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Description of b decay to excited quadrupole phonon states within a boson-expansion formalism

A. A. Raduta* and J. Suhonen
Department of Physics, University of Jyva¨skylä, POB 35, SF-40351 Jyva¨skylä, Finland

~Received 5 July 1995!

A microscopic Hamiltonian including realistic two-body interaction, is used to describe the singleb
Gamow-Teller transitions to the ground state, the first excited quadrupole state (21

1) and the two-quadrupole-
phonon states (02-ph

1,22- ph
1) of even-even isotopes118,120Sn from the two adjacent odd-odd nuclei118,120In

and 118,120Sb. The higher-RPA effects are evaluated within a boson-expansion formalism. The transition am-
plitudes are studied as functions of the particle-particle interaction strength. The corresponding logf t6 values
are also calculated and compared with experimental data as well as with the predictions of some previous
calculations. The perturbative components of the states involved give important contribution to the transitions
feeding the two-phonon states. Adding these, the agreement with the experimental data is improved.

PACS number~s!: 23.40.Hc, 13.10.1q, 21.60.Jz, 27.60.1j
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I. INTRODUCTION

In the recent past a lot of effort has been put into expla
ing the data about singleb and two-neutrino doubleb
(2nbb) decays. The nuclear matrix elements which are u
for these processes can be used for evaluating the rate fo
0nbb decay mode whose existence~or nonexistence! might
provide an answer to the question whether neutrino i
Dirac or Majorana particle.

The first major progress in the field was achieved whe
was realized that the particle-particle~pp! channel of the
two-body proton-neutron interaction, which is usually n
glected in the standard random-phase approximation~RPA!,
is very important for theb1 decay strength@1#. This idea
was extended to the calculation of 2nbb decay rates by
several groups with the result that the Gamow-Teller tran
tion amplitude is cancelled when the strength of the pp
teraction,gpp, reaches a value lying close to unity@2–6#.

Since this cancellation point lies near the breaking-do
value of the RPA, a natural question arose whether th
results still hold when the first-order correction to the RPA
added. The answer was given by one of us~A.A.R.! in Refs.
@7,8#. Indeed, by adding the higher-RPA effects through t
boson-expansion method~BEM!, only a moderate suppres
sion of the Gamow-Teller amplitude is obtained ne
gpp51.0. Moreover, there are transitions which are forb
den within the RPA but are allowed when the anharmon
ties are switched on. An example of this type is the 2nbb
transition to the excited 21 state of the daughter nucleus.

A short time after another formalism was emitted with
similar scope@9,10#. This was named as the multiple com
mutator method~MCM!. A third method was formulated by
Griffiths and Vogel in connection with the doubleb decay to
the two-phonon 01 state@11#.

Since some of the matrix elements which are involved
doubleb decay are describing virtual singleb transitions to
excited states it is natural to try to use a similar higher-R
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approach to describe singleb transitions to excited states
Indeed, there are experimental data showing that exc
states of some even-even nuclei, such as Sn and Cd isoto
can be fed both byb2 andb1 decay@12–18# and one of the
authors~J.S.! has used the MCM to explain the logf t6 val-
ues corresponding to the transitions to one- and two-pho
states@19# in these nuclei.

The present paper is devoted to a similar study by us
the BEM approach which was formulated earlier in Re
@7,8#. Moreover, here we introduce anharmonic effects n
only in the transition operator but also in the states involv
in a given transition. When the higher-RPA corrections a
resticted to the Gamow-Teller transition operator, a dir
comparison of the two theoretical formalisms, BEM an
MCM, is possible.

The above-mentioned scheme is discussed accordin
the following plan. In Secs. II and III we describe the qu
siparticle representation of the model Hamiltonian and
expansion in terms of RPA bosons. The first-order bos
expansion of the Gamow-Teller transition operator and a
lytical expressions for transition amplitudes are also deriv
in Sec. III. In Sec. IV, the initial and final states involved i
the b2 and b1 transitions are treated in the first order o
perturbation and the corresponding expressions for the t
sition amplitudes are derived. Numerical results for theb2

transitions 118,120In→118,120Sn andb1 transitions 118,120Sb
→118,120Sn are presented in Sec. V. The final conclusions
drawn in Sec. VI.

II. THE MODEL HAMILTONIAN

We assume that theb2 and b1 processes feeding the
ground state and the low-lying excited states of the nucl
(N,Z), are described by the Hamiltonian which was used
Refs.@7,8# and which will be briefly presented here. It con
sists of three terms:~i! a one-body term describing indepen
dent motion of the nucleons in a Wood-Saxon~WS! potential
including corrections due to the Coulomb interaction~here
we use the same WS potential as in Ref.@20#!, ~ii ! the
proton-proton and neutron-neutron pairing and quadrup
interaction, and~iii ! the proton-neutron dipole interaction.

OB
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53 177DESCRIPTION OFb DECAY TO EXCITED QUADRUPOLE . . .
The two-body interaction is taken as the BruecknerG
matrix ^(ab)JuGu(cd)J&, J50,1,2, calculated from the
Bonn one-boson-exchange potential by solving the Beth
Goldstone equation. We neglect the proton-neutron pair
and quadrupole-quadrupole interaction. The justification
this approximation is given in Ref.@8#.

For the single-particle states we shall use here the abb
viation

ut,nl jm&5ua&5ua,ma&, u2a&5ua,2ma&,

wheret takes the valuesp for protons andn for neutrons.
The corresponding creation operator is denoted byca

1 . In
the quasiparticle representation

ga
15Uaca

12~2 ! j a2maVac2a , ~2.1!

defined by the BCS approximation, the model Hamiltonia
acquires the following form:

H5(
a

Eaga
1ga1~H401H311H221H.c.!, ~2.2!

where byHmnwe denote the terms consisting ofm quasipar-
ticle creation andn quasiparticle annihilation operators an
Ea stands for the quasiparticle energy. The termsHmn can be
easily written in terms of the dipole and quadrupole oper
tors,

AJM
1 ~ab!5 (

ma ,mb

CmambM
jaj bJ ga

1gb
1 ,

BJM
1 ~ab!5 (

ma ,mb

Cma2mbM
jaj bJ gma

1 gmb
~2 ! j b2mb, J51,2,

~2.3!

and their Hermitian conjugates. The final expressions are

H405 (
a,b,c,d,J,M

h40~abcd,J!AJM
1 ~ab!AJ2M

1 ~cd!~2 !J2M,

H315 (
a,b,c,d,J,M

h31~abdc,J!AJM
1 ~ab!BJ2M

1 ~dc!~2 !J2M,

H225 (
a,b,c,d,J,M

h22~abcd,J!AJM
1 ~ab!AJM~cd!. ~2.4!

Here the following notations have been used:

h40~abcd,J!5 1
2 G~abcdJ!UaUbVcVd ,

h31~abdc,J!5G~abdcJ!~UaUbUcVd2VaVbVcUd!,

h22~abcd,J!52 1
4 @G~abcdJ!~UaUbUcUd1VaVbVcVd!

