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Thermostatic properties of semi-infinite polarized nuclear matter
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The surface and curvature properties of semi-infinite polarized nuclear rf@R&iV) are calculated using
an expansion for the Fermi integrals upT®. A density matrix expansion is obtained for a modified form of
the Seyler-Blanchard interaction. New parameters that characterize the surface and curvature properties of
SPNM are introduced. The level density parameter is extracted from the low temperature expansion of the free
energy and compared with previous calculations. A reasonable agreement is obtained with the parameters
calculated before.

PACS numbds): 21.65+f, 21.30.Fe

I. INTRODUCTION leptodermous expansion in powers &f to account for
nuclear geometry2,31,32,37-3p

One of the most exciting features of finite and semi- Dividing the energy of the system into volume and sur-
infinite quantum systems is their surfadds?]. The surface face terms means that the curvature energy is either included
region of a nucleus greatly influences its binding energyby rescaling the surface energy tefd0] or neglecting it
level spectra, and reactions. [4,41]. It is straightforward to shoW37,42 that the curva-

One of the widely used models in studying these finiteture energy may be simply extracted from the SNM surface
and semi-infinite systems is the liquid drop mo@dbM). In  energy. Chuet al. [43] extracted the curvature energy term
the liquid drop model, the binding energy of a nucleus isfrom semiclassical calculations of finite nuclei. For realistic
written as a sum of volume, surface, curvature, and Coulombuclei the contribution of the curvature energy to the total
terms. The volume term of polarized nuclear mateNM) energy is not insignificant and there is no reason to ignore it
was studied before using Seyler-Blanchf®fiand effective  [28]. A model calculation has been dof#l,44] by extract-
Skyrme interaction$4]. Surface and curvature energies areing the curvature energy from the surface energy of SNM.
important in studying heavy ion collisions and in astrophysi-Farinel [45] used the soluble model of SNM to derive a
cal applicationg5]. Surface and curvature energies are alsaclosed expression for the curvature energy as a function of
instrumental in determining the size distribution of fragmentsthe surface profile asymmetry. Braek al. [28] performed
which are emitted from the expanding collision for tempera-very accurate semiclassical variational calculations for the
tures less than the critical temperatireat which the liquid-  curvature energy term. Several attempts to carry out HF cal-
gas phase transition occuy8—8]. These are crucial in cal- culations for the curvature energy using the leptodermous
culating fission barrier heights and shapes of saddle poirgxpansion resulted in unacceptably large values with the
configurationg9]. Also, in describing neutron staf$0] and  same interaction. There are large variations in the curvature
supernova$ll-13 it is important to determine the sizes of energy and the curvature symmetry energy among the results
nuclei, electron capture rategl4], and level densities for different interaction$42].
[15,16, all of which are sensitive to surface and curvature Studying the temperature effect on the bulk properties of
energies. The thermodynamical properties of nuclei hav&NM leads to a sensitive quantity, namely, the level density
been studied theoreticaly by several authdrg—25 using  parameter, which is a good guantity for testing the theoretical
Hartree-Fock(HF) or extended Thomas-Fern@ETF) [26—  calculations(Applying the methods of statistical mechanics,
30] methods at finite temperature. In fully self-consistent HFWeisskopf[46] and Bethd 35,47 introduced the level den-
and ETF calculations af>0[17-26,28, the T dependence sity paramete). These calculations have been restricted to
of surface and curvature terms is taken into account. relatively low excitations comapared to those encountered in

The surface symmetry energy is slightly increased withheavy ion collisiond48]. The nuclear level density param-
excitation energy{31-34, and it is a relevant quantity in eter extracted from experimental data leads to the value
studying nuclear fission. That is why knowledge of its varia-a,,=0.125\ MeV ~! [9,16,49,50, while that calculated us-
tion with temperature has to be considered. ing Skyrme forces, including volume effects only, gives

