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Expansion, thermalization, and entropy production in high-energy nuclear collisions
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The thermalization process is studied in an expanding parton gas using the Boltzmann equation with two
types of collision terms. In the relaxation time approximation we determine the criteria under which a time-
dependent relaxation time leads to thermalization of the partons. We calculate the entropy production due to
collisions for the general time-dependent relaxation time. In a perturbative QCD approach on the other hand,
we can, given the initial conditions, estimate the effective relaxation time due to elastic collisions; this will be
an upper limit only since radiative processes will also contribute to thermalization. We find that the parton gas
does thermalize eventually but only after having undergone a phase of free streaming and gradual equilibration
where considerable entropy is produdéafter burning”). The final entropy and thus particle density depends
on the collision time as well as the initial conditiofe “memory effect”). Results for entropy production are
presented based upon various model estimates of early parton production.

PACS numbsgs): 25.75+q, 12.38.Bx, 12.38.Mh, 24.85p

[. INTRODUCTION In this paper we study the thermalization process of a
parton gas expanding in one dimension using the Boltzmann

Hard and semihard parton scatterings are expected to ggjuation with two types of collision terms. In the relaxation
the dominant processes in ultrarelativistic heavy ion colli-time approximation we show generally for which time-
sions at the Relativistic Heavy lon CollidéRHIC) and dependent relaxation times the partons thermalize and esti-
Large Hadron CollidefLHC) energieg1,2]. These hard or Mate when they do so and how much entropy is produced in
Semihard processes happen in a Very Short t|me Sca|e aftg}e collisions. SeCOI.Wdly, we qescribe the el_aStiC partqn scat-
which a dense parton gas will be formed. However, this parterings by perturbative QCD in order to estimate the impor-
ton gas is not immediately in thermal and chemical equilib-tant collision time and its dependence on expansion time.
rium‘ Secondary interactions among the produced partonlg]elastic CO||iSi0nS W|” not be included but are eXpeCted to
may lead to equilibrium if the interactions are sufficiently contribute to thermal and chemical equilibration thus leading
strong. Exactly how this parton gas equilibrate and what ardo earlier relaxation. The effective “out of equilibrium” col-
the time scales are under intense investigati@is6] and lision time differ from the standard transport relaxation time,
that is also the focus of this paper. ry=[a5In(L/as)T] ™%, by a prefactor and a weak time de-

It is commonly assumed in relativistic heavy ion colli- pendence, which are calculated in the Appendix. It is, how-
sions that the matter expands hydrodynamically shortly aftegver, still the Debye screening and Landau damping that
the nuclei collide and that it is in thermal equilibrium locally screen the singular forward parton scattering processes. Fi-
in space and time. In the classic Bjorken mod@lhydrody-  nally, we will give results for entropy production based upon
namic expansion is assumed after a time=1 fm/c. Yet, various model estimates of the pre-equilibrium conditions.
when initial parton formation times are estimated to be a
fraction of a fm¢t [3,5,8] the expansion might be much more
rapid than the typical collision time of the partons produced”' FREE STREAMING VS HYDRODYNAMIC EXPANSION

in the CO||iSi0nS. FOI’ timeS Shorter than the typ|Ca| CO||iSiOI’1 |n Order to have a tractab|e approach we assume that the
time of partons immediately after the initial collisions, the gpatial variations are sufficiently small along the longitudinal

rapid expansion is closer to free streaming than hydrody¢z) direction so that we can describe the parton gas by the
namic expansion. Only at times much larger than the charggjtzmann equation

acteristic collision time may the parton gas thermalize,
equilibrate and expand hydrodynamicall9]. However, if

the collision time increases with time the gas may never
thermalize. The characteristic collision time is therefore a
crucial parameter. Since it among other things depends on
the density, which decreases in time, it may be time depen-
dent. In fact, when the collision time is proportional to the We also assume along the lines of the Bjorken m¢dgl
expansion time, the system neither expands hydrodynamthat the transverse dimension of the parton gas formed in the
cally nor as free streaming at large times but somewhere inuclear collisions is sufficiently large that the initial expan-
between10]. sion is one dimensional. Furthermore, we assume the central
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rapidity regime is boost invariant in rapidity, i.e., depending 5
only on the invariant time-= \t?— z2. The Boltzmann equa-
tion thus reduces tf9]

T T T T T T T T — T T T 1T

4
(&f(pbpz,r)) _(af(pl,pz,r)) @
ot p,T 7 coll ° 3
@
The collision term on the right-hand side of Ed4.2) 173
determines the equilibration and has been studied extensively 2
within perturbative QC11,12,14—17 near equilibrium in
a quark-gluon plasma. In a relaxation time approximation, 1
the collision term is
af(pL,pZ’T) B f_feq 0 Ll PR L
— . ]| =T 3 1 10 100
P,7
T/T,
where @ is the relaxation time, which determines the time . . . _ .
scale for thermalization antl is the equilibrium distribu- FIG. 1. Total entropy in one-dimensional viscous hydrodynami-
tion function. cal expansion of Eq(7) for various viscosities)= 7T>. For com-

parison, the upper limit on the entropy by solving the Boltzmann
equation, Eq.(35), is shown with dashed curve fdi=r, in the
casen=16. In both case¥ =%/, is assumed.
When collisions are sufficient to thermalize the system,

i.e., the corresponding relaxation times are short as compareghere 7 is a dimensionless constant depending on the cou-
to expansion times¢<r, hydrodynamics applies and the pling constanyy. The bulk viscosity¢ vanishes for an ideal
distribution function in the local comoving frame is the ther- re|ativistic gag18].
mal one Solving Eq.(5), the entropy densitg=(4/3)e/T is ob-

