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Expansion, thermalization, and entropy production in high-energy nuclear collisions
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The thermalization process is studied in an expanding parton gas using the Boltzmann equation with two
types of collision terms. In the relaxation time approximation we determine the criteria under which a time-
dependent relaxation time leads to thermalization of the partons. We calculate the entropy production due t
collisions for the general time-dependent relaxation time. In a perturbative QCD approach on the other hand
we can, given the initial conditions, estimate the effective relaxation time due to elastic collisions; this will be
an upper limit only since radiative processes will also contribute to thermalization. We find that the parton gas
does thermalize eventually but only after having undergone a phase of free streaming and gradual equilibratio
where considerable entropy is produced~‘‘after burning’’!. The final entropy and thus particle density depends
on the collision time as well as the initial conditions~a ‘‘memory effect’’!. Results for entropy production are
presented based upon various model estimates of early parton production.

PACS number~s!: 25.75.1q, 12.38.Bx, 12.38.Mh, 24.85.1p
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I. INTRODUCTION

Hard and semihard parton scatterings are expected
the dominant processes in ultrarelativistic heavy ion co
sions at the Relativistic Heavy Ion Collider~RHIC! and
Large Hadron Collider~LHC! energies@1,2#. These hard o
semihard processes happen in a very short time scale
which a dense parton gas will be formed. However, this
ton gas is not immediately in thermal and chemical equi
rium. Secondary interactions among the produced par
may lead to equilibrium if the interactions are sufficien
strong. Exactly how this parton gas equilibrate and what
the time scales are under intense investigations@3–6# and
that is also the focus of this paper.

It is commonly assumed in relativistic heavy ion co
sions that the matter expands hydrodynamically shortly a
the nuclei collide and that it is in thermal equilibrium loca
in space and time. In the classic Bjorken model@7# hydrody-
namic expansion is assumed after a timet0.1 fm/c. Yet,
when initial parton formation times are estimated to b
fraction of a fm/c @3,5,8# the expansion might be much mo
rapid than the typical collision time of the partons produc
in the collisions. For times shorter than the typical collis
time of partons immediately after the initial collisions, t
rapid expansion is closer to free streaming than hydro
namic expansion. Only at times much larger than the c
acteristic collision time may the parton gas thermal
equilibrate and expand hydrodynamically@9#. However, if
the collision time increases with time the gas may ne
thermalize. The characteristic collision time is therefor
crucial parameter. Since it among other things depend
the density, which decreases in time, it may be time dep
dent. In fact, when the collision time is proportional to t
expansion time, the system neither expands hydrodyn
cally nor as free streaming at large times but somewher
between@10#.
53813/96/53~4!/1892~11!/$10.00
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In this paper we study the thermalization process o
parton gas expanding in one dimension using the Boltzm
equation with two types of collision terms. In the relaxatio
time approximation we show generally for which tim
dependent relaxation times the partons thermalize and
mate when they do so and how much entropy is produce
the collisions. Secondly, we describe the elastic parton s
terings by perturbative QCD in order to estimate the imp
tant collision time and its dependence on expansion tim
Inelastic collisions will not be included but are expected
contribute to thermal and chemical equilibration thus lead
to earlier relaxation. The effective ‘‘out of equilibrium’’ col
lision time differ from the standard transport relaxation tim
t tr.@as

2ln(1/as)T#21, by a prefactor and a weak time de
pendence, which are calculated in the Appendix. It is, ho
ever, still the Debye screening and Landau damping t
screen the singular forward parton scattering processes
nally, we will give results for entropy production based up
various model estimates of the pre-equilibrium conditions

II. FREE STREAMING VS HYDRODYNAMIC EXPANSION

In order to have a tractable approach we assume tha
spatial variations are sufficiently small along the longitudin
(z) direction so that we can describe the parton gas by
Boltzmann equation

S ]

]t
1vp•¹ r D f5S ] f

]t D
coll

. ~1!

We also assume along the lines of the Bjorken model@7#
that the transverse dimension of the parton gas formed in
nuclear collisions is sufficiently large that the initial expa
sion is one dimensional. Furthermore, we assume the ce
1892 © 1996 The American Physical Society
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53 1893EXPANSION, THERMALIZATION, AND ENTROPY . . .
rapidity regime is boost invariant in rapidity, i.e., dependin
only on the invariant timet5At22z2. The Boltzmann equa-
tion thus reduces to@9#

S ] f ~p' ,pz ,t!

]t D U
pzt

5S ] f ~p' ,pz ,t!

]t D
coll

. ~2!

The collision term on the right-hand side of Eqs.~1,2!
determines the equilibration and has been studied extensiv
within perturbative QCD@11,12,14–17# near equilibrium in
a quark-gluon plasma. In a relaxation time approximatio
the collision term is

S ] f ~p' ,pz ,t!

]t D U
pzt

52
f2 f eq

u
, ~3!

whereu is the relaxation time, which determines the tim
scale for thermalization andf eq is the equilibrium distribu-
tion function.

A. The hydrodynamic limit

When collisions are sufficient to thermalize the system
i.e., the corresponding relaxation times are short as compa
to expansion times,u!t, hydrodynamics applies and the
distribution function in the local comoving frame is the the
mal one

f eq~p!5FexpSEp2m

T D61G21

. ~4!