The surface energy term of the LDM, the semi-infinite a,,=0.05%A MeV ~1 [17,31,39. This difference reflects the
slab model, originally suggested by Befl85] and later de- importance of including surface, curvature, and symmetry
veloped by SwiatecKi36], was used to explore the sensitiv- corrections in calculating the nuclear level density parameter.
ity of the underlying nucleon-nucleonN¢N) interactions. The aim of this work is to test the interaction used before
The study of the surface properties of semi-infinite nucleaf3] and to study the effect of symmetry excess parameters on
matter (SNM) is usually done by two methods. In the first the surface and curvature properties of SNM. We also esti-
method, the surface energy is calculated by extracting fronmate their temperature dependence by studying the effect of
the total energy of SNM a reference energy which representhese parameters on the level density parameter.
the bulk contribution. The second method is based on per- In this model, we start with a two-bodgxtended Seyler-
forming aT? approximation for the free energy and then aBlanchard[3]) interaction to calculate the energy of semi-
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infinite polarized nuclear mattdSPNM); then, we expand tion near the surface by including gradient-type corrections.
the density matrix in the relative coordinates up to second’he kinetic energy density in the ETF is given by

order to account for the gradient term of the potential. We

use the extended. Thomas-Fermi form of kinetic energy to B h? 5/3
write the total energy of the system. At low temperature we Eki"_ﬁf *Prs
perform an expansion in th& approximation of the ther-

modynamical guantities to get the free energy. Using thevherer=neutron @) or proton (), ands=spin up () or
Woods-Saxon form of the density, we expand the free energglown (|),

in powers ofAY3 where analytical expressions for the sur-

Vp,s? -
+B(5—'S)+7V2pr,sdr, )

7,S

face and curvature properties as a function of the potential a= 2(37%/2)%3,

parameters can be obtained up to second order in the sym-

metry excess parameter and temperature. We use these for- 1 2172 [ 372\ 43 .

mulas to analyze the effect of temperature and symmetry B= %{1— 128 T) T?p*3

excess parameters on the surface and curvature properties of

semi-infinite polarized nuclear matter. Our results are 3x317* (372\83 .

compared with the other calculations. New guantities, such + 12x8 T) Top™". 8

asa,;, asj, anda;, are introduced and discussed. In Sec. Il
the model and calculations are given. Section Il contains thet T=0, the values of3 and y are taken to b§43,54—56
results and discussion, while Sec. IV is devoted to conclu-

sions. B=4%, y=1. 9)

Il. MODEL AND CALCULATIONS The nuclear density is calculated using the restricted
variational method. We take for this purpose the Woods-
Saxon form for the density. This choice has been shown to
give reliable results for both the surface energy and the dif-
R R . fuseness parametef8,41,42,57,58 In our model, the pa-
(ij|V]ij >=f pi(r1)pj(ra)V(r,s)drds, (1)  rameters of the Woods-Saxon function, namely, the diffuse-
ness parametat and the half-value radiuR, for SPNM are
wheref=1(r,+f,) is the center of mass coordinates andP!t " @ general form, namelg,,s andR, s, respectively.
- . L , , o However, the diffuseness paramters for neutrons and protons
s=(ry—ry) is the relative coordinate. Expandipgin pow- 516 nearly equal42] (exactly equal for small neutron ex-
ers ofs up to second ordeli51], we obtain cesses as can be demonstrated by considering the two
- > coupled Euler-Lagrange equations, and consequently
pi(r)=pi(r)+z8-Vpi(r)+ gss:Vpi(r). (2 ¢ __—q.
‘The Woods-Saxon form for SPNM becomes

The direct two-body matrix element between a pair of
nucleons in statesandj is given by

Substituting into Eq(1) and integrating by parts over we
get(ij|Vlij)=Jpi(r)p;j(r)V(r,s)drds B Pors
Prs™ 1 exdr—R,o)/d’

(10

1f f - -
——| V| pi(r)-Vpi(r)V(r,s)dr s*ds. 3
6 pilr) Vpi(NVI(r.s) ® wherepg, ¢ is the asymptotic density deep inside the system.

