, which is close to the value \chZLNN=20.6 we We may note that our work has provided a theoretical

have found in our model wher=0.22 Ge\/. value form, =540 MeV. In the OBE modeln,, is put equal

It should be noted thaG,#G, in our model, since to 550 MeV and ther, p, andw mesons are assigned their

k(p)(qZ) is finite andk(w)(qZ)zo to a good approximation. €xperimental mass. We have also provided reasonably suc-

Therefore, the success in obtaining good values for botigessful calculations af .y, 9onn: onn, @ndf . How-
92 WA andf yy for the same value of is in part due to ~ €Ver, there are still a number of additional parameters

the importance oK(p)(qZ) in this analysis. We also remark
thatg?y /4w <g2y/4m in the OBE model, since the first of
these values is close to 1 and the second is 20. Therefore, t
fact that we overestimatgﬁNNMw by about a factor of 2.5
(while obtaining a good value foir,yy) may not be a par-
ticularly serious problem for our analysis.

needed:A,, A., A,, A,, andg,yn. Therefore, after
adopting our theoretical results, there are still about four or
jye parameters that need to be specified when attempting to
fit nucleon-nucleon scattering data using the OBE model.
However, our analysis provides a significant reduction in the
number of free parameters of that model.
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