E _ 1 tained. The total entropys, is proportional tors and is thus
ex;{ pT 'u) +1

4 [1112
~ 2/3\13
If particle production is sufficiently rapid, chemical equilib- S=5, 1+ Y (1_<E> )} , @)
2aToTO T

rium can also be reached apd=0 for gluons. We assume
that the net baryon density is relatively low in the midrapid-
ity region so _that the quark chemical potentigl vfani_shes a§vhereso, 70, and T, are the initial entropy, time, and tem-
well. In the Bjorken flow mode[7] the expansion is ideal- Lo atre. As seen in Fig. 1 the entropy production increases
ized in one dimension and assumed to be rapidity indeper gy with viscosity 7. If the decoupling(freeze-out or
dent. Including viscous dissipation one finds generally in hyta4ronization time is sufficiently late the entropy approaches
drodynamicq11-13 the asymptotic valu&= Sy(1+ 7/2ar,To)>.

To get an idea of the magnitude @f we refer to recent

A. The hydrodynamic limit

feq(p):

f n+ € calculation within perturbative QCPL4,16. For weak cou-
de e+P 3 5 plings, as=0.1, the quark and gluon viscosities depend on
dr T 2 the coupling constant as

where € is the energy densityp the pressurey and ¢ the ;;z[aﬁln(llas)]*l, ®)

shear and bulk viscosities, respectively. We assume that par-
ton gas is a weakly interacting quark-gluon plas(@GP
consisting of relativistic quarks and gluons. ConsequentlyWhere the logarithm arises from the sensitivity to screening
the gas is described by an ideal equation of state with pre®f long range(small momentum transfginteractions. The
sure P=¢/3 where the energy density iss=aT? quark viscosity is approximately four times larger than the
a=8m2/15 (1+(21/32N;) (a=15.6 for N;=f). A bag gluon because quarks interact more weakly. For strongly in-
pressure can be included but will not change the entropyeracting plasmasys=0.1, the Debye and dynamical screen-
production that we are concerned with here. ing must be replaced by some effective cutoff due to corre-

In the relaxation time approximation the shear viscosity igations in the plasma, which leads fp<ag?. Within the
n=0e. In a weakly interacting QGP the temperature is therange as~0.1-0.5, the quark(gluon viscosity decrease
only scale besides factors of the interaction strengths, e.gftom 7~50 (15 to 7~1.5 (0.8). If the initial density of
the Debye wave number &g, ~gT. Thus the shear viscosity quarks and gluonsy;, is less than that in chemical equilib-
necessarily scales like rium, ney, then the viscosities are larger by a factor

~Ngg/N; .
n=7T3, (6) T?le corresponding viscous relaxation time
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dimensional expansion takes over. Hereafter the densities

TIME EXPANSION COORDINATE MOMENTUM will decrease rapidly reducing collisions drastically and a
PERIOD MODE SPACE SPACE . L. . .
I . . free streaming scenario is again likely. Around the same
» 4 time, however, the system may break up, freeze-out, and
0LTLT, FORMATION E@E z ;; fragment.
' ! Pxy Ill. THERMALIZATON IN THE RELAXATION
Cerco FREE ‘%‘ . » TIME APPROXIMATION
o~ bt~ STREAMING <\~ Pz . . .
L = Baym solved the Boltzmann equation in the relaxation
; time approximation Eq3) with a relaxation timed indepen-
X, . .
YDRO- ' 4 dent of expansion timg9]. He found that the parton gas
o T DYNAMIC e started out free streaming and gradually thermalized to hy-
drodynamical flow on a time scale given By The distribu-

tion function at any point in the local rest frame changes
from being highly anisotropic, with only small longitudinal
momenta, to being isotropic fars> 6. A similar calculation

by Gavin[10], however, with a collision time scalintn-
early with time, 6= at, gave a qualitatively different result.

15 In this case the gas ends up somewhere between free stream-

r=5 1 571 (99  ing and thermal equilibrium depending on the valuesxof

7 TetP  4a For smalla the collision time is short and the final state is
) ] ) close to Bjorken flow but for larger the state is closer to
is, however, larger than the expansion time and so hydrodyee streaming. The time dependence and magnitude of the

namics does not apply at early times as pointed out byg|axation time is thus essential for describing the degree of
Danielewicz and Gyulassyl1]. The entropy production will  {nermalization and its time scale.

be much lower and will be calculated in the following sec-  \we will in the following solve the Boltzmann equation
tions by solving the Boltzmann equation in the relaxationyithin the relaxation time approximation for a more general

time approximation. For comparison the upper limit on thejme dependence of the collision time proportional to the
entropy production in Eg35) from solving the Boltzmann expansion timer to some power

equation with a finite collision timeg=r,, for the case
7= 16 corresponding t@=4r, is also shown in Fig. 1 as a Goc P (11)
dashed line. Note that the entropy production continues long

after 6 andr, .

FIG. 2. Qualitative picture of the expanding system following a
nuclear collision. The formation time from-0ry, free streaming
from 79— 6, and hydrodynamical flow fo#> 6.