. . The relation betwee and the densityg of NM is given
In our model we use the two-body interaction of Seyler Pozs Yo g

; ) . b
Blanchard[3,52,53, with separatiors and relative momen- y
tum p, which is a Yukawa force plus a momentum- Pon = po(L+X+Y+2),
dependent term. This interaction is

—s/a 2 pon; =7 po(1+X=Y=2),

p
V(I’,S)——Cllus/—a 1- F)—V(I’)V(S), (4) (11)
=1 —X+Y—
where Popr = 3 po(l=X+Y=2),
p2 Pop; = 1pPo(1—X=Y+2Z),
V<r>=—cl,u(1—g) (5) |
whereX, Y, andZ are the excess parameters defined 3y
and NT+N|—-21-2Z]
X= =neutron excess parameter,
V(s)=e %3/(sla). (6) A

The potential energyKy) of polarized NM is given in NT—N|+ZT—-Z]
Appendix A where the exchange term is negledted Y= A
For the kinetic energy, we used the extended TF formula.
This formula was introduced to account for the density varia- =spin-up nucleon excess parameter, (12)
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NT—N|+Z1+Z] Applying these simplifications, we can calculate the total
Z= A energy E and correspondingly the free energy
(F=E— ST, whereS s the entropy. The expression fa in
the case of polarized NM is tak¢8], using the Fermi-liquid
approximation of Landau, to be
whereNT or N| is the number of neutrons with spin up or
down andZ? or Z| is the number of protons with spin up or
down.

=spin-up neutron excess parameter,

1 1 N
S= I_);S 2_77_)§f dk[pr,sln(Pr,s)+(1_Pr,s)|n(1_Pf,s)],

The relation between the number of particles and their (19

densities is given by

fpmdF=NT, fmdF:Nl,
(13

fppTdFZZT, fppldF:Zl.

These integrations are solved analyticahge Appendix B
to give

. 4w 3 _—
p'r,Sdr: ?pO’T,S(RT,SJFW d RT,S)' (14)

Solving forR, ¢ we get
Ryt =R =Ry =R, =R=(3A/4mp,) 1

772d2 Do 1/3
3 |73A

(15

which can be written in terms of Fermi integrals as

1 5 JaA 159
S=— rls a0~ Mrsl-
;s P 43 3j1A 7s) s

In the low temperature limit, the entropy per nucleon be-
comes

(20

T+0(T3). (21)

I12 m
S= T;s p T'S[hzb,,skfz

This equation can be expanded to second orde, i, and
Z [4] as

S=S,+X2S,+Y?2S,+ 723, (22
where

S,=m?mT/h%b, K? (23

and

This means that in our calculations the half-value radius de-
pends neither on the spin nor on the isotropic spin of the
nucleons. This gives a zero neutron skin, which is the as-
sumption of the liquid drop model and the compressible lig-
uid drop model[40]. This has been shown, experimentally
[59], to be a good assumption for ordinary nuclei. However
for neutron-rich neutron star matter nuclei, this may not be
good assumption.

S.=S,=S,= — 7°mT/%h?b, K?.

We can express the total free energy as a sum of volume,
surface, and curvature terms. Each term is a function of the
potential parameters, the density at saturation, and the sur-
face diffuseness parameter. The resulting expression is writ-
Fen as(see Appendix A

With these simplificaltions we see that the total energy F=F,A+FAX+F A3 (24)
contains terms likg p9dr and [ pPpidr.
Following the method adopted by Srivastd$8], the in-  where
tegralsf p9dr can be approximated in the form
grals/p PP Fo=Foot FuX2+F, Y24+ F, 72 (25)
q 4z AT 3 2 2 2 2 2
pr,sdr: ?pOT,S[R —3A1(q)R°d+6A,(q)Rd Fs=FsotFsX 'H:syY +FsZ%, (26)
—6A5(q)d?], (16) Fe=FcotFoX?+Fe Y2+ Fc,Z2 (27)

The surface diffuseness parametkris obtained(as a
function of the symmetry parameters and temperatbse
minimization of the volume free energy with respectdp
thus,dF/9d= 0. Since the volume free energy is independent
of d and the curvature energy depends quadraticallydpon

where the coefficienté,(q) are given by

_ 1 ” -xy—q
A”(Q)_(n——l)!fo [(1+e™)

+(=1)"(1+e ) 9x" tdx. (17)  we have
Using the same technique, we foufsite Appendix Bthat IF _dFs_
gd  ad
a pgie AT 3 2
f pT,de,Sdr: ?pOT,SPOT’,S/[R _3A1(p+ q)R d If we write

+6Ax(p+a)RP+6A5(p+q)d’]. (18 Fs=P(po)d+N(po)/d,
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TABLE |. Coefficients of the density expansipEq. (31)]. The
units of these coefficients are fr. (PW: present work.