If particle production is sufficiently rapid, chemical equilib
rium can also be reached andm.0 for gluons. We assume
that the net baryon density is relatively low in the midrapid
ity region so that the quark chemical potential vanishes
well. In the Bjorken flow model@7# the expansion is ideal-
ized in one dimension and assumed to be rapidity indep
dent. Including viscous dissipation one finds generally in h
drodynamics@11–13#

de

dt
1

e1P

t
5

4

3
h1j

t2
, ~5!

wheree is the energy density,P the pressure,h and j the
shear and bulk viscosities, respectively. We assume that p
ton gas is a weakly interacting quark-gluon plasma~QGP!
consisting of relativistic quarks and gluons. Consequent
the gas is described by an ideal equation of state with pr
sure P5e/3 where the energy density ise5aT4;
a58p2/15 (11(21/32)Nf) (a515.6 for Nf5 f ). A bag
pressure can be included but will not change the entro
production that we are concerned with here.

In the relaxation time approximation the shear viscosity
h5ue. In a weakly interacting QGP the temperature is th
only scale besides factors of the interaction strengths, e
the Debye wave number isqD;gT. Thus the shear viscosity
necessarily scales like

h5h̃T3, ~6!
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whereh̃ is a dimensionless constant depending on the c
pling constantg. The bulk viscosityj vanishes for an ideal
relativistic gas@18#.

Solving Eq. ~5!, the entropy densitys5(4/3)e/T is ob-
tained. The total entropy,S, is proportional tots and is thus
@11,12#

S5S0F11
h̃

2at0T0
X12S t0

t D 2/3CG3, ~7!

whereS0 , t0 , andT0 are the initial entropy, time, and tem
perature. As seen in Fig. 1 the entropy production increa
rapidly with viscosity h̃. If the decoupling~freeze-out! or
hadronization time is sufficiently late the entropy approach
the asymptotic valueS5S0(11h̃/2at0T0)

3.
To get an idea of the magnitude ofh̃ we refer to recent

calculation within perturbative QCD@14,16#. For weak cou-
plings, as&0.1, the quark and gluon viscosities depend
the coupling constant as

h̃.@as
2ln~1/as!#

21, ~8!

where the logarithm arises from the sensitivity to screen
of long range~small momentum transfer! interactions. The
quark viscosity is approximately four times larger than t
gluon because quarks interact more weakly. For strongly
teracting plasmas,as*0.1, the Debye and dynamical scree
ing must be replaced by some effective cutoff due to cor
lations in the plasma, which leads toh̃}as

22 . Within the
range as;0.1–0.5, the quark~gluon! viscosity decrease
from h̃;50 ~15! to h̃;1.5 ~0.8!. If the initial density of
quarks and gluons,ni , is less than that in chemical equilib
rium, neq, then the viscosities are larger by a fact
;neq/ni .

The corresponding viscous relaxation time

FIG. 1. Total entropy in one-dimensional viscous hydrodynam
cal expansion of Eq.~7! for various viscositiesh5h̃T3. For com-
parison, the upper limit on the entropy by solving the Boltzma
equation, Eq.~35!, is shown with dashed curve foru5th in the
caseh̃516. In both casesT05\/t0 is assumed.
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15

4a
h̃T21, ~9!

is, however, larger than the expansion time and so hydro
namics does not apply at early times as pointed out
Danielewicz and Gyulassy@11#. The entropy production will
be much lower and will be calculated in the following se
tions by solving the Boltzmann equation in the relaxati
time approximation. For comparison the upper limit on t
entropy production in Eq.~35! from solving the Boltzmann
equation with a finite collision time,u5th , for the case
h̃516 corresponding tou.4t0 is also shown in Fig. 1 as a
dashed line. Note that the entropy production continues l
after u andth .

B. Free streaming

In the opposite extreme to the hydrodynamic limit exa
ined above, collisions are absent and partons stream fre
According to Eq.~2! the distribution function evolves as@9#

f ~p!5 f 0~p' ,pzt/t0!, ~10!

where f 0 is the initial distribution function at timet0 .
As will be described in the following section the parto

gas will stream freely until collisions thermalize the syste
around a timeu. The free streaming alters the distribution
phase space drastically. Initially the partons have large l
gitudinal momenta due to the high relative energy of t
incoming nucleons in the nucleus-nucleus collisions and
relatively small transverse momentum transfer in hadro
collisions. However, in the one-dimensional free stream
expansion of the system at later times only those part
with similar longitudinal velocity will travel together locally
in space and time. Thus the phase space separates the
tudinal momenta and the distribution function changes fr
a wide to a narrow one inpz locally in space and time~see
Fig. 2!. Collisions will then attempt to thermalize the syste
towards an isotropic distribution.

When the longitudinal expansion has extended the sys
to a size similar to the transverse size, which happens
time of order the nuclear transverse dimensiont;R, three

FIG. 2. Qualitative picture of the expanding system following
nuclear collision. The formation time from 02t0 , free streaming
from t02u, and hydrodynamical flow fort@u.
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dimensional expansion takes over. Hereafter the densit
will decrease rapidly reducing collisions drastically and
free streaming scenario is again likely. Around the sam
time, however, the system may break up, freeze-out, a
fragment.

III. THERMALIZATON IN THE RELAXATION
TIME APPROXIMATION

Baym solved the Boltzmann equation in the relaxatio
time approximation Eq.~3! with a relaxation timeu indepen-
dent of expansion time@9#. He found that the parton gas
started out free streaming and gradually thermalized to h
drodynamical flow on a time scale given byu. The distribu-
tion function at any point in the local rest frame change
from being highly anisotropic, with only small longitudina
momenta, to being isotropic fort@u. A similar calculation
by Gavin @10#, however, with a collision time scalinglin-
early with time, u5at, gave a qualitatively different result.
In this case the gas ends up somewhere between free stre
ing and thermal equilibrium depending on the values ofa.
For smalla the collision time is short and the final state i
close to Bjorken flow but for largea the state is closer to
free streaming. The time dependence and magnitude of
relaxation time is thus essential for describing the degree
thermalization and its time scale.