This covers the constant relaxation time of Bay®]
. (p=0), the linear one of Gavifl0] 7.q=1l/o~7 (i.e.,
B. Free streaming p=1) as well as the near equilibrium transport relaxation

In the opposite extreme to the hydrodynamic limit exam-time 7y~ T~ *~n~"*~ 713 (i.e., p=1/3). We shall study un-
ined above, collisions are absent and partons stream freel§€r which circumstances the parton gas thermalizes, estimate
According to Eq(z) the distribution function evolves ig] the relaxation times and prediCt the degree and time scale for

equilibration.
f(p)="fo(p. .p,7 7o), (20 The solution to the Boltzmann equati¢8) can be written
in terms of an integral equation
wheref is the initial distribution function at time.

As will be described in the following section the parton f=fo(p, ,p,m/19)e”*
gas will stream freely until collisions thermalize the system
around a timed. The free streaming alters the distribution in fx r X! =X 2 N2 T,
; L + | dx'e X VP t+ / JTu'], (12
phase space drastically. Initially the partons have large lon- 0 ed VPL+(P,7/T) w12

gitudinal momenta due to the high relative energy of the

incoming nucleons in the nucleus-nucleus collisions and thQ\/here the time dependence of the tempera‘l’uwd chemi-
relatively small transverse momentum transfer in hadronia| potentialy in fedP,T, ) are determined by demanding
collisions. HOWeVer, in the one-dimensional free StreamiHQhe energy density and number den$'ﬂysuming no partic|e

expansion of the system at later times only those partongroduction be the same fof., andf at any time, i.e.,
with similar longitudinal velocity will travel together locally a

in space and time. Thus the phase space separates the longi-
tudinal momenta and the distribution function changes from E(T,,u)=f deEpf(p)Ef dlUpEpfedp, Top), (13
a wide to a narrow one ip, locally in space and timésee
Fig. 2). Collisions will then attempt to thermalize the system
towards an isotropic distribution. _ _
When the longitudinal expansion has extended the system n(T,,u)—f def(p)_f dlpfed P Top), (14
to a size similar to the transverse size, which happens at a
time of order the nuclear transverse dimensionR, three wherede=d3p/(27r)3. The functionx(7) is related tor by
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FIG. 3. The functiorg[ 7(x) ] found by solving Eq(16) numeri-
cally. Its dependence on the relaxation tidve 6,( 7/ 7,)P is shown
for various 6, and p.

T To

o(r) 0o

, p#1l, (15

T 1
X(T):f dr'/0= ——
70 1_p

where 6= 6(7). The marginal cas@=1 was studied in
[10].

Note that by assuming an initially spherical symmetric dis-
tribution we differ slightly from Baym9]. He assumes the
distribution to be peaked in transverse directions initially.
The termh(7y/7) in Eq. (16) is then replaced by unity and
the right-hand side of Eq19) changes to + #/4. The dif-
ference in initial conditions will not affect any of our subse-
quent arguments concerning tipedependence of the ther-
malization.

When p<1, x(7) increases with increasing as seen

from Eq.(15). The exponential factoe' thus weights large
x' and Eq.(19) implies for largex or

%[Q(T'W(T’/T)] , =0, (20

=7

sincedr= 0 dx. The slope ofh(r) nearr=1 is 1/3 and so
we conclude thag(7) =7 2 for large . Thuse(7)oc 43
which is the one-dimensional hydrodynamical limit.
Whenp>1, x(7) is negative and decreases with increas-
ing 7 to a minimal but finite valu&,j,=— 79/ 6¢/(1—p).
By differentiating Eq.(16) we find thatg’(r) is always
negative and therefoigy( 7) decreases monotonically. Yet, by
definition, g is positive and must therefore have an asymp-
totic value larger than or equal to zero. From the integral
equation(16) we see that this value at=o% or X=X,y iS
nonvanishing and thusg(e«)>0. Consequently, e(7)
=g() 7o/ 7 at large times which is the one-dimensional free

The evolution of the parton gas can be conveniently studstreaming limit.

ied by taking moments of Eq12) with respect to particle

We conclude that thermalization will be reached when

energies. Summing over particle momenta gives a simplg<1 and the parton gas will expand hydrodynamically at
integral equation for the particle density which has thejarge times whereas whem>1 it will continue to stream

simple solutionn(7)=ngy7y/7 which also follows directly
from Eq. (3). Multiplying by particle energy and summing
over momentum we obtain

e*g(r)=h(7o/7)+ Joxdx’ex/g(r’)h(r’/r), (16)

where
7 €(7)
e 9
and
1
h(r)=f d coqv)1+cos(v)(r?—1)
0
1 sin"ty1—r?
:E I’+T). (18)

Herev is the polar angle of the particle momenta with re-
spect to thez axis. The functionh(r) is a monotonically
increasing function betweeh(0)= /4 andh(1)=1. The
functiong(x) is calculated numerically and is shown in Fig.
3 for variousé, andp<1.

Performing a partial integration on E(L6) gives

x . d
fodx'ex G L9 Im1=0. (19)

freely. The marginal casp=1 was studied by Gavihl0]

who found that the parton gas ends up in a state between
hydrodynamic expansion and free streaming depending on
the size of the prefacta#t where 6=a 7. Whena is small

the collision time is always relatively short and the gas
equilibrates near the hydrodynamic limit. Whenis large

the collision time is always longer than the expansion time
and the gas continues to stream freely. One should, however,
keep in mind the finite decoupling, freeze-out, or hadroniza-
tion time. When it is shorter than the collision time, which
will be the case for largé@, or p close to unity or larger, the
parton gas does not thermalize.