14F~abcdJ!UaVbUcVd#, ~2.5!

whereG andF denote theG matrix for the Bonn potential in
the Baranger notation@21#. All the G-matrix elements, in-
cluding those of the pairing interaction, are multiplied b
common factors~not depending on the states involved! ac-
counting for the effects ignored by restricting the singl
e-
ing
for

re-

n

d
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particle space. The factors are denoted b
gpair
(p) ,gpair

(n) ;gph
(1) ,gpp

(1) ;gph
(2) ,gpp

(2) for pairing, dipole-dipole, and
quadrupole-quadrupole interaction, respectively.

In the present paper we treat only the Gamow-Teller d
cay which in medium-heavy nuclei dominates the Fermi d
cay. The transition amplitudes forb1 andb2 processes are
readily obtained if we know the single-particle matrix ele
ments of the Gamow-Teller transition operatorsb̂1 and
b̂2. These operators can be written as

~ b̂1!m5(
n,p

^nusmup&cn
1cp , ~ b̂2!m52~ b̂1!2m

1 ~2 !12m,

m561,0. ~2.6!

Hereup&(un&) denotes a proton~neutron! single-particle state
andsm is themth spherical component of the Pauli matrix
Obviously,b̂6 are dipole operators and therefore can be e
pressed in terms of the quasiparticle pair and density ope
torsA1m

1 ,B1m
1 :

~ b̂1!m52(
k

@s̄kA1m
1 ~k!1skA12m~k!~2 !11m1h̄kB1m

1 ~k!

1hkB12m~k!~2 !11m#. ~2.7!

Here the summation indexk symbolizes a pair of proton and
neutron states which is alternatively abbreviated b
( j p , j n), where only the total angular momentum quantu
numbers are specified. Also the following notations hav
been used:

s̄k5
ĵ p

1̂
Vj p

U jn
^ j pisi j n&, sk5

ĵ p

1̂
Ujp

Vj n
^ j pisi j n&,

h̄k52
ĵ p

1̂
Vj p

Vj n
^ j pisi j n&, hk5

ĵ p

1̂
Ujp

U jn
^ j pisi j n&,

ĵ5A2 j11. ~2.8!

Throughout this paper, the reduced matrix elements are
fined according to the convention of Rose@22#. The corre-
sponding expressions for theb̂2 operator can be obtained
from (2.7) by making the following replacements
s̄k→2sk ,sk→2s̄k ,h̄k→2hk ,hk→2h̄k .

The model Hamiltonian is first treated by the RPA
method. Within this approximation one defines the operato

G1m
1 ~ l !5 (

k5~ j p , j n!
@Xl~k!A1m

1 ~k!1Yl~k!A12m~k!~2 !12m#,

~2.9!

G2m
1 ~ l !5 (

k5~ j p , j p8!,~ j n , j n8!

@Rl~k!A2m
1 ~k!

1Sl~k!A22m~k!~2 !m#, ~2.10!

so that they have a boson character
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178 53A. A. RADUTA AND J. SUHONEN
@Glm~ l !,Gl8m8
1

~ l 8!#5dll8d l l 8dmm8, l,l851,2,
~2.11!

and they describe a harmonic approximation forH:

@H,Glm
1 ~ l !#5vl~ l !Glm

1 ~ l !. ~2.12!

The RPA excitation energies corresponding to th
2l-pole mode (l51,2) are denoted byvl( l ). The argument
( l ) is labeling the positive solutions of Eq.~2.12! which are
ordered as follows:

vl~1!,vl~2!,•••,vl~Nl!; l51,2. ~2.13!

Equations (2.11) provide the following normalization fo
the boson amplitudes:

(
k

@„Xl~k!…22„Yl~k!…2#51, ~2.14!

2(
k

@„Rl~k!…22„Sl~k!…2#51. ~2.15!

Once the RPA equations are solved, i.e., the excitat
energiesvl( l ) and the amplitudesX,Y,R,S are known, one
can define the RPA boson space. This is generated by ac
with the boson monomials@G2m

1 (k)#n@G1m
1 (k8)#m on the

vacuum stateu0&, which satisfies the equations

Glm~ l !u0&50; l51,2; l51,2, . . . ,Nl . ~2.16!

For example, the one-, two-, and three-phonon sta
which are needed in the present paper are defined by

ulmM &5GlM
1 ~m!u0&, l51,2; m51,2, . . . ,Nl ,

u1m2n ;1M &5@G1
1~m!G2

1~n!#1Mu0&,

m51,2,..,N1 ; n51,2,..,N2 ,

u2m2n ;JM&5~11dmn!
2
1
2@G2

1~m!G2
1~n!#JMu0&,

m,n51,2, . . . ,N2 ; J50,2,4,

u1k1~2k22k3! l ;1M &5N122~k1k2k3!†G1
1~k1!

3@G2
1~k2!G2

1~k3!# l‡1Mu0&, l50,2,

u2k12k22k3;0&5N30~k1k2k3!

3@G2
1~k1!G2

1~k2!G2
1~k3!#0u0&,

u212121 ;2M &5N32†G2
1~1!@G2

1~1!G2
1~1!#2‡2Mu0&,

~2.17!

whereN122,N30, andN32 denote the normalization factors
The expressions (2.9) and (2.10) can be easily inverted
this way the quasiparticle 2l-pole operatorsAlm

1 ,Alm can be
expressed in terms of the RPA bosons:
e

r

ion

ting

tes

.
. In

A1m
1 ~ j p , j n!5 (

k51

N1

@Xk~ j pj n!G1m
1 ~k!

2Yk~ j pj n!G12m~k!~2 !12m#, ~2.18!

A2m
1 ~ j t , j t8!52(

k51

N2

@Rk~ j t j t8!G2m
1 ~k!

2Sk~ j t j t8!G22m~k!~2 !m#. ~2.19!

The expressions forA1m( j p , j n) andA2m( j t , j t8) can be ob-
tained from (2.18) and (2.19) by Hermitian conjugation op
eration, respectively. In order to satisfy the equation
(2.11) one assumes quasiboson commutation relations
the operatorsAlm and Al8m8

1 . These yield the following
properties:

^0u@G1m~k!,A1m
1 ~ j pj n!#u0&5Xk~ j pj n!,

^0u@G2m~k!,A2m
1 ~ j t j t8!#u0&52Rk~ j t j t8!,

^0u@G12m
1 ~k!~2 !12m,A1m

1 ~ j pj n!#u0&5Yk~ j pj n!,

^0u@G22m
1 ~k!~2 !m,A2m

1 ~ j t j t8!#u0&52Sk~ j t j t8!,
~2.20!

^0uB1m
1 ~ j pj n!u0&5^0uB2m

1 ~ j t j t8!u0&50; t5p,n.
~2.21!

It is worth noting that due to Eqs. (2.18) and (2.19), on
may say that the RPA approach provides a linear boson re
resentation for the operatorsA1 and A. Consequently, the
reduced matrix elements^1kib̂6i0& can be expressed as lin-
ear combinations of amplitudesX andY. Equations (2.18)
and (2.19), with the amplitudes given by (2.20), will be
generalized in the next section in order to include first-orde
corrections to the RPA operators.