Pon Px Py P, Py pt Ref.
0.145 1176 1.214 1.115 0.002 —0.0002 PW3
0.144 009 162 084 0.012 [4]
0.225 0.49 [62]
0.185 0.45 [56]
then

d=[N(po)/P(po)]1*? (29)
where

N(po) =Ng+N,X2+ N, Y2+ N,Z?,
P(pg)=Po+PyX?+P, Y2+ P,Z2,

where the functiondly, N;, pg, andp; are given in Appen-
dix C.

The density in the above equations is the equilibrium den-

sity for zero temperature symmetric NM. The equilibrium

density, for zero temperature NM with a neutron excess, was

deduced by Weiss and Camerdfl], Bethe [62], and
Dworzeckd 63]. Hassaret al.[4,64] generalized the equilib-
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ngn (7FX (9Fy
=pon| 1— —{ponX?+ — ponY?
Po POn{ K dpon Pon IPon Pon
+—2 ponZ2+ —,—W2mT 2\ (30)
IPon Pon 3,053 372
and we get

po=pon[ 1= p T?=(px—p'TAX?=(py—p'T?)Y?
~(ps=p'TAZ?).

To calculate the surface and curvature properties at the
equilibrum densitypg,, we have to rewrite the functions
N(pg) andP(pg) in terms ofpg, (see Appendix €

The surface and curvature properties as well as the dif-
fuseness parameter have been calculated at the equilibrium
density of symmetric NM. The results up to second order in
X, Y, Z, andT are of the form

(31)

d=do+ agT?+ (dy+ a, TH)X?+ (dy+ a, T?) Y2
+(d,+ @, T%) 22, (32)

F=FgotasT?+ (Fext as T 2)X?+ (Fgytas, T3 Y?
+(Fs+ag,T9)Z2, (33

Fe=FeotacT?+ (FoxtacT2) X2+ (Foytag, T2 Y?

+ (Feptac,T2)Z2. (34

rium density for nonzero temperature and polarized NM. InaAnalytic expressions are obtained for all the parameters ap-
SPNM, to get the equilibrium density as a function of thepearing in Eqs(32)—(34) (see Appendix €

symmetry excess parameters and temperature, we minimize |t js straightfoward to deduce the level density parameter

the free energy with respect tg. SinceA is finitely large in
the case of SPNM, we hayé5]

oF  oF,
dpo  Ipo

(29

Following the strategy adopted by Hassztral. [4], we get
po up to second order iX, Y, Z, andT as

from the dependence of the total free energy as well as the
total energy onT? through the low temperature expansion
[22,39 and using the TF or ETF formuldor kinetic en-
ergy). This gives voume &,), surface &), and curvature
(ac) level density parameters. The results are

a;=ajo+ aX?+ay, Y2+a;,Z?,

i=v,s,C, (35

wherea,q is obtained as

TABLE Il. Coefficients of the diffuseness parameter expansion equédi®)n The units ofd; are fm and

the units ofa; are fm MeV 2. (PW: present work.

Parameter dy d, d, d, apx10° @, x10°  @,X10°  a,X10°
Force
PW3 0431 —-001 -001 —001  0.0025 0.0043 0.0024 0.0074
PW2 0.431 0.36 0.37 0.35 0.0025 0.023 0.022 0.025
PW1 0.431 0.36 0.37 0.35 0.0038 0.040 0.40 0.041
i 0.421 0.0035
SII 0.398® 0.0033 2
SIV 0.445° 0.0037°
sV 0.467° 0.0038 @
SVI 0.394° 0.003®
SKT 0.487% 0.0043 ®
SEI 0.469# 0.0041°

%Referencd32).
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TABLE IIl. Coefficients of the surface free energy expandiBq. (33)]. The units ofF¢; are MeV and the
units ofag; are MeV ™1,

