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The triton energy spectra of the charge-exchatt@4®He}) reaction at 2 GeV beam energy are analyzed in
the quasielastic nucleon knockout region. Considering that this region is mainly populated by the charge
exchange of a proton iAHe with a neutron in the target nucleus and the final proton going in the continuum,
the cross sections are written in the distorted-wave impulse approximatiort. flagrix for the elementary
exchange process is constructed in the distorted-wave Born approximation, using one-piprepthsnge
potential for the spin-isospin nucleon-nucleon potential. Thigatrix reproduces the experimental data on the
elementarypn—np process. The calculated cross sections for ¥@(He}) reaction at 2° to 7° triton
emission angle are compared with the corresponding experimental data, and are found in reasonable overall
accord.

PACS numbgs): 13.75.Cs, 24.10.Ht, 24.10.Jv, 25.55.Hp

I. INTRODUCTION [6] and the p,n) reaction at Los Alamog2]. Theoretically,
too, several efforts have been made to study these reactions.
Because of the easy transferability of sufficient energy toAlberico et al. [7] have developed a random phase approxi-
the nucleus and the reduced effect of the Pauli blockingmatiom (RPA) theory of the spin-isospin nuclear surface re-
guasifree scattering forms a major portion of the nucleasponse and studied the contrast between the spin-longitudinal
cross sections at intermediate energies. In experiments, th{f, ) and spin-transverseR{) parts of the nuclear response.
observation is reflected by the appearance of a distinct broaBheir predictions are for nuclear matter and use a
bump in the ejectile energy spectrum aroune q2/2m*, (m+p+g’) model for the interaction. Ichimurat al. [8]
where (@,q) is the four-momentum transfer to the nucleushave improved upon this method and have calcul&ednd
andm* the effective mass of the nucleon. The width of this Ry by the continuum RPA with the orthogonality condition.
bump is correlated to the momentum spread of the nucleoihey treat the nucleus as of finite size and present the cross
in the nucleus. In earlier times, this aspect, through the studgections for a*®Ca(p,p’) reaction att, = 500 MeV using
of the inclusive p,p’), (e,e’) reactions and the exclusive the distorted-wave impulse approximatigbWIA). Not-
(p.,2p), (e,e’p) reactiong 1], was exploited much to gather withstanding these efforts, Bertsehal.[9], however, while
directly information about the single-particle aspect, in par-discussing a number of experiments in a recent critical re-
ticular the shell model, of the nucleus. In recent years, howview of this field, conclude differently. They find that the
ever, the focus on similar studies has shifted to chargeeffect of the residual particle-hole correlations seen in the
exchange reactions, likep(n) and GHep) [2,3]. This has experiments in the quasifree region is much smaller than
happened because of the discovery of strong Gamow-Telle@xpected.
excitations in these reactions and a rather sinipten term Considering the above observation of Bertsthal.[9] as
description of the spin-isospin piece of theN interaction  an indication of the weakness of the correlatidndatever
in terms of a one-pion-plug-exchange interactiopd]. It is ~ may be the reasonin the present paper we study the quasi-
felt that the study of these reactions in the quasifree regiorglastic peak region as being populated by the charge-
like the earlier quasifree knockout studies, would provide arexchange knockout of a neutron in the target nucleus. The
opportunity to explore the single-particle spin-isospin re-motivation for this work is to explore the extent up to which
sponse of the nucleus and, going beyond, also the particléhe independent particle framework alone could account
hole correlations in the quasifree region. Theorists pregéict for the experimental data. We have done the calculations in
that particle-hole correlations, apart from modifying thethe DWIA. As a typical case, we analyze the data on the
magnitudes, shift the longitudinal response towards lower?C(3Het) reaction at 2 GeV beam energ§]. Specifically,
excitation energy and the transverse response towards highee assume that the quasifree region in this reaction is popu-
excitation energy. In addition, these correlations are knowrated by the'’C(*Hetp) reaction, where the proton in the
to renormalize the propagation of pions in the nuclear mefinal state arises due to the charge exchange of a proton in
dium. Because of this, the study of the spin-isospin nucleafHe with a neutron in &,, or 1p, shell in 1°C. Since the
response to various external probes has been a topic of greatperimental data for th&C(3Hej) reaction in the quasifree
interest over the past decade. An extensive experimentaégion are of inclusive type, in our calculations we do not
study of the fHet) reaction has been carried out at Saturneinclude the distortion of the proton in the final state. This is
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termt_ also contributes to the cross section. Since in boson-
exchange models thtsmatrix gets constructed from second-
and higher-order Born terms only, we have not constructed it
here. Alternatively, we have used for it the phenomenologi-
cally determined matrix of Love and Franey11]. In any
case, as we shall see later, the contributiontofto the
(®Het) cross section is not much.

