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Description of B decay to excited quadrupole phonon states within a boson-expansion formalism
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A microscopic Hamiltonian including realistic two-body interaction, is used to describe the shgle
Gamow-Teller transitions to the ground state, the first excited quadrupole s{ateg@ the two-quadrupole-
phonon states (Qpn",2,. pn") of even-even isotope’'®?Sn from the two adjacent odd-odd nucféf*%in
and 11812&h_ The higher-RPA effects are evaluated within a boson-expansion formalism. The transition am-
plitudes are studied as functions of the particle-particle interaction strength. The corresponéingvialges
are also calculated and compared with experimental data as well as with the predictions of some previous
calculations. The perturbative components of the states involved give important contribution to the transitions
feeding the two-phonon states. Adding these, the agreement with the experimental data is improved.

PACS numbds): 23.40.Hc, 13.10tq, 21.60.Jz, 27.66:j

I. INTRODUCTION approach to describe singJe transitions to excited states.
Indeed, there are experimental data showing that excited
In the recent past a lot of effort has been put into explain-states of some even-even nuclei, such as Sn and Cd isotopes,
ing the data about singlg and two-neutrino doublgd  can be fed both by~ andB™ decay[12-18 and one of the
(2vBB) decays. The nuclear matrix elements which are use@uthors(J.S) has used the MCM to explain the Iftg val-
for these processes can be used for evaluating the rate for t§€s corresponding to the transitions to one- and two-phonon
0vB decay mode whose existen@® nonexistencemight ~ Stateg19] in these nuclei.

provide an answer to the question whether neutrino is a 1N€ present paper is devoted to a similar study by using
Dirac or Majorana particle. the BEM approach which was formulated earlier in Refs.

The first major progress in the field was achieved when i{7’8]'. Moreover,.here we introduce an.harmomc effgcts not
was realized that the particle-particigp) channel of the only in the transition operator but also in the states involved

two-body proton-neutron interaction, which is usually ne-n @ given transition. When the higher-RPA corrections are

) - resticted to the Gamow-Teller transition operator, a direct
glected in the standard random-phase approximd ) comparison of the two theoretical formalisms, BEM and

is very important for thed* decay strengttil]. This idea MCM, is possible

was extended to the calculation ov23 decay rates by — The anove-mentioned scheme is discussed according to
;everal g.roupslwrrh the result that the Gamow-Teller tran'5|the following plan. In Secs. Il and IIl we describe the qua-
tion amplitude is cancelled when the strength of the pp insiparticle representation of the model Hamiltonian and its
teraction,gp,, reaches a value lying close to un(g-6]. expansion in terms of RPA bosons. The first-order boson

Since this cancellation point lies near the breaking-dowrexpansion of the Gamow-Teller transition operator and ana-
value of the RPA, a natural question arose whether thesgtical expressions for transition amplitudes are also derived
results still hold when the first-order correction to the RPAisin Sec. IIl. In Sec. 1V, the initial and final states involved in
added. The answer was given by one of AA.R.) in Refs.  the 8~ and 8" transitions are treated in the first order of
[7,8]. Indeed, by adding the higher-RPA effects through theperturbation and the corresponding expressions for the tran-
boson-expansion metha®EM), only a moderate suppres- sition amplitudes are derived. Numerical results for the
sion of the Gamow-Teller amplitude is obtained neartransitions 1'8124n—11812&n andB* transitions *8?%Sp
gpp=1.0. Moreover, there are transitions which are forbid-— '8125n are presented in Sec. V. The final conclusions are
den within the RPA but are allowed when the anharmonici-drawn in Sec. VI.
ties are switched on. An example of this type is the3B
transition to the excited 2 state of the daughter nucleus.

A short time after another formalism was emitted with a
similar scopg9,10]. This was named as the multiple com-
mutator methodMCM). A third method was formulated by We assume that th@~ and g% processes feeding the
Griffiths and Vogel in connection with the doubfedecay to  ground state and the low-lying excited states of the nucleus
the two-phonon & state[11]. (N,Z), are described by the Hamiltonian which was used in

Since some of the matrix elements which are involved inRefs.[7,8] and which will be briefly presented here. It con-
doubleB decay are describing virtual singketransitions to  sists of three termgi) a one-body term describing indepen-
excited states it is natural to try to use a similar higher-RPAdent motion of the nucleons in a Wood-Sax@S) potential

including corrections due to the Coulomb interactidrere
we use the same WS potential as in RgI0]), (ii) the

“Permanent address: Institute of Atomic Physics, Bucharest, POBroton-proton and neutron-neutron pairing and quadrupole
MG6, Romania. interaction, andiii ) the proton-neutron dipole interaction.

Il. THE MODEL HAMILTONIAN
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The two-body interaction is taken as the Brueck@r particle space. The factors are denoted by
matrix ((ab)J|G[(cd)J), J=0,1,2, calculated from the g o g .0%);9() o) for pairing, dipole-dipole, and
Bonn one-boson-exchange potential by solving the Bethequadrupole quadrupole mteractlon respectively.