We will in the following solve the Boltzmann equation
within the relaxation time approximation for a more gener
time dependence of the collision time proportional to th
expansion timet to some power,

u}tp. ~11!

This covers the constant relaxation time of Baym@9#
(p50), the linear one of Gavin@10# tcoll51/ns;t ~i.e.,
p51) as well as the near equilibrium transport relaxatio
time t tr;T21;n21/3;t1/3 ~i.e.,p51/3). We shall study un-
der which circumstances the parton gas thermalizes, estim
the relaxation times and predict the degree and time scale
equilibration.

The solution to the Boltzmann equation~3! can be written
in terms of an integral equation

f5 f 0~p' ,pzt/t0!e
2x

1E
0

x

dx8ex82xf eq@Ap'
21~pzt/t8!2,T8,m8#, ~12!

where the time dependence of the temperatureT and chemi-
cal potentialm in f eq(p,T,m) are determined by demanding
the energy density and number density~assuming no particle
production! be the same forf eq and f at any time, i.e.,

e~T,m!5E dGpEpf ~p![E dGpEpf eq~p,T,m!, ~13!

n~T,m!5E dGpf ~p![E dGpf eq~p,T,m!, ~14!

wheredGp5d3p/(2p)3. The functionx(t) is related tot by

a
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53 1895EXPANSION, THERMALIZATION, AND ENTROPY . . .
x~t!5E
t0

t

dt8/u5
1

12p F t

u~t!
2

t0
u0

G , pÞ1, ~15!

where u05u(t0). The marginal casep51 was studied in
@10#.

The evolution of the parton gas can be conveniently stu
ied by taking moments of Eq.~12! with respect to particle
energies. Summing over particle momenta gives a sim
integral equation for the particle density which has th
simple solutionn(t)5n0t0 /t which also follows directly
from Eq. ~3!. Multiplying by particle energy and summing
over momentum we obtain

exg~t!5h~t0 /t!1E
0

x

dx8ex8g~t8!h~t8/t!, ~16!

where

g~t!5
t

t0

e~t!

e~t0!
, ~17!

and

h~r !5E
0

1

d cos~v !A11cos2~v !~r 221!

5
1

2 S r1
sin21A12r 2

A12r 2
D . ~18!

Here v is the polar angle of the particle momenta with re
spect to thez axis. The functionh(r ) is a monotonically
increasing function betweenh(0)5p/4 and h(1)51. The
functiong(x) is calculated numerically and is shown in Fig
3 for variousu0 andp,1.

Performing a partial integration on Eq.~16! gives

E
0

x

dx8ex8
d

dx8
@g~t8!h~t8/t!#50. ~19!

FIG. 3. The functiong@t(x)# found by solving Eq.~16! numeri-
cally. Its dependence on the relaxation timeu5u0(t/t0)

p is shown
for variousu0 andp.
d-

le
e

-
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Note that by assuming an initially spherical symmetric dis
tribution we differ slightly from Baym@9#. He assumes the
distribution to be peaked in transverse directions initiall
The termh(t0 /t) in Eq. ~16! is then replaced by unity and
the right-hand side of Eq.~19! changes to 12p/4. The dif-
ference in initial conditions will not affect any of our subse
quent arguments concerning thep dependence of the ther-
malization.

When p,1, x(t) increases with increasingt as seen
from Eq. ~15!. The exponential factorex8 thus weights large
x8 and Eq.~19! implies for largex or t

d

dt8
@g~t8!h~t8/t!#U

t85t

50, ~20!

sincedt5u dx. The slope ofh(r ) nearr51 is 1/3 and so
we conclude thatg(t)}t21/3 for large t. Thuse(t)}t24/3

which is the one-dimensional hydrodynamical limit.
Whenp.1, x(t) is negative and decreases with increa

ing t to a minimal but finite valuexmin52t0 /u0 /(12p).
By differentiating Eq.~16! we find that g8(t) is always
negative and thereforeg(t) decreases monotonically. Yet, by
definition, g is positive and must therefore have an asym
totic value larger than or equal to zero. From the integr
equation~16! we see that this value att5` or x5xmax is
nonvanishing and thusg(`).0. Consequently, e(t)
5g(`)t0 /t at large times which is the one-dimensional fre
streaming limit.

We conclude that thermalization will be reached whe
p,1 and the parton gas will expand hydrodynamically
large times whereas whenp.1 it will continue to stream
freely. The marginal casep51 was studied by Gavin@10#
who found that the parton gas ends up in a state betwe
hydrodynamic expansion and free streaming depending
the size of the prefactora whereu5at. Whena is small
the collision time is always relatively short and the ga
equilibrates near the hydrodynamic limit. Whena is large
the collision time is always longer than the expansion tim
and the gas continues to stream freely. One should, howe
keep in mind the finite decoupling, freeze-out, or hadroniz
tion time. When it is shorter than the collision time, whic
will be the case for largeu0 or p close to unity or larger, the
parton gas does not thermalize.

IV. A PERTURBATIVE QCD ESTIMATE
OF THE RELAXATION TIME

As we have just seen, the magnitude of the collision tim
as well as its dependence on expansion time is crucial for
equilibration. We shall therefore study the collision term an
calculate it within perturbative QCD where we know th
scattering matrix elements between quarks and gluons.
shall here only consider elastic scattering processes e
though inelastic~radiative! processes have been found to b
very important in the cases of initial parton production@3,5#,
energy loss of a fast parton going through a QGP@19#, and
later parton chemical equilibration@4,6#.