III. FIRST-ORDER HIGHER-RPA CORRECTIONS
FOR THE TRANSITION AMPLITUDES

The first improvement of the standard RPA approach wa
achieved by Cha in Ref.@1#, where it was shown that the
b1 transition rate is very sensitive to the variation of the
strength of the two-body interaction in the particle-particl
channel. A few years later this idea was used for the 2nbb
decay@2–6# with the result that the Gamow-Teller amplitude
for the transition 0i

1→0 f
1 is totally suppressed for a strength

gpp'1. One of the authors~A.A.R.! showed@7,8# that this
result does not hold any longer if one includes the highe
RPA corrections to the transition operator: the zero point h
shifted towards higher values ofg pp. Indeed, due to the
added corrections, theb̂1 operator has nonvanishing matrix
elements not only between states likeu0& i ,u1k& and
u1k&,u0& f but it may also connect either of the vacua
u0& i ,u0& f to the higher boson states of the intermediate od
odd nucleus. The final result was that for the 2nbb decay of
82Se the Gamow-Teller amplitude is only moderately su
pressed forgpp51. Moreover, within the higher-RPA ap-
proach, the 2nbb mode 0i

1→2 f
1 is allowed although such a
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53 179DESCRIPTION OFb DECAY TO EXCITED QUADRUPOLE . . .
transition is forbidden on the RPA level.
It was the first time when it was shown that in order t

account for the higher-RPA effects in the 2nbb process it is
necessary to consider not only the proton-neutron bos
G1m

1 , but also the charge conserving bosonsG2m
1 (k). In this

way one obtains the first-order boson expansion of t
double Gamow-Teller transition operator. The results, co
cerning the transition to the excited 21 state, were confirmed
two years later in Refs.@9,10#, where the higher-RPA ap-
proach is called the multiple commutator method~MCM!.
Here we shall show that the two methods, BEM and MCM
are identical at least when they are applied to the transitio
0i

1→0 f
1 ,0i

1→2 f
1 . However, differences appear wheneve

the final nucleus is left in a two-phonon state.
It is worth noting that the doubleb decay may be viewed

as a process taking place through two successive singleb2

decays. Considering the amplitude of the second decay as
conjugate one of ab1 transition u0 f

1&→u1k&, the Gamow-
Teller amplitudeu0i

1&→u0 f
1& contains a product of two am-

plitudes describing two virtual processes by which the inte
mediate odd-odd nucleus is fed byb2 andb1 decays of the
o

ons

he
n-

,
ns
r

the

r-

mother and daughter nuclei, respectively. Therefore the
sults, provided by singleb decay, can be used for improvin
the quality of the doubleb calculations.

In the present paper we shall use the BEM@7,8# to de-
scribe theb6 transitions from the 11 ground state of the
odd-odd nucleus to the statesu0&,u21M &,u2121 ;JM&
(J50,2) of the even-even final nucleus. For the sake of c
pleteness we shall briefly sketch the BEM, although it
been presented in detail in Ref.@8#. The dipole operator
A1m

1 andB1m
1 are written as polynomials of the RPA boso

so that the mutual commutation relations are consiste
preserved by the boson mapping. It is worth stressing tha
boson representation for the dipole (pn) operators was pos
sible only by considering the charge-conserving bosons
gether with the charge nonconserving ones. In Ref.@8# only
the terms producing a nonvanishing contribution to dou
b transitions 0i

1→0 f
1,0i

1→2 f
1 were retained.

Since here we consider also the transition to the t
phonon states, some additional terms will appear. The fi
order boson expansion of the operatorsA1m

1 andB1m
1 is
ration,

ms

ctation

w

n for the
A1m
1 ~ j pj n!5(

k1
@Ak1

~10!( j pj n!G1m
1 ~k1!1Ak1

~01!( j pj n)G12m~k1!~2 !12m]

1 (
k1 ,k2<k3

Ak3k2k1
~30!l ~ j pj n!†@G2

1~k3!G2
1~k2!# lG1

1~k1!‡1m1 (
k1 ,k2<k3

Ak3k2k1
~03!l ~ j pj n!†@G2~k3!G2~k2!# lG1~k1!‡1m

1 (
k1 ,k2<k3

Ak1k3k2
1~ 2̄2̄!l ~ j pj n!†G1

1~k1!@G2~k3!G2~k2!# l‡1m1 (
k1 ,k2<k3

Ak3k2k1
~22!l 1̄ ~ j pj n!†@G2

1~k3!G2
1~k2!# lG1~k1!‡1m

1 (
k1 ,k2 ,k3

Ak1k2k3
1~22̄!l ~ j pj n!†G1

1~k1!@G2
1~k2!G2~k3!# l‡1m1 (

k1 ,k2 ,k3
Ak3k2k1

~22̄!l 1̄ ~ j pj n!†@G2
1~k3!G2~k2!# lG1~k1!‡1m ,

~3.1!

B1m
1 ~ j pj n!5 (

k1 ,k2
$Bk1k2

~20! ~ j pj n!@G1
1~k1!G2

1~k2!#1m1Bk1k2
~02! ~ j pj n!@G1~k1!G2~k2!#1m

1Bk1k2
~11;12!~ j pj n!@G1

1~k1!G2~k2!#1m1Bk1k2
~11;21!~ j pj n!@G2

1~k2!G1~k1!#1m%. ~3.2!

The coefficientsA andB are to be determined according to the algorithm which was already explained above. For illust
let us consider the coefficientBk1k2

(20) ( j pj n). Commuting the equation (3.2) withG2m2
and then withG1m1

one obtains an

equation containing in the right-hand side~rhs! the termBk1k2
(20) ( j pj n) plus some boson operators. We get rid of the latter ter

by taking the vacuum expectation value. In this way one obtains

Bk1k2
~20! ~ j pj n!5 (

m1 ,m2

Cm1m2m
121 ^0u†G1m1

~k1!,@G2m2
~k2!,B1m

1 ~ j pj n!#‡u0&. ~3.3!