Parameter —Fy -F, —Fy, -Fy, ag ag, agy as,
Force
PW3 215 -31.0 —300 —320 —0.145 0.320 0.259  0.419
PW2 21.5 -270 —262 —282 —0.145 1.018 0.979 1.08
PW1 21.5 -270 —-262 —282 —-0.191 1.616 1.6091  1.627
SII 19.65%  52.0° —0.18932
20.08 © -0.199¢ —09174°
20.17¢  60.0¢
SIII 18,92 29.0° 0.183 2
19.29¢  479° —0.194°¢ 0.0171°¢
18.89°¢  332°
20371 —0.2338
18,79¢ 35009
18.04"  g88.11"
SIV 20.28%  55.00° —0.193°
1875¢  296° -0.185°¢ 0.0161 ©
20.12¢  64.00¢
SV 21.15%  74.00° —0.1952
21214 97.00¢
SVI 18312 22.00° -0.176 2
18.75¢  23.20°¢ -0.185¢
18.13¢ 25,004 —0.218¢8
SKM 18.72* 48.2° 0.22°¢ 0.0181°
18.83¢  589°¢
19.16 0.228 8
17349  57.00¢
SKM * 19.37¢  479° -0.253°¢ 0.0188 ¢
19.06¢  58.0°
17964  55.00¢
17.22% 6037
SKT 19.54%  5300°
SI 17.96¢  389°
SKa 19.57¢  74.00¢
18527 71291
SKM(ITF) 61611  5864" —0.139°8
3Referencd32].
bReferencg 65].
‘Referencd31].
dreferencd 34].
‘Referencd42].
'Referencd 66].
9Referencq 26].
hReferencd 30].
m°m the equation of state. Here we restrict ourselves to the study
av0:3ﬁ2p573 (38 of the surface and curvature properties of SPNM using the
extended form of the Seyler-Blanchard interaction intro-
and duced before. Our extended potential has a set of fitting pa-
o rameters, and we took into account only the direct term.
avx_avy_avz__§a00' (37)

Ill. RESULTS AND DISCUSSION

For the kinetic energy density, we used the ETF formula
which contains gradient and Laplacian terms to account for
variation of the density near the surface. The Laplacian term

In previous work 3] we have studied the bulk properties is equal to zero as a result of neglecting the neutron skin
of polarized nuclear mattéPNM), focusing our attention on thickness. We considergg= 1/36[43,54—58, and we found
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TABLE IV. Same as Table Il but for the curvature free energy expanfdian (34)].

Parameter F. -F, -F, -F ac ax agy a.,
Force
PW3 9.9 20.0 19.3 21.0 0.429 0.229 0.223 0.329
PW2 9.9 17.0 16.0 18.0 0.429 0.358 0.356 0.431
PW1 9.9 17.0 16.0 18.0 0.422 0.440 0.445 0.431
SI 6.492 272
SII 11.6°
S 7.222 26°
11.29°¢ 0.103¢
10.00°®
8.66 ¢ 49.32°¢
SIV 12.10°
Y 13.8° 0.039¢
SVI 9.30° 0.166 ¢
SKM 9.992 518
15.35°¢ 0.175¢
129°
12.31°¢ 37.27¢
SKM* 10.632 522
14.50°
14.13¢ 40,7
10.24F
SKa 13.6°
13.88°¢ 47.28¢
SKM(ITF) 0.267¢
8Referencd42).
PReference 34].
‘Referencd 66].
dReferencd 26].
®Referencd 30].
fReferencd58].
that a large value of3 gives rise to a large value of the R= (3A/47TP0n)1/3[1+ 10 T2+ 3 py— plTZ)x2
surface energy43,54—58.
The results below are carried out for different forms of
, hamely, 1
& ’ Po="Pon. (39) + 300y TOY?+3(p,—p'THZ?. (40

pon(1=p1T?), (39)
and the full expansmn form qéo given by Eq.(31). Equa-

tions (38), (39), and(31) are referred to in the text dPW1J), From this equation, the half-value radi&sincreases with

(PW2), and (PW3), respectively. increasingX, Y, Z, andT. The coefficienip'T? has a small
Table | gives the coefficients of the density expansioneffect in the range of temperature considered (9—-12 MeV

[Eq. (3D)] compared with previous calculations. We notice  Table Il gives the coefficients of the expansion of the

that there is fair agreement between the values of the coeffdiffuseness parametdr; Eg.(32). The value ofd, is slightly

cientsp, and p, with those of Hassast al.[4], but there is  less than the empirical valuel{=0.5 fm [51]). This result

a difference in the values of the coefficigng. It has been can be modified by using the Fermi distribution for the den-

shown [61] that these coefficients are strongly correlatedsity [31,42. The parameter, has different values corre-

with the values ofg,, E,, andE;. In our case, we have sponding to the application of different formsaf. It is also

E,=33.4 MeV, which differs from that used by Hassatmal.  sensitive to the two-body interaction usgs®].