Goldstone equation. We neglect the proton-neutron pairing In the present paper we treat only the Gamow-Teller de-

and quadrupole-quadrupole interaction. The justification foicay which in medium-heavy nuclei dominates the Fermi de-

this approximation is given in Ref8]. cay. The transition amplitudes f@@* and 8~ processes are
_ For the single-particle states we shall use here the abbreeadily obtained if we know the single-particle matrix ele-
viation ments of the Gamow-Teller transition operatgés and
I7,nljm)=|a)=|a,m,), |—a)=|a,—m,), B~ . These operators can be written as

where 7 takes the valueg for protons andh for neutrons.
The corresponding creation operator is denotedcpy In
the quasiparticle representation

<B+),L=n2p<nlaﬂlp>c:cp. (B)u=— (B ()",

. ==+1,0. (2.6
Ya=UaC, —(—)la" MV, (2.0 # 29
Here|p)(|n)) denotes a protofmeutron single-particle state
and o, is the uth spherical component of the Pauli matrix.
Obviously, 3* are dipole operators and therefore can be ex-

. pressed in terms of the quasiparticle pair and density opera-
H=2 E.¥. Vet (HatHatHuptHe), (22 iors AL, BI,:

defined by the BCS approximation, the model Hamiltonian
acquires the following form:

where byH ,,, we denote the terms consistingrafquasipar-
ticle creation anch quasiparticle annihilation operators and
E, stands for the quasiparticle energy. The teking, can be
easily written in terms of the dipole and quadrupole opera- + By (K)(—)TA. 2.7
tors,

(B E [0AL,(K) + 0vAs—, (K) (=) #+ 3BT, (K)

Here the summation indek symbolizes a pair of proton and
neutron states which is alternatively abbreviated by

+ — jaipd
AJM(ab)_mZm Co m,msM Ya Vo (ip.in), Where only the total angular momentum gquantum
“ numbers are specified. Also the following notations have
been used:

BJM(ab)_ 2 Clrr?lfm M7m Ym( )jbimﬁy J=1,2,

My Mg 2 2
2.3 - : - J : -
@I a= v U dlelin. =T UV Gololn),
and their Hermitian conjugates. The final expressions are

_ . -
Heo= 2 haabedd)Ajy(ab)As y(cd)(—)’™, m= =7 ViVidialolin, m== U505 Gololin,
Ha= 2 ha(abdcd)Ajy(ab)Byy(de)(—) ™", j=v2j+l. (28
a,b,c,d,J,M

Throughout this paper, the reduced matrix elements are de-
fined according to the convention of Ro#2]. The corre-
sponding expressions for the~ operator can be obtained
from (2.7) by making the following replacements:

HzfachdJ  haabedd)Ajy(ab)As(cd). (2.4

yyyyy

Here the following notations have been used: O = O, O— = Oy P— — M M— — M -
The model Hamiltonian is first treated by the RPA
hs(abcdd)= 3 G(abcd)U, U,V Vy, method. Within this approximation one defines the operators

h31(a.de;J)=G(abdc\])(UanUch_VaVchUd)1 FIM(I): E [Xl(k)AIM(k)+Y|(k)A1—M(k)(_)1_M]v
&

k=(p.in

hosabcdJ)=— 3 [G(abcd)(U,UuU U4+ V,VV Vy) (2.9
+4F(abcdJU,V,U V], (2.5
r; ()= Ri(K)A, ,(k
whereG andF denote thes matrix for the Bonn potential in 2l1) K= (] JE) i [Ri(k) Az, (k)
the Baranger notatioh21]. All the G-matrix elements, in- :
cluding those of the pairing interaction, are multiplied by +S(K)Az- L (K)(=)“], (2.10

common factorgnot depending on the states involyeat-
counting for the effects ignored by restricting the single-so that they have a boson character
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[Tyu(.T5 (1= 808108, AN =12, -
e - 2.11 Aluipin= 2 IXulipin) 1K)
and they describe a harmonic approximation Har =Yi(ipinT1-,(K(—)17#], (2.18
[H.TL (1= oy (HT,(0). (212 N2

Az =22 [RiADT 7,0
The RPA excitation energies corresponding to the k=1

2-pole mode §k=1,2) are denoted by, (I). The argument —S(i i K)(— )~ 21
(1) is labeling the positive solutions of E(.12 which are SdIad -, (0(2)5 (219
ordered as follows: The expressions foky ,(jp.jn) andA,,(j,.j,) can be ob-

tained from (2.18) and (2.19) by Hermitian conjugation op-
o\(D)<oy(2)<---<oy(Ny); A=12. (213  gration, respectively. In order to satisfy the equations
(2.11) one assumes quasiboson commutation relations for

Equations (2.11) provide the following normalization for the operatorsa, , and A:'u" These yield the following

the boson amplitudes:

properties:
2k [(X(K))2—= (Y, (K)?]=1, (2.14) (OI[T 1,,(K), A1, (j pin) 110y =X(jpin)
(OI[T 2,(k), A2, (j A )10y =2Ry(j i 1),
22 (R~ (§001=1. 215 (OIS (K (=) AL ol ) 10)=Yid i),
Once the RPA equations are solved, i.e., the excitation (O[T ,(K)(—=)* Az, (i )]110)=2S(j,i.),
energiesw, (1) and the amplitudeX, Y,R,S are known, one (2.20
R s L R A——

(2.21

It is worth noting that due to Egs. (2.18) and (2.19), one
u(D]0)=0; X=12; 1=12,...Ny. (216 may say that the RPA approach provides a linear boson rep-
resentation for the operatops* and A. Consequently, the
Peduced matrix elementd,||3*(0) can be expressed as lin-
ear combinations of amplitudes and Y. Equations (2.18)
and (2.19), with the amplitudes given by (2.20), will be
generalized in the next section in order to include first-order
corrections to the RPA operators.

vacuum staté0), which satisfies the equations

For example, the one-, two-, and three-phonon state
which are needed in the present paper are defined by