The double commutator involved in (3.3) is calculated without making any approximation. However, the vacuum expe
value of the exact result takes care of the RPA equality (2.21). Most of the coefficientsA andB were analytically given in
Ref. @8#. The new terms, which are needed here, areAk1k2k3

1(2̄2̄) l ,Ak3k2k1
(22)l 1̄ ,Ak1k2k3

1(22̄) l , andAk3k2k1
(22̄) l 1̄ . The expressions of these ne

coefficients are given in Appendix A.
Applying the Hermitian conjugation operation to the equations (3.1)and (3.2) one obtains the boson representatio

operatorsA12m andB12m . Using the boson representation of these operators in connection with the operatorb̂1, given by
(2.7), one obtains
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b̂m
15(

k
@Bk

~10!G1m
1 ~k!1Bk

~01!G12m~k!~2 !12m#1 (
k1 ,k2

$Bk1k2
~20! @G1

1~k1!G2
1~k2!#1m1Bk1k2

~02! @G1~k1!G2~k2!#1m

1Bk1k2
~12! @G1

1~k1!G2~k2!#1m1Bk2k1
~21! @G2

1~k2!G1~k1!#1m%1 (
l ,k1 ,k2<k3

$Bk1k2k3
1~22!l

†G1
1~k1!@G2

1~k2!G2
1~k3!‡l #1m

1Bk3k2k1
1̄~ 2̄2̄!l

†@G2~k3!G2~k2!# lG1~k1!‡1m%1 (
l ,k1 ,k2<k3

$Bk1k2k3
1~ 2̄2̄!l

†G1
1~k1!@G2~k2!G2~k3!# l‡1m

1Bk3k2k1
~22!l 1̄ @@G2

1~k3!G2
1~k2!# lG1~k1!‡1m%1 (

l ,k1 ,k2 ,k3
$Bk1k2k3

1~22̄!l
†G1

1~k1!@G2
1~k2!G2~k3!# l‡1m

1Bk3k2k1
~22̄!l 1̄

†@G2
1~k3!G2~k2!# lG1~k1!‡1m%. ~3.4!
the

ors

at it
of

st

r-
le

-
ur-
The coefficientsBk1k2k3
1(2̄2̄) l ,Bk3k2k1

(22)l 1̄ ,Bk1k2k3
1(22̄) l ,Bk3k2k1

(22̄) l 1̄ are given

explicitly in Appendix B. The remaining coefficients hav
been calculated in Ref.@8#.

The boson representation of theb̂2 operator is obtained
from (3.4) by making use of Eq. (2.6). From Eq. (3.4) it i
manifest that the matrix elements describing theb2 transi-
tions are readily obtained. For example, theb2 transition
11

1→21
1 is described by a reduced matrix element, which

Rose’s convention@22# reads

^11
1ib̂1i21

1&5Bk1k2
~12! , ~3.5!

where, according to our procedure, the coefficientBk1k2
(12) is

given by

Bk1k2
~12! 5 (

m1 ,m2

Cm1m2m
121 ^0u†@G1m1

~k1!,b̂m
1#,

G22m2

1 ~k2!~2 !m2
‡u0&. ~3.6!

At this point we would like to mention that the multiple
commutator method states that the reduced matrix elem
~m.e.! ^11

1ib̂1i21
1& is equal to the rhs of Eq. (3.6). It is

clear now that the two procedures are identical, at least
the singleb transitions to the ground state and excited on
phonon states.

One should mention that in the relation (3.6), the order
which the two commutators are performed is of no impo
tance. Indeed, one can easily check that the same resu
obtained when the commutation withG22m2

1 (2)m2 is made

first and the result is then commuted withG1m1
. Contrary to

this, the commutation order is important when one calcula
the coefficients of the monomials of third degree in boson
In what follows we explain how different orderings of th
commutators yield different boson representations for the o
erators under consideration. For example, within the BE

the factorBk1k2k3
1(2̄2̄) l has the expression
e

s

in

ent

for
e-

in
r-
lt is

tes
s.
e
p-
M

Bk1k2k3
1~ 2̄2̄!l 5 (

m1 ,m2 ,m28 ,M
Cm2m28M
22l

CMm1m
l11 ^0u$†@G1m1

~k1!,bm
1#,

3G22m2

1 ~k2!‡,G22m
28

1
~k3!~2 !M%u0&. ~3.7!

One can easily check that this ordering corresponds to
Belyaev-Zelevinski~BZ! boson expansion@23# of the opera-
torsA1m

1 ( j p , j n) andB1m
1 ( j p , j n). Indeed, within the BZ ex-

pansion formalism the corrections to the operatorA1m
1 can be

expressed in terms of the quasiboson operat
Å2

1 ,Å1
1 ,Å2 ,Å1 @these operators are defined by~2.3! but sat-

isfy quasiboson commutation relations# as linear combina-
tions of the operator productsÅ1

1( j p , j n)Å2
1( j n8 , j n9)

Å2( j n
(1) , j n

(2)) and Å1
1( j p , j n)Å2

1( j p8 , j p9)Å2( j p
(1) , j p

(2)). The
operatorsB1m

1 ( j p , j n) are linear combinations of terms like
Å1

1( j p , j n8)Å2( j n8 , j n) and Å2
1( j p , j p8)Å1( j p8 , j n). Concluding,

the boson representation we use here has the property th
preserves, to first order, the mutual commutation relations
the expanded operators.

Contrary to the BEM, the MCM approach commutes fir
b̂1 with G2

1 . The result is then commuted withG2
1 and the

last commutation operation concerns the bosonG1 . While in

the BEM the result forBk1k2k3
1(2̄2̄) l is a superposition of the RPA

amplitude productsXk1
Sk2Rk3

, the MCM produces two types

of term:Xk1
Rk2

Rk3
andYk1

Sk2Sk3.
Obviously the two methods account for different anha

monic effects of the pair and density quasiparticle dipo
operatorsA1m

1 and B1m
1 . It is worth mentioning that the

MCM yields the same result forBk1k2k3
1(2̄2̄) l as that obtained in

Ref. @11# by using a different method. For the sake of com
pleteness we say few words about this method. To this p
pose let us consider the matrix element

^11M uA1m~ j pj n!u2121 ;JM&. ~3.8!

The authors of Ref.@11# claim that the leading term for this
m.e. is of the type

X1~ j p8 j n8!R1~ j p1 j p2!R1~ j n1 j n2!

3^0uA1~ j p8 j n8!A1~ j pj n!A2
1~ j p1 j p2!A2

1~ j n1 j n2!u0&. ~3.9!
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The first two operators involved in the above m.e. are r
coupled into a product of charge conserving operato
Al( j p8 , j p)Al( j n8 , j n). Furthermore, the quasiboson approx
mation is used for the proton- and neutron-type operato
Here two remarks are necessary. Since in the BEM one fi
commutesA1m with G1M one misses the contribution coming
from the operator A1M since this commutes with
A1m( j p , j n). The second remark concerns the fact that in R
@11# there is no place where the exact commutation relatio
are used. Due to this fact there is no doubt that importa
anharmonicities are lost.

In conclusion, concerning the decays to the two phon
states, the methods used by Griffiths and Vogel@11# and
Suhonen and Civitarese@9,10# provide similar results al-
though they are conceptually different from each oth
Moreover, this common result is different from that obtaine
through the BEM which is the basic procedure adopted in t
present paper. A deeper analysis of the advantages and d
backs of each of the three methods will be presented in
subsequent publication.

Once the boson representation for the operatorsb̂6 is
determined, the reduced m.e. describing the singleb decays
are readily obtained. The results are

^11
1ib̂1i01&05B1

~10! , ^11
1ib̂1i21

1&05B11
~12! ,

^11
1ib̂1i2121 ;01&05A2B111

1~ 2̄2̄!0 ,

^11
1ib̂1i2121 ;21&05A2B111

1~ 2̄2̄!2 . ~3.10!