[4] (Ex=28 MeV), while the values oE, andE; are nearly To the best of our knowledge, the valudg, dy, d,,

the same. This is reflected in the agreemenp,poéndp; in ay, ay, anda, have not been reported before. The effect of

both calculations. d; (i=x,y,2) is to decrease the diffuseness parameter in the
The half-value radiuRR can be easily deduced from the case of PW39]. An opposite effect is obtained for the two

relationR=(3A/4mpo) Y, keeping only theA® term in the  cases PW1 and PW2. This is in agreement with the other

expansion oRR as a first approximatiof®]. Using Eq.(31)  calculationd62,66]. The effect ofe; is to decreaséncreasge

we get the diffuseness parameter in case of PW2V1 and PW3
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The parameters of the surface energy, &%), are listed TABLE V. Volume level density parametefEgs.(35) and(36)]

in Table Ill. The values oF ¢, are in reasonable agreement in units of MeV™™.

with the previous calculationg67,68. The value ofa; is

very sensitive to the form of the density uséeW1, Pw2, Force &0 Box Aoy &z
and PW3, and it varies largely with the type of the force pws3 0.075 —0.008 —0.008 —0.008
used. We notice from Table lII that the values found in thesi| 0.0412 —0.0035°

literature for the surface symmetry eneifgy, range between Sl 0.054¢ —0.0061°

—22 and 97 Me\[29,30,5Q and our value of, lies in this ~ SIV 0.068° —0.0082°

range. The surface free energy for the symmetric unpolarize8vV 0.026°

system K=Y=Z=0) vanishes at temperatures betweenSV! 0.068°

10.6 and 12.1 MeV for PW1 and PW2. This temperatureSKM 0053  —0.005"

range is critical, because in this temperature range, the symg
metry free energies have very large negative values and th;'?z
diffuseness parameter increases to very large positive value%
This critical temperature may be understood from the fact
that with the increasing of temperature, the system undergoes
a phase transition from the liquid to the gas phase. Thigesults when the value of the effective mas$ is near to
phase transition starts at a critical temperaffyg=9 MeV  that of the bare mass. In our casem*/m=1.

[3] and continues until a layer of the gas phase covers the

surface of the system at the temperatlire=12 MeV at

which the surface energy vanist&. A similar critical tem- IV. CONCLUSION

perature was obtained by Stocker and Burz[af,49 for

symmetric unpolarized NM. It was also found in the HF ~ The agreement between the calculated level density pa-
calculations of Bonchet al. [18,19,23 that there exists a rameter and the experimental values reflects the fact that our

limiting temperature T.=8-10 Me\) beyond which the formulas for the temperature dependence of the surface and
nucleus becomes unstable. At this temperature, no solutiogurvature properties are reasonable. If the level density pa-
for the HF equations can be obtained. The same kind ofametera comes out to be close to experim¢89], this is a
instability was found by Bonche and Levjtt9] and Krappe pure accident due to cancellation of two different errors.
et al.[69], using a semiclassical approximation for hot nuclei (i) The HF and ETF methods cannot give the experimen-
(Tc=8 MeV). The parameterg, and Fs; have a similar tal level densities. They are known to be systematically too
effect onFg asFgx has; namelyFs decreases with the in- low by 20-30% due to correlations. Only at large tempera-
creasing ofX, Y, andZ. The parametersy; differ for dif-  tures do thes§78,79 correlations become less important.
ferent forms ofpy. The value ofag, is larger than that ob- (i) The present approximation of usifig=0, ETF func-
tained numerically in Ref.31]. tionals, and adding the lowe3t correlation—the so-called
The coefficients of the expansion of the curvature freqow temperature approximation—has been shown to fail for
energy[Eq. (34)] are listed in Table IVF ¢, agrees with the  the level density parameter[28], giving an overestimation
known theoretical value of 10 MeY70Q]. If we take into  of about 30%.
account the compression of the bulkl], one obtains @  Several new parameters were introduced in this work such
smaller value of ;o=5.64 MeV. This value is in agreement asa, ;, a,;, anda,;. We believe that their values need to be

with the findings of the recent analysis of nuclear masses angsted for different interactions. This will be done in the near
fission barrier heightd69,72. The curvature symmetry fyture.