INeMY=T,(M]0), A\=1,2; m=1,2,...N,,

| 1m2q;IM)=[T'1 (M)T'7 (n)11m[0),

lll. FIRST-ORDER HIGHER-RPA CORRECTIONS
m=1,2,..N;; n=12,..Ny, FOR THE TRANSITION AMPLITUDES

1
12m24;:IM) = (14 8np) ~ 2[T 5 (M)T5 (N)]30]0), The first improvement of the standard RPA approach was
achieved by Cha in Refl], where it was shown that the
mn=12,...N,; J=0,2,4, 7 transition rate is very sensitive to the variation of the
strength of the two-body interaction in the particle-particle

|1k1(2k22k3)l s AM) =Ny K1Kok3)[T'7 (Kq) channel. A few years later this idea was used for th@2
decay[2-6] with the result that the Gamow-Teller amplitude
X[T5 (ko)T5 (kg)]Jiml0), 1=0,2,  for the transition § —0; is totally suppressed for a strength
gpp=1. One of the authoréA.A.R.) showed[7,8] that this
|2k12k22k3;0>=N30( kikoks) result does not hold any longer if one includes the higher-
RPA corrections to the transition operator: the zero point has
X[T5 (k)T (ko)T'5 (K3)10/0), shifted towards higher values af,. Indeed, due to the
added corrections, th@* operator has nonvanishing matrix
1212,21;2M)Y=NgJT5 (1)[T5 (1)T5(1)1,]m|0), elements not only between states liK@);,|1,) and
(2.17  |1),/0)¢ but it may also connect either of the vacua

|0);,|0); to the higher boson states of the intermediate odd-
whereN15,,N39, andN3, denote the normalization factors. odd nucleus. The final result was that for the@3 decay of
The expressions (2.9) and (2.10) can be easily inverted. I8°Se the Gamow-Teller amplitude is only moderately su-
this way the quasiparticle*2pole operatorg\,” A\, canbe  pressed forgp,=1. Moreover, within the higher-RPA ap-
expressed in terms of the RPA bosons: proach, the 238 mode Q" —2; is allowed although such a
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transition is forbidden on the RPA level. mother and daughter nuclei, respectively. Therefore the re-
It was the first time when it was shown that in order to sults, provided by singlg decay, can be used for improving
account for the higher-RPA effects in the23 process itis  the quality of the doublgs calculations.
necessary to consider not only the proton-neutron bosons |n the present paper we shall use the BIERS] to de-
'], but also the charge conserving bosdijs (k). In this  scribe thes™ transitions from the 1 ground state of the
way one obtains the first-order boson expansion of thedd-odd nucleus to the statef0),|2,M),]2,2,;IM)
double Gamow-Teller transition operator. The results, CON(J=0,2) of the even-even final nucleus. For the sake of com-
cerning the transition to the excited Ztate, were confirmed pleteness we shall briefly sketch the BEM, although it has
two years later in Refs|9,10|, where the higher-RPA ap- peen presented in detail in R¢B]. The dipole operators

ﬂrgr‘z‘:h elssﬁ:::esdhéhetrg:l;féet Cgrm;mg‘gosr rgEch@:rile\)/ll oM A}, andBj;, are written as polynomials of the RPA bosons
W W W ’ 'so that the mutual commutation relations are consistently

are identical at least when they are applied to the tranSitionSreserved by the boson mannina. It is worth stressing that the
0" —0;,0"—2{ . However, differences appear wheneverP y pping. 9

i ; . boson representation for the dipoler() operators was pos-
the final nucleus is left in a two-phonon state, sible only by considering the charge-conserving bosons to-
It is worth noting that the doublg decay may be viewed y 0y g 9 9

as a process taking place through two successive spigle gethter with thi charge nonconger:ylng onﬁ.a I?. ﬁ{orgy bl

decays. Considering the amplitude of the second decay as tltllgze erms pro “C'“g a+non\+/an|s Ing contribution to double

conjugate one of 8" transition|0; )—|1,), the Gamow- # transitions ¢—0/.0 —2¢ were retained.

Teller amplitudel0;*)—|0;") contains a product of two am- Since here we consider also the transition to the two-
i " . .

plitudes describing two virtual processes by which the interPhonon states, some additional terms will appear. The first-

mediate odd-odd nucleus is fed By and3* decays of the Order boson expansion of the operat8ss, andBy, is

Alupin) =2 LA Gpin) T2k + A (pi )T (ke (-)174]
1

2 A Upinl[T3 (k)3 (k) W] (KTt 2 A (i) [T 2(ke)2(ko) W 1(ko) Ty

kq,ko<ks 1.Ko=<ks

2 AgainT] (k)[Talka)Talka) )bt 2 AR (o) [T5 (ko) T3 (k)T a(kn) Ty,

kq.,ko<kz 1.Ko<Kk3

+ 2 AR (k)T (k) Pa(ka)l Tt 3 ARGl (ko) a(k) 1 (k) ay

(3.0
B1, (Jpin) = 2, {Bii(pin) [T (ko)T3 (k) o, + B (ol [Ta(Kn) T o(ka)
1,82
+ Bl 2 (pi ) [T1 (KT 2(K2) 11, B (pi n)[T2 (k)T a(Kp) ]} (3.2

The coefficients# andB are to be determined according to the algorithm which was already explained above. For illustration,
let us consider the coefficiem(kiﬁ)z(jpj n)- Commuting the equation (3.2) WitﬁzM2 and then WithFlM one obtains an

equation containing in the right-hand siftbs) the termB(kiﬁ)z(j pJn) Plus some boson operators. We get rid of the latter terms

by taking the vacuum expectation value. In this way one obtains

BIR (jpin)= 2 Ch2h u(OIIT 1., (Kq),[T2,,(K2),B1,(jpin)1110). (3.3

Bu

The double commutator involved in (3.3) is calculated without making any approximation. However, the vacuum expectation
value of the exact result takes care of the RPA equality (2.21). Most of the coefficiertsd B were analytically given in
Ref. [8]. The new terms, which are needed here,.affg-k. .. 7Kk, - Zi k- and. A0k . The expressions of these new
coefficients are given in Appendix A.