In the above equations we have specified also the parity
the initial and the final states. Also we introduce a low
index ‘‘0’’ in order to stress that here the higher-RPA corre
e-
rs:
i-
rs.
rst

ef.
ns
nt

on

er.
d
he
raw-
a

of
er
c-

tions are considered only for the transition operator. The
fore, the states are those defined by the RPA approach.
reduced m.e. forb̂2 are obtainable from the correspondin
m.e. of b̂1 by making the following interchanges
s̄k
2sk ,h̄k
2hk , leading to

^11
1ib̂2i01&052B1

~01! , ^11
1ib̂2i21

1&052B11
~21! ,

^11
1ib̂2i2121 ;01&052A2B111

~22!01̄ ,

^11
1ib̂2i2121 ;21&052A2B111

~22!21̄ . ~3.11!

The anharmonic effects in the states connected by
operatorsb̂6, will be treated perturbatively in the next sec
tion. Aiming at this goal, here we calculate the first-ord
boson expansion of the model Hamiltonian. The cubic ter
in bosons are determined by the boson representations o
2l-pole operatorsBlm

1 andBlm , with l51,2.
Following the procedure we outlined before, one obta

the following expressions for the quadrupole operators:

B2m
1 ~ j 1 j 2!5 (

k1 ,k2
$Dk1k2

~20! ~ j 1 j 2!@G2
1~k1!G2

1~k2!#2m1Dk1k2
~11!

3~ j 1 j 2!@G2
1~k1!G2~k2!#2m1Dk1k2

~02! ~ j 1 j 2!

3@G2~k2!G2~k1!#2m%, ~3.12!

where the coefficientsD (mn) are those listed in Appendix C
Replacing the operatorsAlm

1 andAlm by their RPA expan-
sions (2.18) and (2.19) and the operatorsBlm

1 andBlm by
their first-order boson expansions (3.2) and (3.12) one
tains
tates were
been lost.

tial and
tes will be
lt
H5 (
l,k,m

vl~k!Glm
1 ~k!Glm~k!1 (

k1 ,k2 ,k3
Hk1k2k3

~30! $@G2
1~k1!G2

1~k2!G2
1~k3!#01H.c.%

1 (
k1 ,k2 ,k3

Hk1k2k3
~21! $@G2

1~k1!G2~k2!G2~k3!#01H.c.%1 (
k1 ,k18 ,k2

Hk1k18k2

~pn!
$@G1

1~k1!G2
1~k2!G2~k18!#01 H.c.%.

~3.13!

In the proton neutron~pn! Hamiltonian we did not consider terms of the typeG1
1G1

1G2 andG2
1G1G1 since they perturb the

states of the (N,Z) nucleus by connecting them with the states having the main components in the nuclei (N22,Z12) and
(N12,Z22), respectively.

IV. PERTURBATION TREATMENT OF THE STATES INVOLVED IN THE b TRANSITIONS

In Refs. @7,8# the higher-RPA contribution to the double Gamow-Teller~GT! transition rate of the 2nbb process was
evaluated by considering the first-order corrections to the RPA transition operator. The reason was that in case the s
perturbed as well, the completeness property for the states describing the odd-odd intermediate nucleus would have
Due to this reason a full perturbation treatment requires special caution.

For singleb transition we are, however, not confronted with such a problem and therefore the perturbation of the ini
final states is possible. Next we present the results for the perturbed states. Hereafter the first-order perturbed sta
denoted byu &8. Also, to keep the notations simple, the ‘‘M’’ quantum number will not be written explicitly. The final resu
for the perturbed states reads
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u11
1&85N 1S u11

1&1 (
k1 ,k2

C12;1~k1 ,k2!u~1k12k2!;1
1&1 (

k1<k2<k3
C4,1~k1 ,k2 ,k3!u~2k12k22k3!011 ;1

1& D ,
u21

1&85N 2S u21
1&1 (

k2<k3
C2,1~k2 ,k3!u~2k22k3!;2

1& D ,
u01&85N 0S u01&1 (

k1<k2<k3
C3,0~k1 ,k2 ,k3!u~2k12k22k3!;0

1& D ,
u2121 ;01&85N 20S u2121 ;01&1 (

k2<k3
C3,2~k2 ,k3!u~212k22k3!;0

1& D ,
u2121 ;21&85C~2!u~2121!;21&1C~1!u22

1&. ~4.1!

The results for the perturbation coefficientsC are given in Appendix D.
The two-phonon state 22-ph

1 ([u2121 ;21&) deserves special attention. Indeed, for the two isotopes of tin,118,120Sn, which are
considered in our numerical application, this state lies close in energy to the second RPA stateu22

1&. This makes the
perturbation treatment non-applicable. Due to this fact the influence of anharmonicities on the stateu222ph

1 & is obtained by
diagonalizing the boson Hamiltonian in the space of the two quasidegenerate states. The coefficientsC(2) andC(1), involved
in (4.1), are therefore provided by a diagonalization procedure. Taking into account the first-order boson expansion
b̂6 operators and the expressions (4.1) of the perturbed states, one easily calculates the corresponding reduced m.e
results are listed below:

8^11
1ib̂1i21

1&85N 2N 1HB11
~12!1 (

k1 ,k2
C12,1~k1 ,k2!Fdk2,1Bk1

~10!1Bk1k21
1~22̄!lS 1

A5
d l01d l2A15W~2211;21!D G

1 (
k2<k3

~11dk2k3!
1
2B1k2k3

1~ 2̄2̄!2C2,1~k2 ,k3!1
1

A5 (
k2<k3

B1k2k3
1~22!2C4,1~1,k2 ,k3!N30

21~1,k2 ,k3!J ,
8^11

1ib̂1i01&85N 1N 0FB1
~10!1 (

k1 ,k2
Bk1k2

~20! C12;1~k1 ,k2!1B1
~10! (

k1<k2<k3
C4,1~k1 ,k2 ,k3!C3,0~k1 ,k2 ,k3!G ,

8^11
1ib̂1i2121 ;01&85N 1N 20FA2B111

1~ 2̄2̄!01A2

5(k1
C12;1~k1,1!Bk1,1

~12!1 (
k2<k3

C3,2~k2 ,k3!C4,1~1,k2 ,k3!B1
~10!G ,

8^11
1ib̂1i2121 ;21&85N 1FC~1!SB12

~12!1(
k
Bk

~10!C12;1~k,2!D 1C~2!S A2B111
1~ 2̄2̄!21A30W~1212;12!(

k
Bk1

~12!C12;1~k,1!

1
1

A10(k B1k
~20!N30

21~1,1,k!C4,1~1,1,k!D G . ~4.2!
log

ion
d.

is
h

The corresponding m.e. for theb2 operator are obtained by
the same replacements as in the unperturbed case. The
malization factorsN3(k1 ,k2 ,k3) are defined in Appendix D,
in Eq. ~D4!. In evaluating these reduced m.e. we ignor
terms which are of third degree in the perturbation
the states and expansion coefficients for theb̂6 operator,
Indeed, inclusion of them would require second-order bo
expansion for the transition operator and second-or
perturbation for the nuclear states. The amplitude
the Gamow-Teller singleb6 transition is equal to the
reduced m.e. of theb̂7 operator.