energyF ., agrees with the values extracted from the thermo-

dynamic potential of Kolehmainest al.[42]. More calcula-

tions are still necessary to determine the precise value of

ch- 30
The surface and curvature parametats and a;;, dis-

cussed before, are essentially those which appear in the level

density parameter formul&qg. (35)]. The volume level den-

sity parametergEq. (36)] are given in Table V for PW3. The .~ *I

results for PW1 and PW?2 are the same as those of PW3 forz

a,o, but differ slightly fora,; . The value ofa, is in agree- = e .

ment with the valué8,61,73—76a=(1/8.8)A MeV . The ol S

values ofa,; are directly related t@,,. The symmetry ef- .y

fects have been found to be negligible. In order to have a .

closer assessment of the level density parameder

(a=a,A+aA?*+a.Ad), it is depicted in Fig. 1 together 0 50 50 s 255 750

with previous results as well the experimental dat@]. We A

notice that the agreement between our results and the experi- F|G. 1. Level density parameteras a function of\. Ref.[26]

mental values is reasonable. It has been stressed beforeSKM (m*/m=1), Ref.[74] = CI, present work= PW, Ref.

[39,77) that the value of the level density parameter dependg3g] = SV, Slll, SKM (ITF), SlI, and experimental dats Ref.

on the value of the effective mass*, and we obtain better [70].

eferencd 32].
eferencd 31].
eferencq 26].

SKM (m */ m=1)

p oy
W Vot
svi . .

S

SKM (ITF)
SII
Experimental data [ .’...' . o

e s X O o P> 44d
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APPENDIX A

The potential energyH,,) of polarized NM(the exchange term is neglectggl) is

. 127a3Cy (37228 R
Ep:—ZWa3C11f (P§T+PﬁL+PST+P§QdF+T > J'(P§/¢3+P§/¢3+Pg?3+9§13)df
127a°Cy; (3 213 2 213 2/3
— =z | 2| | (Vea)?ei+ (Vo) 2enr+ (Vou)2pis + (Vou) piidr

+27735C11J (me)z*'(VPnT)Z*‘(VPnT)Z"‘(VPnT)Z“‘(VPnT)ZdF_‘lWasCluf(PnTPni"‘PpTPpl)dF

12wa’Cy, 372\ %3 5/3 5/3 5/3 5/3 = 5 r
A= (PniPni+Pappnr+pprPp T Pppp)dr +478°Cyy | (Vo Vn + Vo Vp )dr

127a’Cq, 372\ %3 R

ez |2 f(VPmVPmVPﬁ/TBJ“VPnTVPnLVP%s*VPmVPmVPg/TS”LVPmVPmVPE/f’)dr
12ra’Cy, (37?| %3 53 5 .
T 752 | 2 (Pp1Pait ppar + P oL+ poipn AT +47a%Cay | (Voo Vg +Vpn Vpp, )dr
5 . 12ma°Cy, (3w%| %P 23 2/3
+47a*Cyy (VPnTVPpT"‘VPnLVPpL)d"_T > f(VpnTVpprnT+VpnTVpprpT
23 203y 47 5 b
+Vpnivppipnl+Vpn1VPp¢Ppl)dr 4ma Cuuf (PnPp1 T Pnrpp) ) dr

127a®Cyy (372\ 2 53, 503 53 4= 5 r
—|—T T (pnlppT+pnlppT+anppl+pnTPDl)dr+4ﬂ-a Cuu (VpanppT-l-VpnTVppi)dr

127a°Cy, 3772 213
T T 5pZ |\ T2 f(VPnTVPprnT+VpnTVppippL+VanVPprn1+VpniVPprpT)dr (A1)

The total free energy i§=F,+F A?*+F AY

3ma® . /3w?\#% 3h? _ (37723 mPmT2[ 2 \%B
Fuo=—r2C ——pd - -5zl as (A2)