Applying the Hermitian conjugation operation to the equations (3.1)and (3.2) one obtains the boson representation for the
operatorsA; _, andB; _,, . Using the boson representation of these operators in connection with the ogtatgiven by
(2.7), one obtains
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Bu= 2 LA (K + AT (0(=) % X {AZIT (kT3 (k)]y+ Age[Ta(ko)T (k) Ty,
1:%2

T Al U1 (k)T okl t AG Tz (k) Tak) b+ 2 {AGTT (k)ITZ (k)2 (ka) 1]

kok
,kq Kp=kg 17273

+ AgalTa(ka Tk ITa(kn B b+ X {AGEITT (ko[Ta(ko)Ta(ka)] T,

k1 Kp=<kg

FAGITS (kT (I Ta(k) I+ 3 {AGRITT (K)[T (k)a(ks) I,

lk2k3
1K1,K2,K3

+ BT S (k)T o(ka) N1k T} (34

The coefficients gk, , Aok, i ks - Pk, are given
explicitly in Appendix B. The remaining coefficients have
been calculated in Ref8]. A
The boson representation of ti2 operator is obtained ><F§,m2(k2)],1“2+7m,(k3)(—)'V'}|0>. 8.7
from (3.4) by making use of Eq. (2.6). From Eq. (3.4) itis 2
manifest that the matrix elements describing ge transi-  One can easily check that this ordering corresponds to the
tions are readily obtained. For example, A€ transition  Belyaev-ZelevinskiBZ) boson expansio[23] of the opera-
1y —2; is described by a reduced matrix element, which intors A}, (j,.jn) andB7,(jp.jn). Indeed, within the BZ ex-
Rose’s conventiof22] reads pansion formalism the corrections to the operaﬁ@; can be
expressed in terms of the quasiboson operators
A A A A, A, [these operators are defined (&3 but sat-
(L1B* 12y =7 (3.5  isfy quasiboson commutation relatidnas linear combina-
tions of the operator productsAy (jp.jn)A; (in.in

1(22) 22l
A= 2 CopmyuChimgu{ O Tam, (ke B, 1,
my.my,m;,M 2

Aif JiP) and A, inAs (i ip)Aeis” i) The
where, according to our procedure, the coefficieff{?) is ~ operatorsB;,(j,.j,) are linear combinations of terms like

given by AL (jp.in)Aindn) and Az (jp.ip)As(ip.in). Concluding,
the boson representation we use here has the property that it
preserves, to first order, the mutual commutation relations of
the expanded operators.

ﬁf&ﬁ;: > C}tiizﬂ<0|[[l“lul(kl),f3;], _ Contrary to the BEM, the MCM approach commutes first
Hiok2 B" with T'; . The result is then commuted wilh, and the
inﬂz(kz)(— )#2]0). (3.6) last commutation operation concerns the boBgnWhile in
the BEM the result forz} (%), is a superposition of the RPA

amplitude products(klsszks, the MCM produces two types

At this point we would like to mention that the multiple of term: X, Ri Ry, and Yy S S..
commuta)rto[ TETOF‘ states that the reduced matrix element Obviously the two methods account for different anhar-
(m.e) (17]87[[27) is equal to the rhs of Eq. (3.6). ItiS monic effects of the pair and density quasiparticle dipole
cIear_now that th_e_ two procedures are identical, at least fo()peratorsAf and B;,. It is worth mentioning that the
the singleg transitions to the ground state and excited one- .k K A2 . .
phonon states. MCM vyields the same result fo Dk ikoky AS that obtained in

One should mention that in the relation (3.6), the order inRef.[11] by using a different method. For the sake of com-
which the two commutators are performed is of no impor-pleteness we say few words about this method. To this pur-
tance. Indeed, one can easily check that the same result p9se let us consider the matrix element
obtained when the commutation WiIhZ*,Mz(—)“2 is made . )
first and the result is then commuted with,, . Contrary to (LiMIAL(pin)[ 21215 IM). 39

this, the commutation order is important when one calculate¥he authors of Refl11] claim that the leading term for this
the coefficients of the monomials of third degree in bosonsm.e. is of the type

In what follows we explain how different orderings of the

commutators yield different boson representations for the opX1(jpin)Ra(ip i p,)R1(in,in,)

erators under consideration. For example, within the BEM o e L

the factorﬁ&iﬁjl)(lg has the expression X <0|Al(J pJ n)Al(J pJ n)AZ (J le pz)AZ (J nlJ n2)|0> . (39)
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The first two operators involved in the above m.e. are retions are considered only for the transition operator. There-
coupled into a product of charge conserving operatorsfore, the states are those defined by the RPA approach. The
A(ip,Jp)Ai(in.in). Furthermore, the quasiboson approxi- reduced m.e. foB~ are obtainable from the corresponding
mation is used for the proton- and neutron-type operatorsm.e. of 8© by making the following interchanges:
Here two remarks are necessary. Since in the BEM one firsf, = — g, 7= — 7y, leading to

commutesA, , with I';y, one misses the contribution coming

from the operator Ay since this commutes with AFIB710 Yo=Y, (17| B7II2] Vo= — A2,
A1,(jp.in). The second remark concerns the fact that in Ref. . _
[11] there is no place where the exact commutation relations (1711B7112121;0" ) o= — V2742201
are used. Due to this fact there is no doubt that important ~
anharmonicities are lost. (1F11B7112121;2 " Yo= — V2.72221 (3.12)

In conclusion, concerning the decays to the two phonon
states, the methods used by Griffiths and Vogel] and The anharmonic effects in the states connected by the