MGT
7 ~Ji→Jf !5^Ji

1ib̂6iJf
1&. ~4.3!
nor-

ed
of

son
der
for

Comparison with experimental data is made in terms of
f t6 where f t6 is defined by

f t65
6050

gA
2~MGT

6 !2
, ~4.4!

with gA51. Once again it is to be stressed that the notat
of Rose@22# for the reduced matrix element has been use

V. NUMERICAL RESULTS

The formalism we developed in the previous sections
applied to 118 Sn and120Sn. The single-particle basis, bot
for protons and neutrons, consists of the major shells 3\v
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and 4\v plus the intruderh11/2. The strength parameters fo
the pairing and 2l-pole interaction (l51,2) were taken from
Ref. @19#.

The logf t values were calculated by using for the reduce
m.e. alternatively the relations (3.10),(3.11), and (4.2). The
former case corresponds to the situation when only the tr
sition operators are affected by anharmonicities. Results
b2 transitions are collected in the first columns of Tables
and II for 118Sn and120Sn, respectively. They correspond t
a strength ofgpp'0.9 of the particle-particle proton-neutron
interaction. These predictions are to be compared with th
of the second columns which are obtained by using t
MCM approach for evaluating the higher-RPA effects.

Results for theb1 transitions feeding118Sn and120Sn are
presented in Tables III and IV, respectively. Comparing t
first two columns of Tables I–IV, one confirms our previou
statement that the two procedures, the BEM and the MC
are identical when the transition leads to the ground state
to a one-phonon state, but they are different when a m
tiphonon state is fed. On the third columns of Tables I–I
the results, obtained by using Eq. (4.2) for the reduced m
are presented. It is remarkable that perturbing the states c
nected by theb̂6 operator, the transition amplitudes to th
ground state as well as to the first one-phonon state, 21

1 , are
practically unmodified. This is a nice numerical confirmatio
of the procedure used in Refs.@7,8#, where the states, in-
volved in the double-b-decay process, are not perturbed.

Concerning the transition to the two-phonon states, 02-ph
1

and 22-ph
1 , the modifications, determined by the perturbativ

components of states, are comparable with those produ
by anharmonic boson corrections to the transition opera
The effect of perturbing the states on the logf t values is to
improve the agreement with the experimental data.

From the tables one can see that the quality of the unp

TABLE I. The logf t2 values for theb2 decay 118In(11)
→118Sn(Jf

p). First column: predictions using unperturbed states a
expansion for theb̂1 operator. Second column: results produced b
the MCM. Third column: both the transition operator and the sta
are perturbed. Fourth column: experimental data~taken from Refs.
@12–19#!.

Unperturbed Perturbed Expt.
Jf

p states MCM states data

0g.s.
1 4.8 4.8 4.8 4.7
21

1 5.2 5.2 5.2 5.5
02-ph

1 6.9 6.1 6.6
22-ph

1 7.4 6.8 6.5 6.2

TABLE II. The same as in Table I but for the decay120In
→120Sn.

Unperturbed Perturbed Expt.
J f

p states MCM states data

0g.s.
1 4.8 4.8 4.8 5
21

1 5.3 5.3 5.2 5.2
02-ph

1 6.6 6.0 6.1 5.9–6.8
22-ph

1 7.0 6.6 7.5 5.8–6.3
r
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turbed description and the MCM description is roughly th
same for the two-phonon states. It means that on the basis
the present experimental data one cannot decide which o
of the two higher-RPA descriptions is the more realistic one
Futhermore, from Tables I and II it can be noted that for th
b2 feeding the MCM and the BEM, with perturbation of the
states included, yield results of similar quality, close to th
experimental data. The description of the experimentalb1

feeding seems to be more difficult for both models, as se
from Tables III and IV. Here the BEM, including the state
perturbation, yields consistently better results.

Concerning the 2nbb decay, the nearest double-
b-decay transition is116Cd(0gs

1 )→116In(11)→116Sn(Jf
p),

whereJf
p50g.s.

1 ,21
1,02-ph

1 ,22-ph
1 . These decays consist of the

b2 decay transitions116In(11)→116Sn(01) and the conju-
gate of theb1 decay transition116In~11!→116Cd~01!. Ex-
trapolating slightly the discussion of the previous paragrap
one can draw the following conclusions concerning thi
2nbb decay: ~i! the b2 transitions seem to be well de-
scribed, both for the ground state and the excited states;

~ii ! the inverseb1 branch for the ground-state transition
is described reasonably well, as seen from Tables III and I

The above observations suggest that the 2nbb decay to
the ground state, as well as to the excited states of116Sn,
should be reasonably well described by the BEM and th
MCM. Of course this statement concerns only the decay v
the lowest virtual 11 state. However , this 11 state is usually
the one giving the dominating contribution in the 2nbb de-
cay to the 01 states. This dominance is even more pro
nounced to the 21 final states since there the energy denom
nator of the perturbation expression of the 2nbb amplitude
is a cubic one@8#.

In summary, the above analysis suggests that the 2nbb
decay of116Cd is rather well described by both the BEM and

nd
y
tes

TABLE III. The logf t1 values for theb1 decay 118Sb(11)
→118Sn(Jf

p). First column: predictions using unperturbed states an
expansion for theb̂2 operator. Second column: results produced b
the MCM. Third column: both the transition operator and the state
are perturbed. Fourth column: experimental data~taken from Refs.
@12–19#!.

Jf
p Unperturbed Perturbed Expt.

states MCM states data

0g.s.
1 5.2 5.2 5.2 4.5
21

1 7.0 7.0 6.9 5.8
02-ph

1 8.2 7.7 7.4 5.2
22-ph

1 8.0 9.9 6.9 6.3

TABLE IV. The same as in Table III but for theb1 decay
120Sb→120Sn.

Unperturbed Perturbed Expt.
J f

p states MCM states data

0g.s.
1 5.0 5.0 5.0 4.5
21

1 6.5 6.5 6.4 5.6
02-ph

1 7.8 7.4 6.7 6.0-6.1
22-ph

1 7.5 8.9 7.4
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the MCM. However, it is dangerous to extrapolate th
present result further away from the Cd and Sn region a
only a careful study of the nuclei involved in the
2nbb-decay processes can test the quality of these mod
in description of 2nbb-decay transitions.