In general, radiative processes are important for a syst
far from equilibrium. During the very initial stage of heavy
ion collisions, the processes leading to minijet~parton! pro-
duction have relatively large momentum transfersQ2. For
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1896 53H. HEISELBERG AND XIN-NIAN WANG
such hard processes, the radiative ‘‘corrections’’ in powers
asln(Q

2/Q0
2) can be very large@20#, whereQ0

2 is some scale
below which perturbative QCD is no longer applicable. Th
lead to both initial and final-state radiation of additional p
tons and contribute significantly to the initial parton produ
tion. Immediately after the initial scatterings when the s
tem is still far away from thermal equilibrium, radiativ
processes might also be important as in initial multiple sc
tering processes. Radiative processes in multiple collisi
and the Landau-Migdal-Pomeranchuk effect has rece
been discussed within perturbative QCD by a number
people. According to recent work by Baieret al. @21#, the
radiative energy loss of a fast parton with energyE penetrat-
ing a QGP isdE/dx;2asAEqD2 /lgln(E/qD

2lg), wherelg is
the gluon mean free path. They included also rescatterin
the radiated gluons which was ignored by Gyulassy a
Wang@19# and thus obtained a different energy dependen
Weldon also showed@22# that inclusion of absorption pro
cesses as well as production and absorption of virtual
ticles reduces the energy loss further. Interestingly, if o
takes~as generally assumed! lg;asT and ignores the weak
logarithmic dependences, the energy loss is proportiona
as
2 in both these cases as well as for energy loss due

elastic scatterings only@23#. Another situation in which ra-
diative processes are important is the chemical equilibra
of a kinetically thermalized system. In this case, the lead
order contribution to the chemical equilibration is 2→3, with
the elastic scatterings maintaining the thermal equilibri
@4#.

In view of the uncertain status of the radiative rate
QGP, we will not here attempt to give an accurate calculat
of the radiative corrections to the relaxation time in syst
out of equilibrium. For an order-of-magnitude estimate,
neglect these higher order contributions. What we will do
to estimate the effective thermalization time due toelastic
collisions. This time will then only serve as an upper limit
inelastic collisions add significantly to the equilibration
later times. As we shall see, this upper limit will still allo
us to make predictions concerning the eventual thermal
tion during the expansion stage.

The collision integral for scattering particles elastica
from initial states 1 and 2 to final states 3 and 4 is

S ] f 1
]t D

coll

52~2p!4n2E dGp2
dGp3

dGp4
uM12→34u2

3@ f 1f 2~16 f 3!~16 f 4!2 f 3f 4~16 f 1!~16 f 2!#

3d4~p11p22p32p4!, ~21!

wherepi are the parton four-momentum. We assume they
massless, i.e.,Ei5upi u. The (16 f i) factors correspond
physically to the Pauli blocking of final states, in the case
fermions, and to~induced or! stimulated emission, in the
case of bosons.n2 is the statistical factor, 16 for gluons, an
12Nf for quarks and antiquarks. uM12→34u2
5uM12→34u2/(16E1E2E3E4) is the matrix element square
summed over final states and averaged over initial states
scattering of gluons

uM12→34
~gg! u25

9

2
g4S 32

us

t2
2
st

u2
2
ut

s2D ; ~22!
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quark-gluon and quark-quark interactions are just 4/9 a
(4/9)2 times weaker, respectively, near forward scatterin
(t.0). In a t5v22q2 channel, a singularity occurs for
small momentumq and energyv transfers. In a medium the
t22 singularity is screened as given by Dyson’s equation
which a gluon self-energyPL,T is added to the propagator

t21→v22q22PL,T . ~23!

As was shown in@14–16# that Debye screening and dynami
cal screening due to Landau damping effectively screen
longitudinal and transverse interactions off in most transpo
problems at a length scale of order the Debye screen
lengthqD

21 . For small momentum transfer,q!E1 ,E2 , one
can split the matrix element into longitudinal and transver
parts@16#,

uMggu25
9

8
g4F 1

q21PL
2

~12v2/q2!cosf

q22v21PT
G2, ~24!

where cosf5(v13q̂)•(v13q̂). The gluon self-energies,PL
andPT are given in the long wavelength limit (q!T) by
@24#

PL~q,v!5qD
2 F12

v

2q
lnS q1v

q2v D G , ~25!

PT~q,v!5qD
2 F v2

2q2
1

v

4q S 12
v2

q2 D lnS q1v

q2v D G . ~26!

The Debye screening wave number in thermal QCD
qD
2 5g2(11Nf /6)T

2 whereNf is the number of quark fla-
vors.

The Boltzmann equation with the full collision term, Eq
~21!, has been solved for quark-gluon plasmas near equil
rium and a number of transport coefficients have been cal
lated to leading orders in the coupling constant@14,15,25#.
For viscous and thermal relaxation as well as momentu
stopping, the ‘‘transport relaxation time’’ is generally

t tr.Fas
2lnS 1as

DlTG21

, ~27!

wherel ~the ‘‘fugacity’’ ! is the ratio of the actual density to
the one in chemical equilibrium at temperatureT. This re-
laxation time may be used at later times when the parton g
is near equilibrium. In Bjorken flow the temperature scale
like T}t21/3, i.e., t tr}t1/3. Since this power is less than
unity, the parton gas should thus equilibrate according to t
analysis in the previous section.