Suhonen and Civitaresg9,10] provide similar results al-  operators3*, will be treated perturbatively in the next sec-
though they are conceptually different from each othertion. Aiming at this goal, here we calculate the first-order
Moreover, this common result is different from that obtainedhoson expansion of the model Hamiltonian. The cubic terms

through the BEM which is the basic procedure adopted in thgn hosons are determined by the boson representations of the
present paper. A deeper analysis of the advantages and dragr_pole operator®,, and By, With A=1,2

. . IL L 1 "
backs of each of the three methods will be presented in @ Fqjlowing the procedure we outlined before, one obtains

subsequent publication. _ . the following expressions for the quadrupole operators:
Once the boson representation for the operatsis

determined, the reduced m.e. describing the siggtiecays

are readily obtained. The results are Bau(ial 2):k§2 {D(kig)z(jlj 2)[F2+(k1)F2+(k2)]2M+Df(ﬁ)2
(1718710 )o= ", (1B 121 )0=H1, X(i1i 2[5 (k)T 2(k2) ]z, + DR (i1i2)
(171181212150 )o= V2 A", XIT (ko) T o(kp) T, (312
(AT 12,2132 Y= \/Eﬁ,ﬂz?z)z (310  Where the coefficient®M" are those listed in Appendix C.

Replacing the operatops)fﬂ andA,, by their RPA expan-

In the above equations we have specified also the parity afions (2.18) and (2.19) and the operatBQé# andB,, by

the initial and the final states. Also we introduce a lowertheir first-order boson expansions (3.2) and (3.12) one ob-
index “0” in order to stress that here the higher-RPA correc-tains

H= 2 oI5, 00+ X AR TS (kT3 (ko)T'3 (kg)Jo+H.c}
Ko kq Ko, kg

* 2 RN (kTalko)Ta(ka)Jot Hoe+ X 750 AT (k)T (k)Ta(kp) o+ Hee).
1:K2.X3 kg .kp ko

(3.13

In the proton neutroripn) Hamiltonian we did not consider terms of the typgI'; I', andI'; T',T"; since they perturb the
states of the Nl,Z) nucleus by connecting them with the states having the main components in the Ni€l2jZ+2) and
(N+2,Z-2), respectively.

IV. PERTURBATION TREATMENT OF THE STATES INVOLVED IN THE 8 TRANSITIONS

In Refs.[7,8] the higher-RPA contribution to the double Gamow-Tell&T) transition rate of the 288 process was
evaluated by considering the first-order corrections to the RPA transition operator. The reason was that in case the states were
perturbed as well, the completeness property for the states describing the odd-odd intermediate nucleus would have been lost.
Due to this reason a full perturbation treatment requires special caution.

For singleg transition we are, however, not confronted with such a problem and therefore the perturbation of the initial and
final states is possible. Next we present the results for the perturbed states. Hereafter the first-order perturbed states will be
denoted by )'. Also, to keep the notations simple, th&1" quantum number will not be written explicitly. The final result
for the perturbed states reads
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|11+>’:/]'/.1(|11+>+k§:4< C12;1(k1ak2)|(1k12k2);1+>+ > . C4,1(k1,kz,k3)|(2k12k22k3)011;1+>>,
172 3

1SKps

127) :‘/”7”/"2( |29)+ kzk Cz,l(kz=k3)|(2k22k3)i2+>) ,

2=R3

|O+>’:J7’/'0( |O+>+k <;<k CS,O(klak21k3)|(2k12k22k3);0+>)a
1=R2=R3

1212,;07) :t/f’/'zo( 12,2,;07)+ kE CaAkz vk3)|(212k22k3);0+>) :

2=ks
[2,2,;2%)"=C?)|(2,2,);2")+CYV|2]). 4.1

The results for the perturbation coefficiel@sare given in Appendix D.

The two-phonon state,2,(=[2,2,;2")) deserves special attention. Indeed, for the two isotopes dtitt.Sn, which are
considered in our numerical application, this state lies close in energy to the second RP/R$patdhis makes the
perturbation treatment non-applicable. Due to this fact the influence of anharmonicities on tHQ@ia{)& is obtained by
diagonalizing the boson Hamiltonian in the space of the two quasidegenerate states. The codfitiemdC"), involved
in (4.1), are therefore provided by a diagonalization procedure. Taking into account the first-order boson expansion for the

B~ operators and the expressions (4.1) of the perturbed states, one easily calculates the corresponding reduced m.e. The fina
results are listed below:

A 5 1

’<1I||B+||2I>’=./f/'2./f/'1[-%*ff>+ >, Crai(ky.ko) akz,l-%f‘ﬁ1°>+»%&§ﬁ§i'(Eém 5|2\/1_5W(2211;23))
K1 Ko
1 == 1 - B

+ 2 (1484 210 Coilka ka) + = 2 A1ERZCas(1ka,Ka)N3g (Lo Ka)
ky=kg NC=

’<1IIIE+IIO+>’=z/7/'1-/1*’b{%‘11°’+k2k AR Craalka o)+ A0 3 C4,1(k1-k2,k3)C3,o(k1,kz,ks)},

1:82 1=R2=R3

- o 5o, [ ,, ,
(1118 12:2450") =130 20[ V2 \[gKZ Caza(ke DA+ 2, cg,gkz,k3>c4,1<1,k2,k3>/f<f°>},
1

2<k3
(1F1BY1242,;2%) =03 CD .%}*1122>+2k BIC,4(k,2) | +CP| 274222+ J%W(lzlz;laEk AEPCro4(k,1)
1 2200\ —1
+J—1—0§ AZINGHL,1K)Cai(1,1K) | |. 4.2

The corresponding m.e. for thg™ operator are obtained by Comparison with experimental data is made in terms of log
the same replacements as in the unperturbed case. The nét-. whereft.. is defined by

malization factordN;(k; ,k,,k3) are defined in Appendix D,

in Eqg. (D4). In evaluating these reduced m.e. we ignored 6050

terms which are of third degree in the perturbation of ti:gi(M—ET)z' (4.4

the states and expansion coefficients for gie operator,

Indeed, inclusion of them would require second-order bosoRyith g,=1. Once again it is to be stressed that the notation

expansion for the transition operator and second-ordesf Rose[22] for the reduced matrix element has been used.
perturbation for the nuclear states. The amplitude for

the Gamow-TeIIerAsingleﬁi transition is equal to the

— V. NUMERICAL RESULTS
reduced m.e. of th@™ operator.