IV. A PERTURBATIVE QCD ESTIMATE
OF THE RELAXATION TIME

As we have just seen, the magnitude of the collision time
as well as its dependence on expansion time is crucial for the
equilibration. We shall therefore study the collision term and
calculate it within perturbative QCD where we know the
scattering matrix elements between quarks and gluons. We
shall here only consider elastic scattering processes even
though inelastiqradiative processes have been found to be
very important in the cases of initial parton productj@rb,
energy loss of a fast parton going through a QG&#|, and
later parton chemical equilibratidd,6].

In general, radiative processes are important for a system
far from equilibrium. During the very initial stage of heavy-
ion collisions, the processes leading to minijearton pro-
duction have relatively large momentum transf@$ For
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such hard processes, the radiative “corrections” in powers ofjuark-gluon and quark-quark interactions are just 4/9 and
asln(QZ/Qg) can be very largé20], whereQS is some scale (4/9)° times weaker, respectively, near forward scattering
below which perturbative QCD is no longer applicable. They(t=0). In a t=w?—qg? channel, a singularity occurs for
lead to both initial and final-state radiation of additional par-small momentung and energy transfers. In a medium the
tons and contribute significantly to the initial parton produc-t~2 singularity is screened as given by Dyson’s equation in
tion. Immediately after the initial scatterings when the sys-which a gluon self-energ¥l, 1 is added to the propagator
tem is still far away from thermal equilibrium, radiative PP

processes might also be important as in initial multiple scat- t = =g Il 1. (23

tering processes. Radiative processes in multiple coIIisioni\S was shown ifi14—16 that Debye screening and dynami-

and the Landau-Migdal-Pomeranchuk effect has recentI)Fal screening due to Landau damping effectively screen the

been discussed within perturbative QCD by a number o ongitudinal and transverse interactions off in most transport

people. According to recent work by Baiet al. [21], the roblems at a length scale of order the Debye screenin
radiative energy loss of a fast parton with eneEgpenetrat- P oy 9 y 9
lengthgp ™. For small momentum transfeg,<E,,E,, one

ing a QGP isdE/dx~—as VEqD/)‘.gln(E/qD)‘g)’ whereh, 1S an split the matrix element into longitudinal and transverse
the gluon mean free path. They included also rescattering ?arts[lG]

the radiated gluons which was ignored by Gyulassy an ’

Wang[19] and thus obtained a different energy dependence.

Weldon also showe@22] that inclusion of absorption pro- |Mgg|2:§g4
cesses as well as production and absorption of virtual par-

2

1 (1— w?/g?)cosp 2

q2+HL_ qz—wz-i-l_[-,—

' (29

[0} (q-l—w)
1-=—1In
29 \g—w

ticles reduces the energy loss further. Interestingly, if ongyhere cog=(v,xq)-(v;x ). The gluon self-energied],
takes(as generally assumpdl g~ asT and ignores the weak and I1, are given in the long wavelength limig&T) by
logarithmic dependences, the energy loss is proportional tp4]
a§ in both these cases as well as for energy loss due to
elastic scatterings onlj23]. Another situation in which ra- 2
diative processes are important is the chemical equilibration I (q,0)=0p
of a kinetically thermalized system. In this case, the leading
order contribution to the chemical equilibration is=3, with ) 0w’ o w?\ (gt
the elastic scatterings maintaining the thermal equilibrium l+(q,0)=dp 2_qz+ E(l_?>ln((q—_w” (26)
[4].

In view of the uncertain status of the radiative rate inThe Debye screening wave number in thermal QCD is
QGP, we will not here attempt to give an accurate calculatiorq%: g%(1+N¢/6)T? whereN; is the number of quark fla-
of the radiative corrections to the relaxation time in systemygrs.
out of equilibrium. For an order-of-magnitude estimate, we The Boltzmann equation with the full collision term, Eq.
negleCt these hlgher order contributions. What we will do |S(21), has been solved for quark-g|u0n p|asma5 near equi”b-
to estimate the effective thermalization time dueetastic rium and a number of transport coefficients have been calcu-
collisions This time will then only serve as an upper limit if |ated to leading orders in the coupling constfid,15,25.
inelastic collisions add Significantly to the equilibration at For viscous and thermal relaxation as well as momentum
later times. As we shall see, this upper limit will still allow Stopping, the “transport relaxation time” is genera"y
us to make predictions concerning the eventual thermaliza-
tion during the expansion stage. -1

The collision integral for scattering particles elastically Tr™
from initial states 1 and 2 to final states 3 and 4 is