In nuclear collisions the parton gas may be far from equ
librium when first produced and the expansion may al
drive it out of equilibrium as in free streaming. Solving th
Boltzmann equation thus becomes a very difficult nonline
problem that requires major computational efforts which
being undertaken in a number of parton cascade models
e.g., in@3#. We take another approach in this paper. As me
tioned above, hydrodynamics does not apply at early tim
because of long viscous relaxation times and the parton
is expected to expand as free streaming initially. With th
initial ansatz in Eq.~10! for the distribution function we can
calculate the change in the distribution function at ear
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times from the Boltzmann equation with the full collisio
term of Eq.~21!. More specifically, from the entropy densit

s~t!52(
p

@ f lnf7~16 f !ln~16 f !#, ~28!

we have calculated the entropy production

S ]s

]t D
coll

5(
p

S ] f

]t D
coll

lnS f

16 f D , ~29!

in the free streaming phase by approximatingf by f 0 @see
Eq. ~A1! in the Appendix#. The initial entropy production
can be estimated analytically with the full collision term
leading logarithmic order in the coupling constants and
d
y

o

g

o
e-

tails of this calculation is given in the Appendix. Ignoring
quarks the final result is@see~A12!#

S ]s

]t D
coll

5ng
2 9

8p4as
2T0

4l0,g
2 lnF 9t

pl0,gast0
G lnS 2t

t0
D , ~30!

wherel0,g5exp(m0,g /T0) is the ratio of the initial density to
that in chemical equilibrium.

We can match this entropy production to that obtained
the relaxation time approximation thus determining an effe
tive and momentum averaged relaxation timeu. The relax-
ation time and entropy production during this early perio
t0!t!u, are different from later timest*u when colli-
sions change the free streaming distribution functions. T
entropy production for the initial free streaming in the relax
ation time approximation is from Eq.~29!
S ]s

]t D
coll

relax

52E dGpS f 02 f eq
u D Ap'

21~pzt/t0!
22m0

T0

5
e~T0!

uT0
H 14 F11

t0
2

t2
ln~11A12t0

2/t2!

A12t0
2/t2

GF t0
t

1
sin21~A12t0

2/t2!

A12t0
2/t2

G2
t0
t J

.
p

8

e~T0!/T0
u

, t@t0 . ~31!
e
l

l
y
-

r,

u-
,

t-

s-

e
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As in Eq.~30! we ignore quarks;e(T0)'ng(p
2/30)T0

4l0,g is
the initial gluon energy density. By equating the entropy p
duction of Eq.~31! for t@t0 to that from the perturbative
QCD collision term Eq.~30! we find

1

u
.1.43as

2T0l0,glnF 3pt

2l0,gast0
G lnS 2t

t0
D . ~32!

Note that it is the initial temperatureT0 that enters here an
not T(t) as in Eq. ~27!. The collision time depends onl
logarithmically on the expansion time. As explained in t
Appendix, the relaxation time is only weakly time depende
in a free-streaming parton gas because the phase spac
small momentum scattering opens up quadratically with ti
thus effectively compensating the decrease in parton de
ties. On the other hand, if large momentum transfers
imposed to each parton scattering, the entropy produc
rate will decrease quadratically with time, leading to a mu
stronger time dependence of the relaxation time. The l
range interactions~small momentum transfers! are therefore
very important in an expanding parton gas. The two lo
rithms in Eq.~32! arise from integrals over momentum an
energy transfers respectively. The ‘‘fugacity’’ factorl0 arises
from the correspondingly smaller density of scatterers.

The relaxation timeu depends sensitively on the initia
conditions throughT0 , l0 , t0 , andas(T). A reliable esti-
mate of these initial parameters will require additional no
ro-

he
nt
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me
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ch
ng

a-
d

l

n-

trivial calculations treating the early hard collisions. In th
following we list the results from a number of such mode
calculations.

From the HIJING model calculation@5,26,27# it was
found that att050.7 fm/c the produced partons in centra
Au1Au collision at RHIC energy can reach a local isotrop
in momentum distribution temporarily with effective tem
perature T050.57 GeV; in addition l0,g50.09 and
l0,q50.02. At LHC energiest050.5 fm/c, T050.83 GeV,
l0,g50.14, andl0,q50.03. Eskolaet al. @28# found similar
results for the temperatureT051(1.5) GeV at the RHIC
~LHC! energy in their minijet plasma calculation. Howeve
they used a smaller initial time,t050.1 fm/c, and find
l0,g;1 andl0,q;0. If one were to allow this minijet plasma
to stream freely shortly aftert0 the result would be consis-
tent with HIJING estimates at the later timet0.0.7 fm/c.
The newest set of parton distribution functions in the calc
lation of Eskolaet al.also increase the initial parton density
especially at LHC. In the parton cascade model@3# the initial
parton density is found to be larger due to a different trea
ment of soft parton interactions. These numbers fort0 and
T0 are surprisingly similar to those found by Shuryak@8# in
a different analysis. By estimating the particle rapidity di
tributionsdN/dy in relativistic nuclear collisions he obtains
a particle density in the Bjorken scenario (dN/dy)/(pR2t)
which at a timet5tcoll;(asT)

21 is assumed to be the sam
as the equilibrium one;T3. Hereby the initial values for
T and t are found. One should bear in mind that all thes
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estimates are based on perturbative QCD inspired mod
There are many uncertainties~see, e.g.,@29#! due to our lim-
ited knowledge of strong interactions.

If we ignore the slow logarithmic time dependence a
assumeT0.1/t0 and l0,q;0, as motivated by the abov
mentioned models, we find

u0.as
22l0,g

21t0 . ~33!

With as.0.3 we find a rather long collision time even
l0,g51.