The formalism we developed in the previous sections is
_ s applied to '8 Sn and?°Sn. The single-particle basis, both
Mar(Ji— 30 =3 I8~ 3¢ ). (4.3 for protons and neutrons, consists of the major shells 3
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TABLE |. The logft_ values for theB~ decay 8n(1%) TABLE IIl. The logft, values for thes™ decay '®Sb(1")
—1183n(J7). First column: predictions using unperturbed states and—8sn(J7). First column: predictions using unperturbed states and
expansion for thg?f+ operator. Second column: results produced byexpansion for thé}‘ operator. Second column: results produced by
the MCM. Third column: both the transition operator and the stategthe MCM. Third column: both the transition operator and the states
are perturbed. Fourth column: experimental daa&en from Refs. are perturbed. Fourth column: experimental déi&en from Refs.

[12-19). [12-19).

Unperturbed Perturbed Expt. J7 Unperturbed Perturbed Expt.
J7 states MCM states data states MCM states data
0;5. 4.8 4.8 4.8 4.7 OJS_ 5.2 5.2 5.2 4.5
27 5.2 5.2 5.2 55 2] 7.0 7.0 6.9 5.8
Og_ph 6.9 6.1 6.6 02+_ph 8.2 7.7 7.4 5.2
22+_ph 7.4 6.8 6.5 6.2 2;_ph 8.0 9.9 6.9 6.3

and 4w plus the intrudeh,4,. The strength parameters for turbed description and the MCM description is roughly the
the pairing and 2-pole interaction X = 1,2) were taken from same for the two-phonon states. It means that on the basis of
Ref.[19]. the present experimental data one cannot decide which one
The log't values were calculated by using for the reducedof the two higher-RPA descriptions is the more realistic one.
m.e. alternatively the relations (3)103.11), and (4.2). The Futhermore, from Tables | and Il it can be noted that for the
former case corresponds to the situation when only the trand™ feeding the MCM and the BEM, with perturbation of the
sition operators are affected by anharmonicities. Results fostates included, yield results of similar quality, close to the
B~ transitions are collected in the first columns of Tables Iexperimental data. The description of the experimegtal
and Il for 118sn and?%Sn, respectively. They correspond to feeding seems to be more difficult for both models, as seen
a strength ofg,,~0.9 of the particle-particle proton-neutron from Tables Ill and IV. Here the BEM, including the state
interaction. These predictions are to be compared with thosgerturbation, yields consistently better results.
of the second columns which are obtained by using the Concerning the 288 decay, the nearest double-
MCM approach for evaluating the higher-RPA effects. B-decay transition is**%Cd(0;)—**an(1")—"sn(I7),
Results for the3™ transitions feeding*®Sn and'?%Sn are where J7=0;,2/ 03,2, These decays consist of the
presented in Tables Ill and IV, respectively. Comparing theg~ decay transition ¥n(1*)—%n(0") and the conju-
first two columns of Tables I1-1V, one confirms our previous gate of theg* decay transition'*éin(1*)—16Cd(0*). Ex-
statement that the two procedures, the BEM and the MCMjrapolating slightly the discussion of the previous paragraph
are identical when the transition leads to the ground State bne can draw the f0||owing conclusions Concerning this
to a one-phonon state, but they are different when a mulz,,,gﬁ decay: (i) the 8~ transitions seem to be well de-
tiphonon state is fed. On the third columns of Tables I-1Vscribed, both for the ground state and the excited states;
the results, obtained by using Eq. (4.2) for the reduced m.e., (ji) the inverse8* branch for the ground-state transition
are presented. It is remarkable that perturbing the states cops described reasonably well, as seen from Tables Ill and IV.
nected by the3™ operator, the transition amplitudes to the  The above observations suggest that the82 decay to
ground state as well as to the first one-phonon state,&e  the ground state, as well as to the excited state$'e8n,
practically unmodified. This is a nice numerical confirmationshould be reasonably well described by the BEM and the
of the procedure used in RefE7,8], where the states, in- MCM. Of course this statement concerns only the decay via
volved in the double3-decay process, are not perturbed.  the lowest virtual I state. However , this 1 state is usually
Concerning the transition to the two-phonon statejspho the one giving the dominating contribution in the 28 de-
and 2Z_;,, the modifications, determined by the perturbativecay to the 0 states. This dominance is even more pro-
components of states, are comparable with those producetbunced to the 2 final states since there the energy denomi-
by anharmonic boson corrections to the transition operatonator of the perturbation expression of the@s amplitude
The effect of perturbing the states on thefibgalues is to is a cubic ond8].
improve the agreement with the experimental data. In summary, the above analysis suggests that thg@
From the tables one can see that the quality of the unpedecay of%Cd is rather well described by both the BEM and

TABLE Il. The same as in Table | but for the decd§in TABLE IV. The same as in Table Il but for th@* decay
— 1205, 1205p-— 1205,
Unperturbed Perturbed Expt. Unperturbed Perturbed Expt.
Jf states MCM states data Jf states MCM states data
Ogs. 4.8 4.8 4.8 5 Oy, 5.0 5.0 5.0 45
27 53 53 5.2 5.2 27 6.5 6.5 6.4 5.6
03 pn 6.6 6.0 6.1 5.9-6.8 0, 7.8 7.4 6.7 6.0-6.1