& ,E) The experimental data for thEC(°He}) reaction, as ob-
tained by Berggvistet al. [3], exist for the triton energy
spectrum at 2°—7° emission angles and 2 GeV beam energy.
These spectra are inclusive. The broad structure seen in them

FIG. 1. Diagrammatic representation of the reactitte + between 1.9 and 2 GeV triton energy can be ascribed to the
12C_Lt+p+1iC, quasifree charge-exchange reaction. The theoretical cross
sections corresponding to these spectra are obtained by first
calculating the double-differential cross  section
main effect of the distortion at intermediate energies is abgz‘r_/dktdkp’ and then Integrating It over _the allowed km_e-
sorptive. This results in the transfer of flux from the given matics of the oqtgomg protons and summing over the various
geutron states in the target nucleus. In Sec. Il we present the

channel to other channels. In an inclusive reaction, thes lculated diff tial " Th lculati
channels are included in the measured cross sections. Als ","C“ ate ierential Cross sections. € calculations are

since the strong absorption of the projectile and ejectile i one W.'th anddwnhout tké@-g)ﬁckrl]ange cqntrlbut:lon in the d
the nucleus limits the charge exchange betweerHe and mter?ctmvr\\/, a}n dcompare \gl't the eli(penmentatybmteasur(ih
12C nucleons to the low density surface region of theSPECtra. Vve 1ind a reasonable overall agreement between the

nucleus, we consider the elementary proqess-np in the calculated and measured cross sections with pi-plus-rho-

nucleus as a quasifree process. It, of course, is off shell du%xchange Interaction.
to nuclear bindings. We construct thenatrix for it follow-
ing our earlier studies on the elementary procegg@sp)n
and p(p,A**)n [10], where thet matrix is constructed in Il. FORMALISM
the distorted-wave Born approximatiéfWBA), using one-
pion-plusp-exchange potential for th¥_ .. Thist matrix
reproduces the experimental data on pi{@,p)n reaction.
For thep(p,A ™ *)n reaction only one-pion-exchange results
agree with the experiments. d?o

In Sec. Il we give the formalism for thé’lde}) reaction. MZJ d(cosfp) X PX(|Tgal?), 1)
The transition amplitude is written in a distorted-wave im- R
pulse approximation, as mentioned above, and distortions afihere(| Tgal?) is the transition amplitude summed and av-
3He and triton are treated in the eikonal approximation. Weeraged over the spins in the initial and final states, respec-
also present briefly the procedure to calculate the elementatjvely. Factor P includes phase space and the beam flux.
t matrix t,,,. Taking thez axis alongky. and thex-z plane defined by the

In the charge-exchange reaction, besitgs the isospin  vectorsky, andk;, it is given by

appropriate, because, as discussed in the litergfitle the

The differential cross section for the triton energy spec-
trum in the ®He + A—t+ p+ B reaction in the laboratory is
written as

P:f de, kik3Mpemmpmg
2(27)° Kud Kp(Ei = Ey) — KpeCOSIpE , + K EpcOK 0]

@

whereE,, k,, andm, represent the energy, momentum, and mass, respectively, of the partitjeis the emission angle of
the proton relative to the triton. For a given beam energy and fixed value of the triton four-momégtisntetermined by
solving the appropriate energy-momentum conservation relations. The cross s@etidiE,d(), is calculated by integrating
over all possible emission directiory and ¢,, of the outgoing proton.