V. ENTROPY PRODUCTION

With the weak time dependence of the relaxation time,
can now estimate the entropy production during the ea
thermalization. We still assume the relaxation time has
power dependence on time as in Eq.~11! with small p. The
scaling behavior of the functiong(t) with u05u(t5t0) can
be obtained whenu0@t0 . In that case the integral equatio
~16! for g@t(x)# depends almost solely onx, since
x8/x.(t8/t)12p. Thus for givenp, g@t(x)# is a generic
function of x. Its behavior at largex is

g@t~x!#.gpx
21/3~12p!5gpF ~12p!

u0
t0

G1/3~12p!S t

t0
D 21/3

,

~34!

wheregp is somep-dependent constant of order unity. In th
casep50 Baym@9# foundgp51.22 but due to the differen
initial conditions ~isotropic versus peaked in the transver
directions! this value differs from our case by a factorp/4
whenu0@t0 .

Until the parton gas reaches equilibrium its entropy
time t is always less than the equilibrium entropy at tem
perature T(t), i.e., s<seq5(4/3)e/T5s0g(t)T0t0 /(Tt).
Thus the total entropy is

S<S0g~t!
T0
T

5S0S t

t0
D 1/4g~t!3/4. ~35!

If the parton gas equilibrates the equal sign holds at la
times and the final entropy is from Eqs.~34,35!

Sf
S0

5sp~u0 /t0!
1/4~12p!, ~36!

wheresp is a p-dependent number. In Fig. 4, the final e
tropy is plotted for various values ofp andu0 . The formula
Eq. ~36! is a good approximation with coefficientsp;1. For
comparison the final entropy calculated by Baym

Sf
S0

51.16~u0 /t0!
1/4, ~37!

with a constant relaxation time (u5u0 , p50) is also shown
in Fig. 4, being multiplied by a factor (p/4)3/4 because of the
different initial conditions.

It is interesting to compare the entropy production to t
case when the parton gas is streaming freely until a ti
els.

d
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e

e
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e
e

tsuddenwhen the gas suddenly collides violently and imm
diately thermalizes. Conserving energy per volume~but not
particle density! we find

Sf
S0

5S p

4 D 3/4~tsudden/t0!
1/4, ~38!

which is only slightly lower than Eq.~37! if u0.tsudden. The
exact way by which the parton gas equilibrates is theref
not so important; it is the collision time that determines t
entropy production.

From Eqs.~37,36! it is evident that the final entropy pro
duction increases slowly with the collision time. Yet it take
much longer time and at a given time (t&u) the entropy
production rate@cf. Eq. ~31!# is inversely proportional tou.
If the parton gas decouples, freeze-out, or hadronize at ti
td , and entropy is no longer produced, then the total entro
production will decrease asu increases abovetd .

With the approximate collision time of Eq.~33! and as-
sumingT0.1/t0 the final entropy is obtained from Eq.~36!
or ~37!

Sf
S0

.as
21/2l0,g

21/4. ~39!

For as;0.3 this gives an increase in entropy by a factor
2–3 when varyingl0 from unity down to 0.1. Should the
relaxation time decrease by, for example, a factor of 2 due
additional radiative processes, the entropy production
crease by a factor;221/4.0.84.

VI. SUMMARY

We have studied a one-dimensionally expanding par
gas created in the wake of nuclear collisions. Within t
Boltzmann equation in the relaxation time approximation w
find that the rapid expansion is closer to free streaming th
hydrodynamic expansion for times shorter than typical co
sion times of partons,t0&t&u. Only at times much larger

FIG. 4. Entropy production in the relaxation time approximatio
as function of the relaxation timeu5u0(t/t0)

p for various powers
p. The entropy found by Baym@9# ~see text! is shown by dashed
curve.
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than the characteristic collision times,t@u may the parton
gas thermalize and expand hydrodynamically. However
the collision time increases with time the gas may ne
thermalize. Parametrizing the collision time
u5u0(t/t0)

p the condition for equilibration and hydrody
namical expansion isp,1. We calculate how much entrop
is produced in the collisions. These different expans
modes and the corresponding parton phase space dist
tions at different stages of evolution in high-energy hea
ion collisions are illustrated in Fig. 2.

We have calculated the elastic parton scatterings wi
perturbative QCD and point out that inelastic processes s
as gluon emission may well add to the thermalization rate
an amount of the same order. The effective elastic relaxa
time is thus only an upper limit but that is still sufficient
determine the eventual thermalization during expansion.
elastic relaxation time depends sensitively on the initial c
ditions present in the very early phase of the collisions a
we have taken these from other models.

We find that the parton gas does equilibrate eventu
with these collision times but only after having undergon
phase of free streaming and gradual thermalization wh
considerable entropy is produced~‘‘after burning’’!. The fi-
nal entropy and thus particle density depends on the collis
time as well as the initial conditions~a ‘‘memory effect’’!.
For various models predicting the preequilibrium scenar
the entropy production is significant. The total entropy a
particle production is estimated to be doubled or tripled w
respect to the initial value.

These estimates do not include particle production wh
by itself adds to the entropy production. On the other ha
particle production will also increase the density and th
shorten the effective collision time which leads to a decre
in entropy production according to Eq.~36!.

Most analyses assume a constant density in space
large density fluctuations may well be present in the ini
parton plasma. This will increase the average entropy p
duction for both elastic and inelastic scatterings since th
are proportional to the initial densities squared as well as
final densities through the stimulated emission factors~for
bosons! or Pauli blocking factors~for fermions!. High den-
sity regions ~‘‘hot spots’’! will equilibrate thermally and
chemically faster than low density regions. At the same tim
however, the free streaming will tend to reduce density fl
tuations.