22+_ph 7.0 6.6 7.5 5.8-6.3 2;_ph 7.5 8.9 7.4
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FIG. 1. Transition amplitudes describing th& transitions
Hn(1*)—-18sn@f) with |J7) taking the values|0™) (solid FIG. 2. Transition amplitudes describing th&" transitions
line), |27) (short dash |2,2;;0") (long dash, [2,2,;0%)’ (long ~ “'®Sb(1")—"**%n@{) with |Jf) taking the values0™) (solid
dash with poinl, [2,2,;2") (dash-dox, and|2,2,;2")’ (dash-dot line), [27) (short dash [2,2,;0%) (long dash, [2,2,;0)" (long
with point). These transition amplitudes are plotted as functions ofdash with poink, [2,2,;2") (dash-dox, and|2,2,;2")" (dash-dot
Opp- FOr a better presentation, the transition amplitudes having awith poin). These transition amplitudes are plotted as functions of

final state either § ,, or 2; ., are first multiplied by 10 and then Jpp- FOr a better presentation, the transition amplitudes having as
plotted. final state either Q_ph or 2;_ph, are first multiplied by 10 and then

plotted.

the MCM. However, it is dangerous to extrapolate the

present result further away from the Cd and Sn region anglyo-phonon triplet. The magnitudes of these splittings are
only a careful study of the nuclei involved in the cjose to the experimental data. Also our prediction concern-
2vpB-decay processes can test the quality of these mode|sy the energy ordering of the perturbed statés.,

in description of 28B-decay transitions. 2% 0% ) agrees with the experimental data
The reduced m.e. fog~ and 8* decays are plotted in 2P 2-pn) 89 P '

Figs. 1 and 2, respectively, as functions g, for *Sn.
From Fig. 1 one sees that except for the transition
1*—0%, all the otherB™ transitions are characterized by
reduced m.e. which do not change their sign in the range |n the previous sections we developed a formalism to cal-
gpp="0.0—1.2. The amplitude$l *[[3=[2") are almost con-  culate the Gamow-Teller singlg~ and 8" transition ampli-
stant within a Iarge interval (gpp values. Th$_ transition tudes from a state 1 describing the odd-odd nuclei
to the state Q_ph is more affected by perturbation than the (N+17-1) and N—1,Z+1), respectively, to the even-
transition to the other two-phonon statg 2. From Fig. 2 even nucleus N,Z). We considered the cases where the

elements of thg8* decay change their sign. An exception is or 25 .

VI. CONCLUSIONS

R0+ p
thf m.e(1 1B~ 1121)- Forg,,=0.63 andg,,>1.0 the state Two distinct situations are separately analyzed. In the first
2,.pn i affected by perturbation to a larger extent than thezase the states describing the initial and the final nuclei are
state q-ph' RPA states but the transititon operator is expanded to first

The energy corrections due to the first-order perturbatiomyrder in terms of bosons. It is to be noted that considering the
are given in Table V. As we already mentioned, the correctegransition operator in zeroth order of boson expansian,
energy of %*_ph state was obtained through the diagonaliza-within the RPA approadh only the ground state can be fed.
tion procedure. From Table V one sees that the perturbatiom the second step both the transition operator and the states
does not affect significantly the excitation energy of theare modified due to anharmonicities.
states 2 and 1, . The notable effect in the present scheme is  Numerical application is made fd#Sn and*?°Sn. In this
the energy splitting characterizing the two members of thecase theB™ transitions emerge from*&in and 29n while

TABLE V. First order perturbative corrections to energies of the statesddound statg 27, 17,
0;. ph» @nd 2z ph in units of keV. Also the energy splitting for the two phonon stata&( ) is listed.

AEg+ AE21+ AE11+ AEO; ph AEZ; " AEg,

183 38 54 43 115 -132 247
1205 72 88 77 198 -111 309
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the ¥ transitions from*'°Sb and °Sb, respectively. The and 2;_,, which is equal to 247 keV fol®Sn and 309 keV

predicted amplitudes for the transitions8n—1%sn and  for 1205n.
183h - 1183n are represented in Figs. 1 and 2, respectively, Finally, we would like to mention that there are two
as functions ofg,,. For g,,=0.9, the lodt.. values were sources generating divergences for the perturbative series.
calculated for the two schemes of perturbation mentione®ne was already mentioned and arises from the fact that
above. In the first case the predictions of the present work ardhere are RPA one-phonon states lying close in energy to
compared with those of the MCM approach. One conclude§2+_ph. In this case the interaction between the states
that the two formalism¢BEM and MCM) are identical for  |2,2,;2*%) and |2,) cannot be treated perturbatively. An-
the transitions to 2 but they differ in predictions when the other source for divergences appears whenever one of the
transitions to either the state)Q, or 2;_,, are considered. ~ two RPA approachegthe charge-conserving or the charge

The corrections to the transition amplitudes coming fromnonconserving breaks down. These cases are associated
the perturbation of the initial and final states are negligiblewith large values of the backward-going amplitud¥saf S)
when the final state is either'Oor 2; but they are compa- Which yield a slowly convergingor even divergentboson-
rable to those generated by anharmonicities in the transitiof*Pansion series. Concluding, for these two limiting cases
operator when the daughter nucleus is left in a two—phonoﬁhe perturbative treatment _cannot be _applled_. '_I'he first case of
state. divergence could be avoided by diagonalizing the boson

Based on the present study, it is reasonable to expect thtamiltonian in the space of the quas:ide_generate s'.tates_, _but if
the 2v38 decay of 11%Cd to the ground state and excited the strength of the two-body interaction is clos'e to its crlt_lcal
states of'1%Sn, should be rather well described by both theValue(where the RPA breaks dowthe method is not appli-
BEM and MCM. The verification of this statement, both in cable at all and we have to look for some other procedures.
the 1%Cd decay and the othervBB decays, will be the
subject of future investigations.