A. Evaluation of Tgu

For the reaction mechanism shown in Fig. 1, the transition amplitude for the reatfétet)B in the DWIA can be
written as

Ton= | Xt ko BHX [tor(L D +LDTA S X | d
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wherej represents the active nucleons in the target nucleushell. In terms of its central® and noncentratN® compo-

andi those in®He. The curly brackets in the above equationnents, we can write it as

represent the antisymmetrization between the outgoing pro-

ton and the nucleons in the nucleBs y and x; are the te (i, )) =[S (a0 o+ th(e,Q)S; (@777, (4)

distorted waves for helium and triton, respectively. For pro-

tons, as mentioned earlier, because of the inclusive nature @fhereq is the momentum transfer in the reaction anid the

the measurements, we use plane waves. energy at which thé matrix needs to be evaluated. Actual
t,.(i,j) in Eq. (3) is the spin-isospin matrix. It contains  evaluation of it is described further below.

longitudinal as well as transverse components, and is off The tensor operatc&j(é]) is defined as

R R R 2477 1/2 R
aj<q>=3ai-qa,~q—ai-o,-=(—5 ) % > (D) e (D)o, ()(11— m—v[2M)You(§). (5)
mv

To evaluatelz 5, We first observe that around 2 GeV, the energy of interest of the continuum particles here, the main effect
of distortion is absorptive. The dispersive effects are small. Therefore, in evaluating the elementrix t,,.. (or t,), we
approximate the momentum transfgby that corresponding to the asymptotic moment&ldé and triton. Mathematically,
this approximation means writing

Xi." (Ran) Xi(, (Ran) ~€xH10-Raal Dy (Raa) Dy, (Ran) = €XHi G- (rj+X—1;) 1Dy (1 +X— 1) Dy, (1j+X—T))

“eXF[iQ'(rj+X—fi)]Dkt(fj)DkHe(rj):eXF[iQ'(X_ri)]XI:[*(rj)X;He(rj): (6)

whereq=Kky.—Kk; andR,4 is the center-of-mass coordinate electron scattering data over a large range of momentum
of t/He relative to the target nucleus.andr; are the coor- transfer, deficiency, if any, due t8- and D-configuration
dinates of nucleons in the projectile and target nucleidaisd  admixtures in these wave functions should automatically get
the coordinate between these nucleddss. are the smoothly  rectified to a certain extent. With this tigTg|2) factorizes
varying modulating functions describing the distortion of as
t/He by the nucleus. Dropping their dependencerpiand
x in above implies that this dependence does not introduce a (ITea®={(G|®|p(a)|?, 7)
significant change in the range gf at which the *He—t
transition density and the elementamp—pn t matrix are  where p(q) is the spatial®He—t transition density factor
evaluated. and is normalized such thab(0) = 3. For obtaining

For ®He and triton wave functions we have used the(|G|?), we take the expectation value of the elementary
dominant configuration, which has a symmetric spatial partmatrix over the spin-isospin wave functions e and tri-
and a fully antisymmetric spin-isospin part. Since in the calton, and then sum and average the square appropriately over
culations we use théHe—t transition density which fit the the spin projections of these particles. We get

a4 1 S c —m,+1 247 | ¥ NC
(G| >=§%—+D% 21 tr (e F ™ Q) +| - tw(f.Q)EM (=D"(11-m
mpMg | m=— v
2
_V|2M>Y2M(GI)FV'+1(Q) +|t7(6,q)|2|F+l(Q)|2}_ (8)

Here, Q=kue—k;—k, is the momentum of the recoiling nucleus in the laboratory. In the impulse approximation, this
momentum equaléwith opposite sighthat of the struck neutron in the target nucleB$: " 1(Q) is the “distorted” Fourier
transform of the spin-isospin overlap integral of the target and residual nucleus. In configuration space, it is given by

Frri(Q)= J drxic* (i, (DKl F) 6BA 4 (1), (©)

where ¢S4, 1(r) is the overlap integral and is defined through
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<kp|r>¢z,A+1(r):<{kp ,B}|; 5(r_rj)0',u(j)7'+1|A>- (10)

For a shell model and a closed shell target nuclgs, J,=0), it is easy to work out this integral. In this case, for
F#*1(Q) we eventually get

FM'+1(Q):\/52 2 (1,172,m, vms|‘]B’_MB><111/2vU’1ms|1/21mp><Xt_ ’kp|XI:e7¢nljm|>- (11

mg Im,

For the purely isospin-dependent term, in a similar way, we obtain

1 1
23.+1) > FYQPP=X m|<Xt_*kp|X:|e¢nljm|>|2- (12

Mgmp I,m

Brijm, in the above equations is the spatial part of the wavdiere,o is the total cross sectiof is the ratio of the real to

function in thenlj shell of a neutron in the target nucleus. It Imaginary part of the scattering amplitude, ands the slope
is normalized such thaid,im | niim ) =Nnii , WhereN,; is parameter in th@n scattering. The values of these param-
the number of newtrorn 'nJ thent M hell ! ! eters depend upon the eneligyf the pn system.
u r utrons in ]~ Shell. S The t matrix, with the above parametrization, works out
In Eq. (8) one may notice that the contributions of thet b
S . . . e
spin-isospin-dependent and the only isospin-dependent par?
of the interaction to the cross section enter incoherently. The .
central and noncentral parts in the spin-isospin interaction, tpa(K; ,kf)=j dre'dTexdi&(b)(b|V,.]a), (17
however, add coherently.