It was emphasized in the Appendix that the very singu
small momentum transfers provides strong scattering and
opening up of phase space compensates for the decre
densities. If a larger momentum transfer cutoff of the ord
of particle momenta (; temperature! is applied then the col-
lision time will increase quadratically with expansion tim
and the parton gas will never thermalize. Also, when
longitudinal extension of the system exceeds the transv
, if
ver
s
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y
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size, which is in the order of the nuclear radius, the exp
sion proceeds in three dimensions. The densities will th
decrease cubically with expansion time and collision mig
never catch up with the expansion.
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APPENDIX: THE RELAXATION TIME

In this Appendix we give a detailed derivation of the e
tropy production by elastic parton collisions in a system ne
the free streaming case at timest0!t!u.

The initial distribution of partons has been estimated
several models@3,26#. Typically, one finds that the parton
are formed within the firstt0.0.2–0.7 fm/c after the nuclear
collision and that rapid longitudinal expansion takes pla
The local momentum distribution of partons at the formati
time is not isotropic but forward/backward peaked, i.
^upzu&@^p'&. However, due to streaming the local distribu
tion changes rapidly sincêupzu& scales ast0 /t @see Eq.
~10!# and at later times the particles have^upzu&!^p'&. At
the crossover timet0 the parton gas is isotropic in momen
tum space and seems to be in approximate thermal equ
rium with temperatureT0 even though it is streaming freely
in space and time. From Eq.~10! we obtain the free stream
ing distribution function

f 0~p,t!5FexpSAp'
21~pzt/t0!

22m0

T0
D 61G21

, ~A1!

wherem0 is the chemical potential determined by the de
sity. Since the parton gas may not have reached chem
equilibrium yet,m0 may not vanish. In fact most model
predict that particle densities are rather low initial
@3,27,28# and that2m0.(122)T0 . The temperature in-
creases with collision energy and typicallyT0.0.5–2 GeV.
We shall use Eq.~10! with Eq. ~A1! for the free streaming
initially with parameterst0 , T0 , andm0 . The entropy pro-
duction due to collisions is negligible at times aroundt0
because the parton gas is near thermal equilibrium and so
shall ignore collisions earlier thant0 . On the other hand,
continuing particle production will produce entropy but w
shall not consider that contribution here.

With the free streaming distribution function, we obta
from the Boltzmann equation by changing variables fro
pz,i→pz,it0 /t, i51,2, andqz→qzt0 /t
S ]s

]t D
coll

522pn1n2
t0
3

t3E dGp1
dGp2

dGqUM12→34S q' ,qz
t0
t D U2f 0~E1! f 0~E2!@16 f 0~E3!#@16 f 0~E4!#

3
E12m0

T0
F12expSE11E22E32E4

T0
D Gd~Ẽ11Ẽ22Ẽ32Ẽ4!, ~A2!
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whereẼ35A(p1'1q')
21(p1,z1qz)

2t0
2/t2 and Ẽ15Ap1'2 1(pzt0 /t)

2. The same expressions are valid fori52,4 when the
sign ofq is changed.

At this point we want to emphasize the importance of small momentum transfer processes,q;qD;gT as compared to
large momentum transfer ones,q;T. For the latter the exponential in Eq.~A2! can be ignored because
E41E32E22E1;T. One then finds that the integrations over the energy conservationd function removes a factort0 /t
leaving an entropy production rate decreasing quadratically in time. This just reflects that the particle densities of t
scatterers decrease ast0 /t. The small momentum transfers have, however, a very singular scattering matrix element a
we will now show, the phase space opens up quadratically with time for smallq—effectively compensatingthe decreasing
densities of scatterers.

Expanding around smallq to second order, the term in the square bracket representing the difference between scatte
and out is

12expSE11E22E32E4

T0
D.

~v12v2!•q

T0
2

@~v12v2!•q#2

2T0
2 1

q22~v1•q!2

2E1T0
1
q22~v2•q!2

2E2T0
. ~A3!

Only whent5t0 is Ẽ5E and energy conservation requires that Eq.~A3! vanishes. Due to symmetry the first term vanishe
when integrated overp1 andp2 and the leading term is second order inq2.

For smallq we can also replaceE3 by E1 andE4 by E2 in the distribution functions. Thus we have

S ]s

]t D
coll

522pn1n2
t0
3

t3E dGp2
f 0~E2!@16 f 0~E2!#E dGp1

E12m0

T0
f 0~E1!@16 f 0~E1!#E dGqUM12→34S q' ,qz

t0
t D U2

3E dvd~v2Ẽ11Ẽ3!d~v1Ẽ22Ẽ4!H q22~v1•q!2

2E1T0
1
q22~v2•q!2

2E2T0
2

@~v12v2!•q#2

2T0
2 J . ~A4!
.

the

ga-

n-
for

-

Here we have introduced an auxiliary integral over energ
transferv.

We can use up thesed functions by performing the angu-
lar integralsdV i , i51,2. For example,

I 1[E dV1d~v2Ẽ11Ẽ3!5E
0

2p

df1E
0

p

sinu1du1

3dFv2
cosf1sinu1q'1cosu1qzt0

2/t2

A12cos2u1~12t0
2/t2!