The reduced m.e. forb2 and b1 decays are plotted in
Figs. 1 and 2, respectively, as functions ofgpp for

118Sn.
From Fig. 1 one sees that except for the transitio
11→01, all the otherb2 transitions are characterized by
reduced m.e. which do not change their sign in the ran
gpp50.021.2. The amplitudeŝ11ib̂6i21& are almost con-
stant within a large interval ofgpp values. Theb

2 transition
to the state 02-ph

1 is more affected by perturbation than the
transition to the other two-phonon state 22-ph

1 . From Fig. 2
one observes that increasinggpp from 0 to 1.2 the matrix
elements of theb1 decay change their sign. An exception is
the m.e.̂ 11ib̂2i21

1&. For gpp<0.63 andgpp>1.0 the state
22-ph

1 is affected by perturbation to a larger extent than th
state 02-ph

1 .
The energy corrections due to the first-order perturbatio

are given in Table V. As we already mentioned, the correcte
energy of 22-ph

1 state was obtained through the diagonaliza
tion procedure. From Table V one sees that the perturbati
does not affect significantly the excitation energy of th
states 21

1 and 11
1 . The notable effect in the present scheme

the energy splitting characterizing the two members of th

FIG. 1. Transition amplitudes describing theb2 transitions
118In(11)→118Sn(Jf

1) with uJf
1& taking the valuesu01& ~solid

line!, u21
1& ~short dash!, u2121 ;01& ~long dash!, u2121 ;01&8 ~long

dash with point!, u2121 ;21& ~dash-dot!, and u2121 ;21&8 ~dash-dot
with point!. These transition amplitudes are plotted as functions
gpp. For a better presentation, the transition amplitudes having
final state either 02-ph

1 or 22-ph
1 , are first multiplied by 10 and then

plotted.
e
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two-phonon triplet. The magnitudes of these splittings ar
close to the experimental data. Also our prediction concern
ing the energy ordering of the perturbed states~i.e.,
22-ph

1 ,02-ph
1 ) agrees with the experimental data.

VI. CONCLUSIONS

In the previous sections we developed a formalism to ca
culate the Gamow-Teller singleb2 andb1 transition ampli-
tudes from a state 11, describing the odd-odd nuclei
(N11,Z21) and (N21,Z11), respectively, to the even-
even nucleus (N,Z). We considered the cases where the
even-even nucleus is fed into one of the states 01,21

1 ,02-ph
1

or 22-ph
1 .
Two distinct situations are separately analyzed. In the firs

case the states describing the initial and the final nuclei a
RPA states but the transititon operator is expanded to fir
order in terms of bosons. It is to be noted that considering th
transition operator in zeroth order of boson expansion~i.e.,
within the RPA approach!, only the ground state can be fed.
In the second step both the transition operator and the stat
are modified due to anharmonicities.

Numerical application is made for118Sn and120Sn. In this
case theb2 transitions emerge from118In and 120In while

of
as

FIG. 2. Transition amplitudes describing theb1 transitions
118Sb(11)→118Sn(Jf

1) with uJf
1& taking the valuesu01& ~solid

line!, u21
1& ~short dash!, u2121 ;01& ~long dash!, u2121 ;01&8 ~long

dash with point!, u2121 ;21& ~dash-dot!, and u2121 ;21&8 ~dash-dot
with point!. These transition amplitudes are plotted as functions o
gpp. For a better presentation, the transition amplitudes having a
final state either 02-ph

1 or 22-ph
1 , are first multiplied by 10 and then

plotted.
TABLE V. First order perturbative corrections to energies of the states 01 ~ground state!, 21
1 , 11

1 ,
02- ph

1 , and 22- ph
1 in units of keV. Also the energy splitting for the two phonon states (DE0,2) is listed.

DE01 DE2
1
1 DE1

1
1 DE0

2- ph
1 DE2

2- ph
1 DE0,2

118Sn 38 54 43 115 2132 247
120Sn 72 88 77 198 2111 309
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the b1 transitions from118Sb and120Sb, respectively. The
predicted amplitudes for the transitions118In→118Sn and
118Sb→118Sn are represented in Figs. 1 and 2, respective
as functions ofgpp. For gpp50.9, the logf t6 values were
calculated for the two schemes of perturbation mention
above. In the first case the predictions of the present work
compared with those of the MCM approach. One conclud
that the two formalisms~BEM and MCM! are identical for
the transitions to 21

1 but they differ in predictions when the
transitions to either the state 02-ph

1 or 22-ph
1 are considered.

The corrections to the transition amplitudes coming fro
the perturbation of the initial and final states are negligib
when the final state is either 01 or 21

1 but they are compa-
rable to those generated by anharmonicities in the transit
operator when the daughter nucleus is left in a two-phon
state.

Based on the present study, it is reasonable to expect
the 2nbb decay of 116Cd to the ground state and excite
states of116Sn, should be rather well described by both th
BEM and MCM. The verification of this statement, both i
the 116Cd decay and the other 2nbb decays, will be the
subject of future investigations.

Perturbation does not affect significantly the excitatio
energies~see Table V! for the states 21

1 and 11
1 , but pro-

duces a splitting in energy for the two-phonon states 02-ph
1

ly,

ed
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on
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n

and 22-ph
1 , which is equal to 247 keV for118Sn and 309 keV

for 120Sn.
Finally, we would like to mention that there are two

sources generating divergences for the perturbative seri
One was already mentioned and arises from the fact th
there are RPA one-phonon states lying close in energy
22-ph

1 . In this case the interaction between the state
u2121 ;21& and u22

1& cannot be treated perturbatively. An-
other source for divergences appears whenever one of
two RPA approaches~the charge-conserving or the charge
nonconserving! breaks down. These cases are associat
with large values of the backward-going amplitudes (Y or S!
which yield a slowly converging~or even divergent! boson-
expansion series. Concluding, for these two limiting case
the perturbative treatment cannot be applied. The first case
divergence could be avoided by diagonalizing the boso
Hamiltonian in the space of the quasidegenerate states, bu
the strength of the two-body interaction is close to its critica
value~where the RPA breaks down! the method is not appli-
cable at all and we have to look for some other procedure

APPENDIX A

Here we give explicit expressions for the coefficientsA
which define the boson representation for the dipole oper
torsA1m

1 ( j pj n) and which were not calculated in Ref.@8#:
Ak1k2k3
1~ 2̄2̄!l ~ j pj n!5

24~2l11!A15
11dk2k3

(
j n8 , j n9

H Zn8np11l Zn8nn9
22l Xk1

~ j pj n8!@Sk2~ j n9 j n!Rk3
~ j n9 j n8!1Sk3~ j n9 j n!Rk2

~ j n9 j n8!#

1 (
j p8 , j p9

~2 ! j p2 j p8Zp8pn
11l Zp8pp9

22l Xk1
~ j p8 j n!@Sk2~ j p9 j p!Rk3

~ j p9 j p8!1Sk3~ j p9 j p!Rk2
~ j p9 j p8!#J ,

Ak3k2k1
~22!l 1̄ ~ j pj n!5

24~2l11!A15
11dk2k3

(
j n8 , j n9

H Zn8np11l Zn8nn9
22l Yk1

~ j pj n8!@Rk2
~ j n9 j n!Sk3~ j n9 j n8!1Rk3

~ j n9 j n!Sk2~ j n9 j n8!#

1 (
j p8 , j p9

~2 ! j p2 j p8Zp8pn
11l Zp8pp9

22l Yk1
~ j p8 j n!@Rk2

~ j p9 j p!Sk3~ j p9 j p8!1Rk3
~ j p9 j p!Sk2~ j p9 j p8!#J . ~A1!
The coefficientsAk1k2k3
1(22̄) l andAk3k2k1

(22̄) l 1̄ are obtainable from

Ak1k2k3
1(2̄2̄) l and Ak3k2k1

(22)l 1̄ , respectively, by interchanging th

forward-going and backward-going amplitudes

Sk2~ j n9 j n!→Rk2
~ j n9 j n!;Rk2

~ j n9 j n8!→Sk2~ j n9 j n8!,

Sk2~ j p9 j p!→Rk2
~ j p9 j p!;Rk2

~ j p9 j p8!→Sk2~ j p9 j p8!. ~A2!