where £(b) is the phase-shift function, and is defined as
B. p(n,p)n t matrix
exfi&(b)]=[1— Cexp —b?/2a)]+iC Bexp — b?%/2a),

For constructing the matrix t,,, we follow our earlier (18)

work [10]. In it, thet matrix for a—b transition in nucleon-
nucleon scattering at intermediate energies is written as  with C=o /47 a.
_ V., is the spin-isospin-dependent transition potential. The
_ * + oT
toalKi k) =(xi™ «(BIVorl @) xic), 13 major portion of this interaction, as is well knoy#], arises

_ o from the one-pion-plus-rho-exchange potential. We, there-
where the effect of elastic and other channels is incorporateghre, write

throughx’s, the distorted waves for then relative motion.

They are the solutions of potentials which describe fiime VUT(i!j):[Vw(t)Ui'qu'a+vp(t)(0'i><q)'(o'j><q)]7'i"Tj ,

elastic scattering. Below the pion threshold, these potentials (19

are available from boson-exchange models. However, in the

energy region which is of relevance in the present work andvhere

is above the pion threshold, these potentials need major )

modifications. In the absence of a reliable estimate of such i

modifications, we have used the eikonal approximation V)=~ 3m

(which is valid at higher energigsnd have writteny’s di-

rectly in terms of the elementary elastic scattering amplitude= w?—qg? is the four-momentum transfer. In thE(n,p)n

f(k,q) as(for details see Ref.13]) reaction, however, this is same as the three-momentum trans-
fer squaredf, is the xNN coupling constant, wherg de-

q2
mi—t’

sFA(t) (20)

Foon ik I notes or p. F,(t) is the form factor at th& NN vertex. For
Xi(n=e*" 1+ EJ'O adab(qb)f(k.q)|. (14 its form we use the monopole form, i.e.,

Here the amplitudé(k,q) peaks at zero degree and falls off F ()= A>2<_ mi 21)

rapidly. Near the forward direction it can be reasonably pa- x A)Z(—t '

rametrized a$14]
whereA is the length parameter.

f(k,q)="f(k,0exp —3aq?), (15 Substituting Eq(18) in Eq. (16) the central and noncen-

tral parts of the spin-isospitmatrix, appearing in Eq(8),

where, using the optical theorem, we can further write work out as

k .
f(k,q)=(ﬂ) or(k)[i+B(k) Jexd — a(k)g*/2]. (16) tST(q)zj e'd7eléPVC (r)dr (22)
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FIG. 2. Kinematics for the?’C(®He}) reaction afT,,.=2 GeV.
The triton energies are plotted as a function of the momentum trans- 4~
fer q, for triton emission angles of 0°—7°. &
>
Q
2
and @;
>-‘N
A i ~ =
ths () Yo (8) = f eI OVIS(r) You(P)dr, (23 5
where, in terms of the pi- and rho-exchange potentials, in 25 L |
momentum space R S U R
0 2 4 6 8
c ! q(fm™)
V1) =3[V +2V,(1)] (24)

FIG. 3. Real part of thé matrix as a function of the momentum
transferg=ky.— K, . Solid curves represent thhenatrix constructed
1 with the 7+ p-exchange transition potential and dashed curves the
ng(t)= —[V,T(t)—Vp(t)]. (25) one-pion exchange onIYa) Central part of the¢ matrix. (b) Non-
3 central part of the matrix.