, (27)

as

aZIn AT

wherel (the “fugacity”) is the ratio of the actual density to
) _ _(277)4V2f dr, dr, dr M1y 342 the one i_n chemical equilibrium at .temperatl]'reThis re-
coll 27 Pam P - laxation time may be used at later times when the parton gas
is near equilibrium. In Bjorken flow the temperature scales
X[f1fa(1213)(1x1F,) —fafa(1211)(1£1F,)] like Toe7~18, i.e., 73 Since this power is less than
o unity, the parton gas should thus equilibrate according to the
X 8*(p1+P2—P3—Pa), (21) analysis in the previous section.
wherep; are the parton four-momentum. We assume they are In nuclear collisions the parton gas may be far from equi-
massless, i.e.E;=|pi|. The (1+f;) factors correspond librium when first produced and the expansion may also
physically to the Pauli blocking of final states, in the case ofdrive it out of equilibrium as in free streaming. Solving the
fermions, and to(induced of stimulated emission, in the Boltzmann equation thus becomes a very difficult nonlinear
case of bosons:, is the statistical factor, 16 for gluons, and problem that requires major computational efforts which is
12N; for quarks and antiquarks. |Mq, 3/  being undertaken in a number of parton cascade models as,
=|.%15_.34%1(16E,E,E4E,) is the matrix element squared €.g., in[3]. We take another approach in this paper. As men-
summed over final states and averaged over initial states. Fépned above, hydrodynamics does not apply at early times
scattering of gluons because of long viscous relaxation times and the parton gas
is expected to expand as free streaming initially. With this
initial ansatz in Eq(10) for the distribution function we can
calculate the change in the distribution function at early

Jf 1
at

, 9
|'«/%Z&%i)34|2:§94( 3= = (22
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times from the Boltzmann equation with the full collision tails of this calculation is given in the Appendix. Ignoring
term of Eq.(21). More specifically, from the entropy density quarks the final result issee(A12)]

=~ [f InfF(1+)in(1=f 28 o) S22 ey in 2], @0
S(7)=— - [f Inf=(1=f)In(1£f)], (28) gt] ~Vag A% lorogn ThoatraTo n )" (30)
coll 9
we have calculated the entropy production where\ g q=exp(uog/To) is the ratio of the initial density to
that in chemical equilibrium.
Js of f We can match this entropy production to that obtained in
(E =2 (5) In(m>, (29 the relaxation time approximation thus determining an effec-
coll p coll -

tive and momentum averaged relaxation titheThe relax-
ation time and entropy production during this early period,
in the free streaming phase by approximatingy f, [see 719<7<6, are different from later times= 6 when colli-

Eqg. (A1) in the Appendi}. The initial entropy production sions change the free streaming distribution functions. The
can be estimated analytically with the full collision term to entropy production for the initial free streaming in the relax-
leading logarithmic order in the coupling constants and deation time approximation is from E¢29)

as|" ™ fdr fo—feq
3 S B W

T+ (P, 70)%— ko

To
coll
_€(To) ] 1 4 TS In(1+ m) 7-0+Sin71(yl—7'§/72) 7o
0To |47 7 1-272 T N T
7w €(To)lT
25%- . (3

As in Eg.(30) we ignore quarks«s(To)%vg(a-rZ/:%O)Tg)\Qg is trivial calculations treating the early hard collisions. In the
the initial gluon energy density. By equating the entropy pro-following we list the results from a number of such model
duction of Eq.(31) for 7> 7, to that from the perturbative calculations.

3nT

QCD caollision term Eq(30) we find
2T
In(—).
70

Note that it is the initial temperaturg, that enters here and
not T(t) as in Eq.(27). The collision time depends only

1
7= 1.43a2T A ggln (32

2)\0’90157'0

From the HIJING model calculatio5,26,27 it was
found that atry=0.7 fmfic the produced partons in central
Au+Au collision at RHIC energy can reach a local isotropy
in momentum distribution temporarily with effective tem-
perature Ty=0.57 GeV; in addition Aog=0.09 and
Nog=0.02. At LHC energiesry=0.5 fmk, T,=0.83 GeV,
Nog=0.14, and\,,=0.03. Eskolaet al. [28] found similar
results for the temperaturé,=1(1.5) GeV at the RHIC

logarithmically on the expansion time. As explained in the(LHC) energy in their minijet plasma calculation. However,
Appendix, the relaxation time is only weakly time dependenthey used a smaller initial timer,=0.1 fmk, and find
in a free-streaming parton gas because the phase space fexg™1 andioq~0. If one were to allow this minijet plasma
small momentum scattering opens up quadratically with timd0 stream freely shortly after, the result would be consis-
thus effectively compensating the decrease in parton densient with HIJING estimates at the later timg=0.7 fmk.
ties. On the other hand, if large momentum transfers ardhe newest set of parton distribution functions in the calcu-
imposed to each parton scattering, the entropy productiofation of Eskolaet al. also increase the initial parton density,
rate will decrease quadratically with time, leading to a muchespecially at LHC. In the parton cascade md@glthe initial
stronger time dependence of the relaxation time. The longparton density is found to be larger due to a different treat-
range interactiongsmall momentum transfersre therefore ment of soft parton interactions. These numberspand
very important in an expanding parton gas. The two logaT, are surprisingly similar to those found by Shury&§ in
rithms in Eq.(32) arise from integrals over momentum and a different analysis. By estimating the particle rapidity dis-
energy transfers respectively. The “fugacity” factog arises  tributionsdN/dy in relativistic nuclear collisions he obtains
from the correspondingly smaller density of scatterers. a particle density in the Bjorken scenarioN/dy)/(wR?7)
The relaxation timed depends sensitively on the initial which at a timer= 7.,;~ (aT) ! is assumed to be the same
conditions throughly, \o, 7o, and ag(T). A reliable esti- as the equilibrium one-T3. Hereby the initial values for
mate of these initial parameters will require additional non-T and = are found. One should bear in mind that all these
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estimates are based on perturbative QCD inspired models. 10
There are many uncertainti€see, e.g.;29]) due to our lim-
ited knowledge of strong interactions.