In Eqs.~A1!, the following notations have been used:
e

Z
pp8n
l1l2l 5~2 ! j p2 j nW~ l 1 j pl 2 j p8 ; j nl !,

Z
nn8p
l1l2l 5~2 ! j n2 j pW~ l 1 j nl 2 j n8 ; j pl !,

Ztt8t9
22l

5~2 ! j t2 j t9W~2 j t2 j t8 ; j t9l !. ~A3!

APPENDIX B

Here we list the coefficientsB involved in the equations
~3.4!:
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Bk1k2k3
1~ 2̄2̄!l 52(

k
@s̄kAk1k2k3

1~ 2̄2!l ~k!1skAk3k2k1
~22!l 1̄ ~k!#,

Bk3k2k1
~22!l 1̄ 52(

k
@s̄kAk3k2k1

~22!l 1̄ ~k!1skAk1k2k3
1~22̄!l ~k!#,

Bk1k2k3
1~22̄!l 52(

k
@s̄kAk1k2k3

1~22̄!l ~k!1skAk3k2k1
~22̄!l 1̄ ~k!#,

Bk3k2k1
~22̄!l 1̄ 52(

k
@s̄kAk3k2k1

~22̄!l 1̄ ~k!1skAk1k2k3
1~22̄!l ~k!#.

~B1!

APPENDIX C

The expansion coefficients of Eq.~3.12! for the quadru-
pole operatorsB2m

1 read

Dk1k2
~20! ~ j 1 j 2!52

20

11dk1k2
(
j 18

Zj 1 j 2 j 18
222

@Rk1
~ j 18 j 1!Sk2~ j 18 j 2!

1Sk1~ j 18 j 2!Rk2
~ j 18 j 1!],

Dk1k2
~11! ~ j 1 j 2!5220(

j 18
Zj 1 j 2 j 18
222

@Rk1
~ j 18 j 1!Rk2

~ j 18 j 2!

1Rk1
~ j 18 j 2!Rk2

~ j 18 j 1!],

Dk1k2
~02! ~ j 1 j 2!52

20

11dk1k2
(
j 18

Zj 1 j 2 j 18
222

@Sk1~ j 18 j 1!Rk2
~ j 18 j 2!

1Rk1
~ j 18 j 2!Sk2~ j 18 j 1!]. ~C1!

The factorsZabc
222 were defined in Appendix B. The coeffi-

cients defining the first-order expanded Hamiltonian have
expressions:
the

Hk1k2k3
~30! 5 (

a,b,c,d
f ~abcd!@Rk1

~ab!Dk2k3
~20! ~dc!

2Sk1~ab!Dk2k3
~02! ~dc!],

Hk1k2k3
~21! 5Hk1k2k3

1;02 1Hk3k2k1
1;11 ,

Hk1k2k3
1;02 5 (

a,b,c,d
f ~abcd!@Rk1

~ab!Dk2k3
~02! ~dc!

2Sk1~ab!Dk2k3
~20! ~dc!],

Hk1k2k3
1;11 5 (

a,b,c,d
f ~abcd!@Rk1

~ab!Dk2k3
~20! ~dc!

2Sk1~ab!Dk2k3
~02! ~dc!],

Hk1k18k2

~pn!
5 (

a,b,c,d
f ~abcd!@Xk

18
~ab!Bk1k2

~02! ~dc!

2Yk
18
~ab!Bk1k2

~20! ~dc!1Xk
18
~ab!Bk

18k2

~11,21!
~dc!

2Yk
18
~ab!Bk

18k2

~11,12!
~dc!#. ~C2!

Here we abbreviated byf (a,b,c,d) the following expres-
sion:

f ~abcd!52A5G~abcd2!~UaUbUcVd2VaVbVcUd!.

APPENDIX D

The perturbation coefficients involved in (4.1) and (4.2
have the expressions:
C12;1~k1 ,k2!5
Hk11k2

~pn!

A3@v1~k1!1v2~k2!2v1~1!#
,

C4,1~k1 ,k2 ,k3!5
H̄k1 ,k2 ,k3

~30!

N30~k1 ,k2 ,k3!@v2~k1!1v2~k2!1v2~k3!#
. ~D1!

Here we have used the notation:

H̄k1k2k3
~30! 52~Hk1k2k3

~30! 1Hk2k1k3
~30! 1Hk3k2k1

~30! !u~k22k1!u~k32k2!1~2Hk1k1k3
~30! 1Hk3k1k1

~30! !dk1 ,k2u~k32k2!

1~Hk1k2k2
~30! 12Hk2k1k2

~30! !dk2 ,k3u~k22k1!1Hk1k1k1
~30! dk1 ,k2dk2 ,k3, ~D2!

whereu(x) denotes the step function having the value 1 forx.0 and 0 forx<0, respectively. Furthermore

N30~k1 ,k2 ,k3!5u~k22k1!u~k32k2!1
1

A2
@dk1 ,k2~12dk2 ,k3!1dk2 ,k3~12dk1 ,k2!#1

1

A6
dk1 ,k2dk2 ,k3, ~D3!
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C3,05C4,1,

C2,1~k2 ,k3!5A2

5

2H1k2k3
~1;02!1Hk3k21

~1;11!1Hk2k31
~1;11!

~11dk2k3!
1
2@v2~k2!1v2~k3!2v2~1!#

,

C3,2~k2 ,k3!5
2H1,k2 ,k3

~1;02! 1Hk3k21
~1;11!1Hk2k31

~1;11!

~11dk2k3!@v2~k2!1v2~k3!2v2~1!#N30~1,k2 ,k3!
. ~D4!

The norms are given by

N 15F11 (
k1 ,k2

C12;1~k1 ,k2!
21 (

k1<k2<k3
C4,1~k1 ,k2 ,k3!

2G2
1
2
, N 25F11 (

k2 ,k3
C2,1~k2 ,k3!

2G2
1
2
,

N 05F11 (
k1<k2<k3

C30~k1 ,k2 ,k3!
2G2

1
2
, N 205F11 (

k2 ,k3
C3,2~k2 ,k3!

2G2
1
2
. ~D5!
s
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