and

A detailed presentation of the abovematrix for the el-

ementary charge-exchange reaction and its applicability to

i 2
the available experimental data over a wide energy range €S Of the electron scattering ang,Zp) data on**C [15].
being reported separately. The neutron binding energies in the,}L and 1p;, orbitals

in ¥2C are taken equal to 34 MeV and 16 MeV, respectively.
For the 3He—t transition form factop(q), following the
work of Dmitriev et al. [16], we use
We calculate the double-differential cross sections for the ,
triton energy spectrum at 2 GeV beam energy and 2°-7° p(q)=Foe Y91+ 5q*], (26)
triton emission angles. Within the framework of the formal-
ism given in the preceding sections, various inputs whichwhere y= 11.15 GeV 2 and »= 14 GeV “. This form
determine these cross sections ées,;, the radial wave factor has been found to be good up to large momentum
function of the neutron in the target nucleys) 3He—t, transfers.
transition form factorp(q), (iii) parameters associated with  For the various parameters in the pion- and rho-exchange
the pion- and rho-exchange potentidls) parameters of the potentials, we usé,=1.008, f,=7.815,A, = 1.2 GeVL,
elasticpn scattering amplitudé(k,q), and(v) *He and tri- andA ,= 2 GeVk. These values are consistent with several
ton distorted waves. experimental observations, likeN scatteringNN scattering
The radial wave functiong; are generated in a Woods- [17], electrodisintegration of deuterof$8], deuteron prop-
Saxon potential, whose parameters are fixed from the analyerties[19], and dispersive theoretical approach26]. The

IIl. RESULTS AND DISCUSSION
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FIG. 4. Calculated and measurp(n,p)n cross sections at 0° % 1 -
for various neutron energies. The calculated cross sections are for p theory 3
the one-pion-plus-rho-exchange spin-isospin potential. E ) ]
g 10 g:
value of f,, of course, has some uncertainty. It is 4.83 as 58“ 10 2 _;I
determined by the vector dominance mof&l], and 7.815 % 3
as determined from the nucleon form factor and nuclear phe- 2 S F ]
nomend22]. T
The elasticpn scattering amplitudé(k,q) has three pa- )
rameters: the total cross sectior, the slope parameter, | | |
1 111 111t 11 11 Lt 1

which determines its momentum transfey) (behavior, and
the parameteB, which determines the ratio of the real to
imaginary parts of (k,q). Except, both other parameters ' T(MeV)
are well known from the measured experimental data on the

pn scattering[23]. The energyk at which these parameters ) ] ] ] ]
need to be taken is, of course, not defined well. This happenéc':;e' 5. Triton energy spectra in the quasielastic peak region for
because of the Fermi motion of the nucleons in the projectile' C("Hed) at incident beam energyy, = 2 GeV and titon emis-
and the target nuclei. However, as the beam energy is higl?','on angles of 2°-7°(a) Represe_ntatlon of the_experlmgntal data
for the purpose of fixing the values of these parameters, we Ref. [3]. (b.). Theorepcal calculations  with  the
. purp . ng . P ! + p-exchange transition potential.
ignore the Fermi motion of the proton in the beam and the” " P 9 P
struck neutron in the target. The energypof system in the
laboratory, therefore, is taken equal to 1/3 of fiée energy.
Corresponding to 2 GeV®He energy, we finda~ 6  productin Eqs(11), (12). In the eikonal approximation, this
(GeVic) “? andor~34 mb. In the value o3, there exists a can be approximated as
lot of uncertainty in the “measured” valug®4]. At the en- o A
ergy of our interest, it ranges from 0.05 t00.7. We have Xt ¥ Xrhe= €'7e! 01 Pe2iob), (27
chosen the value-0.45 for our purpose. The calculated
cross sections with this value gfare found in most reason- if we ignore the difference between the phase shiftsieé
able agreement with the experimental data. We will, ofand triton (around 2 GeY. Here §(b) corresponds to the
course, exhibit later the sensitivity of our results to the valugohase shift of a mass 3 particle. The phase shift function
of B. 6(b) can be constructed, in principle, from optical potentials.
For the only isospin-dependent part of theaatrixt., we  But since this is a poorly known quantity, we refer to the
use the phenomenologically determirtedatrix of Love and  experimentally measured values. The experimeéih) too
Franey[11] from NN scattering experiments at 725 MeV is not available for mass 3 particles and hence we use the
beam energy. The contribution of this term to the cross segphase shifts obtained froms scattering at 1.37 GeV on cal-
tion, however, as we shall see later, is not much. cium isotopeg25]. Here, exp2i §(b)], which gives a good
The distorted waves for helium and triton appear as alescription of thex scattering data, is found to be purely real