If we ignore the slow logarithmic time dependence and 8
assumeTy=1/7, and \o4~0, as motivated by the above
mentioned models, we find

602 as_z)\a’é'To. (33)

Sf/ S,

With «;=0.3 we find a rather long collision time even if
)\O’g:]..

V. ENTROPY PRODUCTION

olllllJ\\\liJII\‘lel
0 5 10 e 20

/T,

With the weak time dependence of the relaxation time, we
can now estimate the entropy production during the early
thermalization. We still assume the relaxation time has a
power dependence on time as in Etjfl) with smallp. The
scaling behavior of the functiog( ) with 6,= (7= 7o) can FIG. 4. Entropy production in the relaxation time approximation
be obtained whem,> 7,. In that case the integral equation as function of the relaxation time= 6o(/7,)" for various powers
(16) for g[7(x)] depends almost solely omx, since P. The entropy found by Bayrf®] (see textis shown by dashed
X'Ix=(7'/7)*"P. Thus for givenp, g[7(x)] is a generic Ccurve.
function ofx. Its behavior at large is

TsuddenWhen the gas suddenly collides violently and imme-

go| 3P 7\ ~1B diately thermalizes. Conserving energy per volufnet not
gl 7(X)]=gpx 1P =g, (1- ) B (T—) , particle density we find
0 0
(34 s [\
. . N (Z (Tsudded 7o) 1/41 (39
whereg,, is somep-dependent constant of order unity. In the So

casep=0 Baym[9] foundg,=1.22 but due to the different

-~ o ; : . which is only slightly lower than Eq37) if 6y= The
initial conditions (isotropic versus peaked in the transvers y SIghty A37) It 60> Tsudden

L . ; Cexact way by which the parton gas equilibrates is therefore
directions this value differs from our case by a facte?4 |\t 55 important; it is the collision time that determines the
when o> 7o. e entropy production.
_ Untl|. the parton gas reaches eqwllprlum its entropy at .o Eqgs.(37,36 it is evident that the final entropy pro-
time 7 is always less than the equilibrium entropy at tem-g,,ction increases slowly with the collision time. Yet it takes
perature T(7), i.e., s<Se=(4/3)e/T=509(7)Too/(T7).  mych longer time and at a given time<6) the entropy
Thus the total entropy is production ratdcf. Eq. (31)] is inversely proportional t@.
T o\ If the parton gas decouples, freeze-out, or hadronize at time,
S<Syg(7) ?0 _ SD(—> g(n34 (35) T4, and_entro_py is no Ionger_produced, then the total entropy
To production will decrease a8 increases abovey .
With the approximate collision time of E¢33) and as-
If the parton gas equilibrates the equal sign holds at largeumingT,=1/r, the final entropy is obtained from E¢36)

times and the final entropy is from Eq84,35 or (37)
S i -
%=sp( B 70) V41, (36) 5 =% hag (39

For a4~0.3 this gives an increase in entropy by a factor of
2-3 when varying\y from unity down to 0.1. Should the
relaxation time decrease by, for example, a factor of 2 due to
additional radiative processes, the entropy production de-
crease by a factor-2~4=0.84.

wheres, is a p-dependent number. In Fig. 4, the final en-
tropy is plotted for various values @f and 6. The formula
Eq. (36) is a good approximation with coefficiesf~1. For
comparison the final entropy calculated by Baym

3 1.16 6o/ 7)Y, (37) VI. SUMMARY

So

We have studied a one-dimensionally expanding parton
with a constant relaxation time?& 6,, p=0) is also shown gas created in the wake of nuclear collisions. Within the
in Fig. 4, being multiplied by a factor£/4)%* because of the Boltzmann equation in the relaxation time approximation we
different initial conditions. find that the rapid expansion is closer to free streaming than

It is interesting to compare the entropy production to thehydrodynamic expansion for times shorter than typical colli-
case when the parton gas is streaming freely until a timeion times of partonsry=< 7= 6. Only at times much larger
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than the characteristic collision timess 6 may the parton size, which is in the order of the nuclear radius, the expan-
gas thermalize and expand hydrodynamically. However, ision proceeds in three dimensions. The densities will then
the collision time increases with time the gas may nevedecrease cubically with expansion time and collision might
thermalize. Parametrizing the collision time asnever catch up with the expansion.

0= 0y(7/ )P the condition for equilibration and hydrody-

namical expansion ip<<1. We calculate how much entropy ACKNOWLEDGMENT
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as gluon emission may well add to the thermalization rate b)kriowled od
an amount of the same order. The effective elastic relaxation ged.
time is thus only an upper limit but that is still sufficient to
determine the eventual thermalization during expansion. The
elastic relaxation time depends sensitively on the initial con- In this Appendix we give a detailed derivation of the en-
ditions present in the very early phase of the collisions andropy production by elastic parton collisions in a system near
we have taken these from other models. the free streaming case at timeg< 7< 6.