G , ~A5!

whereu1 andf1 are the polar and azimuthal angles ofp1 in
a coordinate system withz axis along the collision beam
direction. Fort5t0 the prefactor in Eq.~A3! vanishes due to
energy conservation. Fort@t0 we can ignore the
(qzt0 /t)

2 term in Eq.~A5!, which then yields

I 1.
2

q'
E

21

1

dxE
21

1 dy

A12y2
dS v

q'

2
yA12x2

A12bx2
D , ~A6!

whereb512t0
2/t2 and x5cosu1 and y5cosf1. Changing

variables to sinx5xA(12v2/q'
2 )/(12bv2/q'

2 ), this inte-
gral gives

I 15
4

q'A12bv2/q'
2 E0

p/2

dxA12x2

.
4

q'A12bv2/q'
2
, for t0 /t!1. ~A7!
y The angular integrals ofdV2 yields the same factor as Eq
~A7! and the integral over energy transfers in Eq.~A4! thus
gives at large times

E dv I 1I 25E dv dV1 dV2 d~v2Ẽ11Ẽ3!d~v1Ẽ2

2Ẽ4!.16E
2q'

q' dv

q'
22bv2 .

32

q'

lnS 2t

t0
D .

~A8!

An angular dependence arising from Eq.~A3! should also
be included when performing integration in Eq.~A5!. For
example, an extra factor of cos2u1 leads to an additional fac-
tor of 1/3 in Eq. ~A8!. In addition the matrix element de-
pends on energy transfer through the transverse part of
self-energy in Eq.~24!. After evaluating the integrals over
momentum transfers this dependence is, however, only lo
rithmic in v @16# and can be ignored.

Let us first consider the entropy production due to gluo
gluon scatterings and include quarks later. We assume
convenience thatm0&2T0 which allows us to use Boltz-
mann distribution functions, f 0(E)5exp@(m02E)/T0#
5l0exp(2E/T). The momentum integrals ofp1 and p2 in
Eq. ~A4! are straightforward, which leave one remaining in
tegral over momentum transfer,

S ]s

]t D
coll

5
3ng

2

2p6as
2
t0
3

t3
lnS 2t

t0
DT04l0,g

2 3

2

3E d3q
q2

q'@q'
21~qzt0 /t!21qD

2 #2
, ~A9!
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where, we have for simplicity approximatedPL by qD
2 in the

matrix element of Eq.~22!. Furthermore, we have replace
the transverse part of interaction by the longitudinal o
times a factor̂ cos2f&51/2. Both these approximations ar
exact to leading logarithmic order in the coupling consta
for the calculation of a number of transport coefficient@16#.
Note that the limit for the integral overqz is 6qmaxt/t0 and
the maximum momentum transfer,qmax, is determined by
the distribution functions which cut off large momentum
transfers. It has been estimated in@16# to beq max;3T0 . The
integral over momentum transfers in~48! then gives
(t/t0)

3p2ln(2qmax/qD) when t/t0!q max/qD . It includes
the usual logarithm~see, e.g.,@16# for details! as well as a
factor (t/t0)

3 from the integral overqz . The entropy pro-
duction in QCD to leading order in the coupling couplin
constant is thus

S ]s

]t D
coll

5
9

8p4T0
4as

2Fng
2l0,g

2 1
4

9
ngnql0,gl0,q

1S 49D 2nq2l0,q
2 G lnF4qmax2

qD
2 G lnS 2t

t0
D . ~A10!

Here, we have included contributions from quarks and an
quarks to the entropy production;ng516, nq512Nf ,
lq5emq /T and we assumelq5l q̄ . The quark-gluon and
quark-quark forward scattering interactions are smaller th
the gluon-gluon ones by a factor~4/9! and (4/9)2, respec-
tively. According to the models in Refs.@3,5,4# fewer quark
and antiquark than gluons are produced in relativistic nucle
collisions, i.e.,l0,qq̄!l0,g .

The Debye screening mass in a quark-gluon gas in th
mal and chemical equilibrium with no net baryon densi
~i.e., mg5mq5m q̄50) is qD

2 54p(11Nf /6)asT
2. Out of

chemical equilibrium whenmq5m q̄ andmg,q!2T the Bose
and Fermi distribution functions can be replaced b
Maxwell-Boltzmann distribution functions and we find

qD
2 5

24

p S lg1
Nf

3
lqDasT

2. ~A11!
e

nt

g
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The quark and gluon densities and thus fugacities decr
with time due to the one-dimensional expansion such
l5l0t0 /t.

Inserting these expressions forqmax andqD in Eq. ~A10!
we find the entropy production rate

S ]s

]t D
coll

5
9

8p4as
2T0

4Fng2l0,g
2 1

4

9
ngnql0,gl0,q

1S 49D
2

nq
2l0,q

2 G lnF 3pt

2S l0,g1
Nf

3
l0,qDast0

G lnS 2t

t0
D ,

~A12!

to leading order in a free streaming gluon gas. The resu
approximately valid fort*2t0 and as long as the fre
streaming assumption is valid, i.e.,t&u.

We emphasize the important result thatt3 factor is can-
celled by the integral over momentum transfers. Only a s
logarithmic dependence on time remains. The physical
planation for this cancellation is the following. From E
~A2! a factor (t0 /t)

2 appears from the substitutions of int
gration variablespz,i , i51, 2. This represents the fact th
the densities of each of the colliding partons drop l
t0 /t. If we keep the original momentum transfer variab
@i.e., do not replaceqz→qzt0 /t in Eq. ~A2!# the factor in the
square bracket, Eq.~A3!, leads to a factor (qt/t0)

2. This is
because the phase space for small momentum scatt
opens up quadratically with timeand it balances the de-
crease in parton densities. On the other hand, for large mo
mentum transfers the exponential in the square bracket,
~A3!, simply vanish leaving a factor of unity which leads
a much reduced entropy production rate decreasing quad
cally with time. The long range interactions~small momen-
tum transfers! are therefore very important in expandin
plasmas and sensitive to screening or the cutoff as is app
in some models@3#.
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