1800 1850 1900 1950 2000
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FIG. 6. Triton energy spectra in the quasielastic peak region at FIG. 7. Same as Fig. 6 for triton emission angles of 4° and
triton angles of 2° and 3° fof’C(®Het) at 2 GeV beam energy. 5°.
The solid curves are the cross sections withttineatrix consisting
of the 7+ p-exchange transition potential. The dashed curves are

the results with only one-pion exchange. Dots represent the EXperEross sections. In Fig. 3 we plot the typical central and non-
mental datd3]. ) )

central components of the real part of the calculated elemen-
tary t matrix [Egs. (22), (23)] used in our calculations. We
show thist matrix for a pure one-pion-exchange potential
and has a 1 minus Woods-Saxon form. The radius parametend for a one-pion-plus-rho-exchange potential. As expected,
ro(R=ro,AY®) and diffusenesa of this functional form are we see that the rho exchange affects both pieces ot the
found equal to 1.45 and 0.68 fm, respectively. We use thisnatrix significantly, but in the opposite directions.
phase-shift function for our purpose too, except that the ra- To demonstrate the extent to which the abdvmatrix
diusR is put corresponding t&=12. reproduces the measurgdn,p)n cross sections, in Fig. 4
Before we present the calculated cross sections, in Fig. &e show the calculated 0° cross sections along with the ex-
we show at 2 GeV beam energy the range of momentunperimental dat426—33 over a large energy range. As we
transfer ) involved in the triton emission up to 7° in the see, the calculated cross sections are in good accord with the
laboratory. In the quasielastic range of the triton endrgy, = measured cross sections.
up to 1900 MeV, this momentum transfer, as we see, is not In Fig. 5 we show the results for th#C(3Het) reaction
small. At 2°-3° it is around 250 Me¢/ and at larger angles together at all the angles of the triton emission. In Fi@) 5
it goes to about 500 Me¢/ This suggests that the noncen- we see a representation of the experimentally measured cross
tral component of thet matrix, Tga, and hence the sections and in Fig.(®) that of our corresponding theoreti-
p-exchange part of th¥ ., (whose contribution increases at cally calculated results. The calculated cross sections are ob-
larger q) may affect the quasielastic cross section signifi-tained with the pion and rho meson both included, and with
cantly. However, because the rho exchange contributes witbontributions from the spin-flip and non-spin-flip channels to
opposite signs to the central and noncentral pieces of ththe transition matrix. As can be seen from the figures, the
potential[see Eqs(24), (25)], it is not immediately obvious overall behavior of the experimental cross sections, which
as how much, in net, the rho exchange would change thancludes the magnitude and position of the peak and its shift
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=~ flip channel(solid curve and non-spin-flip channétlashed curve
< to the triton energy spectrum at 2° for th&C(°Hej) reaction at 2
b GeV. Dots represent the experimental dg@h
g
g o005
g . I
3 To isolate the contribution due to rho exchange to the
o calculated cross sections, in Figs. 6—8 we also display, by
dashed curves, the cross sections due to the one-pion-
exchange transition potential alone. As we see from these

figures, the contribution of the rho exchange changes con-
tinuously from being positive at 2° to negative at 7°.
Around 3° it crosses the zero level. This happens, as men-
tioned earlier, due to change in the momentum trangfer
FIG. 8. Same as Fig. 6 for triton emission angles of 6° and(S€€ Fig. 2 and the opposite signs of the rho-exchange po-
tential in the central and the noncentral pieces of the poten-
tial. At smaller momenta, where the central term dominates,
the rho exchange comes with a positive sign, while at larger
angles, where the noncentral term is important, it comes with
with the emission angle of the triton, gets reproduced reasora negative sigisee Eqs(24), (25) and Fig. 3.
ably well by the theoretical calculations. This vindicates, in  In our calculations, we also find that the calculated cross
essence, the applicability of the quasifree mechanism framesections are mainly decided by the spin-isospin-dependent
work presented in the earlier section to the region of thepart of thet matrix. This can be seen in Fig. 9, where we
triton spectrum lying between the bound nuclear states anshow the 2° calculated cross sections with and without the
the delta production region. isospin-dependent tery. The dashed curve represents the
In the following, we give the results at each angle sepacalculation without the isospin-dependent term in thaa-
rately. trix, while the solid curve is the complete calculation. As we
In Figs. 6, 7, and 8 we show the triton energy spectrasee, the only isospin-dependent term makes a contribution of
plotted individually for six triton emission angles betweenless than 10% to the cross section.
2° and 7°. The solid curves represent the calculations with As we mentioned earlier, the only uncertain parameter in
the one-pion-plus-one-rho-exchange interaction. The experthe above calculations had been the value of the parameter
mental results are represented by the dots. Except at 5° agl the ratio of the real to imaginary parts of the elementary
7°, we find a good accord between the calculated and meacattering amplitude. In Fig. 10 we show the calculated triton
sured cross sections. The underestimation of the cross seenergy spectrum at 2° and 6° for three valuesgBofviz.,
tions at 7° should not be a source of much discouragemen®.05, —0.45, and—0.7. These values lie within the uncer-
as the magnitude of the cross section is too small at thitainty of the experimentally extracted value. As we see, the
angle (~7 ub). Therefore, the measured cross section cartalculated cross sections do depend upon the valye &br
have a large uncertainty and a significant contribution fronthe present range, it can change the peak cross section by a
other reaction mechanisms. The reason for the overestim#actor of 2.
tion of the cross section by about a factor of 3/2 at 5° is, of The quasifree cross sections, as we see from the exami-
course, not clear to us. nation of the expressiofEq. (8)] for (|G|?), is essentially