We find that the parton gas does equilibrate eventually The initial distribution of partons has been estimated in
with these collision times but only after having undergone aseveral model$3,26]. Typically, one finds that the partons
phase of free streaming and gradual thermalization whergre formed within the first,=0.2—0.7 fm¢ after the nuclear
considerable entropy is produc¢thfter burning”). The fi-  collision and that rapid longitudinal expansion takes place.
nal entropy and thus particle density depends on the collisiolfhe local momentum distribution of partons at the formation
time as well as the initial condition@ “memory effect’).  time is not isotropic but forward/backward peaked, i.e.,
For various models predicting the preequilibrium scenariog|p,|)>(p, ). However, due to streaming the local distribu-
the entropy production is significant. The total entropy andion changes rapidly sinc¢p,|) scales asrq/7 [see Eq.
particle production is estimated to be doubled or tripled with(10)] and at later times the particles ha{le,|)<(p,). At
respect to the initial value. the crossover time the parton gas is isotropic in momen-

These estimates do not include particle production WhiChum space and seems to be in approximate thermal equ”ib-
by itself adds to the entropy production. On the other hangjum with temperaturd, even though it is streaming freely

particle production will also increase the density and thusn space and time. From E¢L0) we obtain the free stream-
shorten the effective collision time which leads to a decreasghg distribution function

in entropy production according to E(36).

Most analyses assume a constant density in space but
large density fluctuations may well be present in the initial fo(p,7)=
parton plasma. This will increase the average entropy pro-
duction for both elastic and inelastic scatterings since theswhere uq is the chemical potential determined by the den-
are proportional to the initial densities squared as well as thsity. Since the parton gas may not have reached chemical
final densities through the stimulated emission faciées  equilibrium yet, uo may not vanish. In fact most models
bosons or Pauli blocking factorgfor fermiong. High den-  predict that particle densities are rather low initially
sity regions (“hot spots”) will equilibrate thermally and [3,27,28 and that — uy=(1—2)T,. The temperature in-
chemically faster than low density regions. At the same timegreases with collision energy and typically=0.5-2 GeV.
however, the free streaming will tend to reduce density fluc\We shall use Eq(10) with Eq. (Al) for the free streaming
tuations. initially with parametersry, To, and ig. The entropy pro-

It was emphasized in the Appendix that the very singularduction due to collisions is negligible at times arourng
small momentum transfers provides strong scattering and thgecause the parton gas is near thermal equilibrium and so we
opening up of phase space compensates for the decreasisigall ignore collisions earlier than,. On the other hand,
densities. If a larger momentum transfer cutoff of the ordercontinuing particle production will produce entropy but we
of particle momenta{ temperaturgis applied then the col- shall not consider that contribution here.
lision time will increase quadratically with expansion time  With the free streaming distribution function, we obtain
and the parton gas will never thermalize. Also, when thefrom the Boltzmann equation by changing variables from
longitudinal extension of the system exceeds the transverse,;—p, 7o/ 7, 1=1,2, andq,—q,7o/7

APPENDIX: THE RELAXATION TIME

-1
, (A1)

*1

p( P2+ (p,7/ 70)>— 1o
ex
To

2
fo(E1)fo(E2)[1%fo(E3)][1%fo(Ey)]

(&S) 2 ng dr, dT', dT'y M ( TO)
5| T Temvnive 3 1234 01,0z
Jt coll T P P2 d ’ T

X

El—Mo[ F{E1+E2_E3_E4
l-exp —————

T T ”rxéﬁ E,—E3;—Ed), (A2)
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whereEg=\(p1, +0, )%+ (p1,+0,) 272/ 7 andE, = \p?, +(p,7o/7)2. The same expressions are valid fer2,4 when the
sign ofq is changed.

At this point we want to emphasize the importance of small momentum transfer proogssgs;-gT as compared to
large  momentum transfer onegyj~T. For the latter the exponential in EqA2) can be ignored because
E,+E3;—E,—E;~T. One then finds that the integrations over the energy conservatifomction removes a factory/r
leaving an entropy production rate decreasing quadratically in time. This just reflects that the particle densities of the two
scatterers decrease &g/ 7. The small momentum transfers have, however, a very singular scattering matrix element and, as
we will now show, the phase space opens up quadratically with time for smadiffectively compensatinghe decreasing
densities of scatterers.

Expanding around smatj to second order, the term in the square bracket representing the difference between scattering in
and out is

_(vi=vp)-q [(vi—V2)-q]? N q°—(v1-9)° + q°—(v2-9)°
T, 2T} 2E,T, 2E,T,

;{ E1+ E2_ E3_E4
1-ex
To

(A3)

Only whenr= 1, is E=E and energy conservation requires that EB) vanishes. Due to symmetry the first term vanishes
when integrated ovep; andp, and the leading term is second ordergjh
For smallq we can also replaces; by E; andE, by E, in the distribution functions. Thus we have

2

Js 7 Ei—wo 0
J— :—27TV1V2F drpzfo(Ez)[lifo(Ez)] drplT—ofO(El)[lifO(El)] qu
coll

7.
ot M 12_»34< a. :%7)

(Ad)

2_ .0)? 2_ )2 _ 412
Xfdw5(w—|~51+l~53)5(w+|~52—|~54)(q (i@ | @@ (Vo)) ]

2E;T, 2E,T, 2T}

Here we have introduced an auxiliary integral over energy The angular integrals af(), yields the same factor as Eq.

transferw. (A7) and the integral over energy transfers in E&4) thus
We can use up thes&functions by performing the angu- gives at large times
lar integralsdQ;, i=1,2. For example,

, f dw |1|2=f dw dQ; dQ, S(w—E,+E3) 8(w+E,
|1Ej dle‘)‘(w—INE1+E3)= dd)lf Sin01d01
0 0