Perturbation does not affect significantly the excitation Here we give explicit expressions for the coefficients
energies(see Table Y for the states 2 and 1, but pro-  which define the boson representation for the dipole opera-
duces a splitting in energy for the two-phonon staté'%ho tors Afﬂ(jpj ») and which were not calculated in R¢8]:

APPENDIX A

A lpin) = 35— 2 Zo o Zom X (pl IS i) Ri (i) + S (i) R (i) ]
283 j

Jn' n

@, —4(2|+1)JE3Z [

+ 2 (e hezg 250X (i) [ el o) Rl )+ S ) Rig 5 ,;)]] ,
Ipip

1, _4(2|+1)\/1_5 soa S Sl A Sy
AgglUpin) = 35— ZooZom Vi ol IR i) S (i) + R (i) S (i) ]
2K jlin
+ 2 (—)eThezn 728 N (i) R (1l p) Sk pi )+ Ricg (i ) Se (T ;)]]. (A1)
ipidp
|
- (27 (2211 . l115l i S
The coefﬂuents//yﬁ_iﬁfk's and .72\, are obtainable from Z 32 = (=YW plaj s,

ik, and AL | respectively, by interchanging the
forward-going and backward-going amplitudes 41l o S,
20md 2o amp 212 = (=)W1 1ol ),

nn’p

Sk, (i nin) =R, (inin); Ri,(inin) — Sk, (Inin) 72 = (=) IW(2] 2) ). (A3)

Skz(lgl p)_)sz(j,r,)j p);sz(jgj,; —>51<2(J§§J ;,3) (A2) APPENDIX B

Here we list the coefficients? involved in the equations

In Egs.(Al), the following notations have been used: (3.4
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Tk, = = 2 [T Al (K + o A2 (K], Rk, = 2 f(abcd[Ry (ab)DZR (dc)
K a,b,c,d
A== [re AT 0+ o ALK, ~Si,(ab)DiG (do],

2 ko2 /i1
ﬁ1<22;| Y 1(22)| K (2211 K T, 1kok3 ™~ kok +]k3k ky?
kykgky = 4 [Tk iy (K) + T Ao, (K,

_ = Hdie= 2 T(@bed[Ry,(ab)Di (do)
A== T o AR 0+ o AT #atl

(B ~S,,(ab)D2,(do)],
APPENDIX C
The expansion coefficients of E¢8.12 for the quadru- Tidioks™= bz (abcd[Ry (ab)Di (dc)
a, ,C,

pole operators, . read

— b D(OZ) d
Dicky(11i2)= “Tra. E 207 IR (i1 Sl o) Sk, (ab)Diy.(de)],

’

Ly L oAPN) (02)
+Si (11 2)Re (i1 0], T 2, 1(@bedXig(abBi (do)
~ Y (ab)B@ (dc) + Xy ab)B“m dc
(kli)z(mz)——zoz Zy0 R (11i )R (1 2) (D) Bigi(A) + Xy ( (dc)
~Yi (ab)B(ll 13(o|c)]. (C2)
+ Ry, (J1i2) R, (i 10 1)1,

Here we abbreviated by(a,b,c,d) the following expres-

20 ey

02 i+ \_ 222 - . sion:

Dk (11i2)= 1+5k1k2? Z}iilSq (11D R(1)2)
1

f(abcd)=2\5G(abcd)(U,U U Vy—VaVpVeUy).
+ Ry, (j1i2)Sc,(11i1)]- (CD

222 . . . . APPENDIX D
The factorsZg;,. were defined in Appendix B. The coeffi-
cients defining the first-order expanded Hamiltonian have the The perturbation coefficients involved in (4.1) and (4.2)

expressions: have the expressions:

08N,
V3l w1(ky) + wa(ky) — w1(1)]’

C12;1(k1 Kp)=

730
T, Ky ks

C4q(ky ks, ky)= . D1
aalkaka ka) N3o(Ky, Kz, Ka)[ wa(Ky) + wa(Ka) + w,(Ks) ] (®D
Here we have used the notation:
T = 2T A TR+ TR 1) 0o = K1) Okg— ko) + (274 + TR 1) i i, (Ka—k2)
+ (T, T 27000 k,) Oy ey 02— Ka) + TAE B kyBicy (D2

where #(x) denotes the step function having the value 1X¥or0 and 0 forx<0, respectively. Furthermore

1 1
N3o(K1,ka,k3) = 60(ka—kyq) 6(k3—kp) + E[ﬁkl,kz(l— Bk, k)t Ok kg1 i k) 1T G By ky Oy g (D3)
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C30=Cs1,
—5/1;02) 5A1;11) S5A1;11)
2 2"74’1k2k; +']”~'//§<3k21) + "774(2k31)
C2,1(k2:k3): g

1 :
(14 8 k)2 w2(Ka) + wo(Ks) — wp(1) ]

SAL02 | A1) (11D
ZJK(l,k2 kT ']4(3k21 + =74<2k31

CsAky,ks) = : (D4)
22K M) = s Twa(ko) T walks) — @a(1) INo 1Ko ko)
The norms are given by
1 1
2 2
A= 14 2 Cipa(ky kp)?+ C4,1(k1,k2,k3)2} . S =|14+ X C2,1(k2:k3)2} '
kl’kZ kl$k2§k3 k2,k3
1 1
. 2 - 7 . 2 - ?
./1/0: 1+ C30(k1,k2,k3) y ./1/20: 1+ z C3’2(k2,k3) . (DS)
ki<ky=kjg Ky K3
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