TMeV)

7°.
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> I h ) beam energy with different forms of the radial wave functig of
E I i the neutron in the target nucleus.
)
g’ 0.02 | —
§~ - . means that even the shape of the triton energy spectra might
3 not depend upon the details of the neutron momentum dis-
I o o® i tribution in the nucleus. It may be sufficient if the neutron
L j wave functions have correct separation energies for different
shells and reproduce some gross properties, like the rms ra-
0 o0 =50 500 1950 2000 dius, of the nucleus. To exhibit this, in Fig. 11 we show the
calculated cross sections for two radial wave functigng
T,(MeV) of the neutron in the target nucleus. The solid curve is the

calculation with¢p; generated in a Woods-Saxon potential
as has been used throughout this work; the dashed curve is
¥he calculation using the harmonic oscillator wave function
with the oscillator parametdr=1.66 fm, which is consistent
with the electron scattering data. As can be seen from the
figure, within about 10%, the two results are the same.

FIG. 10. Triton energy spectra in the quasielastic peak region
triton angles of 2° and 6° fot’C(°Hej) at 2 GeV beam energy for
different values ofB. The curves are the cross sections with the
matrix consisting of ther+ p-exchange transition potential. The
numbers on the curves indicate the corresponding valugs of

IV. CONCLUSIONS

determined by(i) thet matrix t,. and (i) the neutron mo- We have examined the quasielastic peak region in the
mentum distribution in the target nucleus through the recoil*?C(®Hej) reaction at 2 GeV over a range of triton emission
momentum distribution factors”*1(Q) andF*1(Q). The  angles from 2° to 7°. We have calculated the triton energy
t,, depends upog andF’s on Q. In Fig. 2 we see that the spectra in the framework of a quasielastic charge exchange
magnitude ofg, at a particular triton emission angle, does between a proton in the projectile and a neutron in the target
not vary much in the region of the quasielastic peak. At 2°nucleus. Constructing thiematrix for this process with the
and 3°, for instance, in the triton energy range 1900—1980r+ p-transition potential, and using distorted waves for
MeV theq changes only between 0.7 and 0.9 fm and 1.0 an®He and triton, the overall features of the experimentally
1.2 fm, respectively. This means that the elementanatrix =~ measured cross sections are produced reasonably well. Vari-
t,, too does not change much over this region for a fixedous inputs used for these calculations are constrained by
triton emission angle(see Fig. 3. Consequently, in the other known experimental quantities, and thus are not arbi-
A(3He})B reaction, the elementatymatrix mainly affects trary.
the magnitude of the cross sectiofsee, e.g., Fig. 20 The

shapes of the triton energy spectra, which in the inclusive
data mean the peak position and the width, are decided by
the recoil momentum distribution factors. However, since in  One of the author$N.G.K.) wishes to thank the support
the inclusive data the proton in the final state is not detectediven by the Department of Atomic Energy, Government of
and Q=ky.—k;—k,, each point in the triton energy spec- India, for part of the work which was done at the Bhabha
trum involves an integral over a certain range@f This  Atomic Research Centre in Bombay.
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