E ) 16‘[% dw 32 (27’
— ~ ——s=—]n| —
4 7qlqi_bw2 qJ_

, (A5) (A8)

cOsp;Sing;q, +cosh,q, 7ol 72 7o

X 8
\/l—C05201(1— 7(2)/7'2)

w—

An angular dependence arising from E43) should also
where,; and ¢, are the polar and azimuthal anglespafin pe included when performing integration in E@\5). For
a coordinate system witla axis along the collision beam example, an extra factor of & leads to an additional fac-
direction. Forr= 7, the prefactor in Eq(A3) vanishes due to  tor of 1/3 in Eq.(A8). In addition the matrix element de-
energy conservation. Forr>7, we can ignore the pends on energy transfer through the transverse part of the
(0,70/7)? term in Eq.(A5), which then yields self-energy in Eq(24). After evaluating the integrals over
momentum transfers this dependence is, however, only loga-
2 1 1 dy ( o ym rithmic in ® [16] aqd can be ignored. _
I = —f dxf O ————|, (A6) Let us first consider the entropy production due to gluon-
q/-1 “1y1-y® \4r y1-bx gluon scatterings and include quarks later. We assume for
convenience thajy=<—T, which allows us to use Boltz-
whereb=1—73/7% and x=cos; andy=cosp,. Changing mann distribution functions, fu(E)=exf(uo—E)/To]
variables to sig=x\/(1- w?%q?)/(1-bw?q?), this inte- =\o€XP(~E/T). The momentum integrals qf; andp, in
gral gives Eq. (A4) are straightforward, which leave one remaining in-
tegral over momentum transfer,

4 /2 3 2 3 2 3
Ilz—f dyv1—x? § _2Yg oT0 [£T) 4,2 °
(ST 1—ba)2/qi 0 ot ol 2,”.6 A 7.3|n o TO)\O,gz

4 q2

——— for 7o/r<L1. (A7) xfd3 . (A9
q, V1-bw?q? ° TG B
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where, we have for simplicity approximatéH by g3 inthe  The quark and gluon densities and thus fugacities decrease
matrix element of Eq(22). Furthermore, we have replaced with time due to the one-dimensional expansion such that
the transverse part of interaction by the longitudinal onex=»Aqy7q/7.

times a factorcos¢)=1/2. Both these approximations are  Inserting these expressions fgg,., andqp in Eq. (A10)
exact to leading logarithmic order in the coupling constantwe find the entropy production rate

for the calculation of a number of transport coefficieb®).

Note that the limit for the integral over, is * qmaxt/ 79 @and

the maximum momentum transfey,,.,, is determined by /s 9 L ., 4
the distribution functions which cut off large momentum (E =8.2% o YghogT g ¥g¥ahoghog
transfers. It has been estimated 18] to beq o~ 3T. The coll
integrgl 2over momentum transfers i48) thep gives 4\2 - - 27
(71 79) 7 IN(20max/ Ap) When 7/ 79<<q max/dp - It includes + 9 vghog|In N In| —|,
the usual Iogarithn(see! e.g9.[16] for detaily as well as a 2| hog+ _f)\O,q> o To
factor (/7o)2 from the integral overy,. The entropy pro- 3
duction ir) QCD to leading order in the coupling coupling (A12)
constant is thus
as 9 4 . . . .
— | = Tha? VN2 + =~ vgrghogho to leading order in a free streaming gluon gas. The result is
at) ., 8w 0TS99 9 9naTReTad approximately valid forr=27, and as long as the free
) ) streaming assumption is valid, i.ess 6.
2] 22 |in 40max In 27 (A10) We emphasize the important result thdtfactor is can-
9] Yatog q% 7o/’ celled by the integral over momentum transfers. Only a slow

logarithmic dependence on time remains. The physical ex-
Here, we have included contributions from quarks and antiplanation for this cancellation is the following. From Eq.
quarks to the entropy productionyy=16, vo=12Ns, (A2) a factor (r/7)? appears from the substitutions of inte-
)\q=e”q” and we assume =\Agz. The quark-gluon and gration variableg,;, i=1, 2. This represents the fact that
quark-quark forward scattering interactions are smaller thathe densities of each of the colliding partons drop like
the gluon-gluon ones by a fact¢4/9) and (4/9¥, respec- 7ol 7. If we keep the original momentum transfer variables
tively. According to the models in Ref§3,5,4] fewer quark  [i.e., do not replace,— q,7,/7 in Eq.(A2)] the factor in the
and antiquark than gluons are produced in relativistic nucleagquare bracket, E4A3), leads to a factorqr/ o). This is
collisions, i.e.\gqg<Nog- because the phase space for small momentum scattering
The Debye screening mass in a quark-gluon gas in theepens up quadratically with timand it balances the de-
mal and chemical equilibrium with no net baryon density crease in parton densitie©n the other hand, for large mo-
(i.e., ug=pmq=pug=0) is q2D=47r(1+ N/6)a T2 Out of mentum transfers the exponential in the square bracket, Eq.
chemical equilibrium whemq=pug andugy <—T the Bose  (A3), simply vanish leaving a factor of unity which leads to
and Fermi distribution functions can be replaced bya much reduced entropy production rate decreasing quadrati-
Maxwell-Boltzmann distribution functions and we find cally with time. The long range interactiorfismall momen-
tum transfers are therefore very important in expanding
2 _% N &)\ T2 (A11) plasmas and sensitive to screening or the cutoff as is applied
o="| o™ g hajast in some model$3].
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