0T BpZ “Po 1T T 1omP0 | 2 2h2p2R\372)

2ma’ 5/3 mad h? o/ 372\ PmT2 [ 2 \?B
Fu=gp7 Cire 5 Cirot gl | 3| T el 37 (A3)

c

3\%8 12772a3dC 8\(9\%® 242%a°
st”za?"’g’?’dc(r) Saonlglla

w

2/3
E) [A1(2)+A1(4)—2A4(3)]p5"

12772a5C 2’3 14 11\] 6h%d (97\?® [(5\ 2h?mB [ 3|%°
e I R o R e | e BN e R A P MV
2mT?d  [1)/1)\?

a3l "y

3 2/3 277 4/3 3 2/3 8772an ) 9 2/3 8
g Ci— d C [A1(2) +A1(4)—2A1(3)]— TCiPo? A1§
1
2

Fei= 2172a3dp3/3< P
11 2h27rd 97\2® [5\ 2mmTd (1 213
Tam o) Ml3) T engm Ml gl) o A9

87T2a5 5 97 2/3
- 3bZd CiPO ?
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4mad (1|13 8\ » 4 s ., (8 14 11
FC(): 5b2 Po E 6A2 § d°—7°Ad °—6a A2 § +A2 ? _2A2 ? C
27%h2d? 1\ sal 2m7h? .3 1/3+ 27°mTd?( 1 \YY . A6
B P R T R e A b A E T
8n%°% ] (8 . ., (8 14 11
FCi: 5b2 Po 6d A2 § —m°d“—6a Az § +2A2 ? _2A2 ? Ci
27%hd? |, (1\ 1 o szmzdz( 1\, . A7
“ Tz Polp) [T %3] Tame (32) |7 %)) (A7
[
where R o
I=4qrf pq(r)pp(r)rzdr+4wf pd(r)pP(r)rdr
0 R

C=Cy+Cyy*+Cy1+Cuu,
C,=2C1+2C,—Cy,—Cuu»
Cx=CutC1y—Cur—Cuu,
Cy=2C;;—Cyq+2C;;—Cyy,
Cy=Cy1—Cypy+Cy—Cyy,
C,=2C;—Cy,—Cy1+2C,,

Cy=Cp—Cu—Cuy +Cyy, (A8)

andi runs overx, y, andz.

APPENDIX B: CALCULATION OF INTEGRALS
INVOLVING TWO MULTIPLIED WOODS-SAXON
FUNCTIONS TO A POWER

The Woods-Saxon form of the density is given by

=1,+1,.
Forl,, r<R, and thus we define
—x=(r—R)/d
and we get

R/D

|1=47po8p8J' (1+e ) 9%1+e ) P(R—dx)%dx

0

R/D

=47qup8f (1+e )~ (PTI(R—dx)%dx

0
using
(1+e )~ (Pt
=1+ 2 (-7
m=1

><(|0+q)(|0+q+1)~ ~(p+tg+m—1)e ™

p(r)/po={1+exd (r—R)/d]} ~*. (B1) o
In our model calculations, we need to calculate integrals of *
the form =1+ 2 Am(p_l_q)e—mx’

m=1
|(p,Q):j pP(r)p%(r)dr, R/d *
0 |1=47po8p8f 1+ >, Ay(p+g)e ™| (R—dx)2dx
0 m=1

where

pP(r)=pg/{1+exd (r+Ry)/d]}P

and
pA(r)=pg/{1+exdr —R,]/d,}q.
In our calculations we set
R,=R,=R, d;=d,=d.

Equation(B1) can be evaluated by noting that

R O R? 2Rd 2d?
_ P q Rd[
47TdP0Po[ 3d +mE:1 An(pt+Qq)e m_ e T
2d?
_ -mR/d
m3 € ) } (B2

Forl,, r>R, and therefore we define

y=(r—R)/d,
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I2=47po8pgf (1+ey)f(p“”(R-i-yd)zdy=41'rdp8pgf e (PTAY(14+e7Y)"(PTI(R+yd)%dy
0 0

:47po8pgf0 e (PTa)y

1+ Am<p+q>e-my]<R+yd>2dy
m=1

=4wdp8p8H e (P*IY(R+yd)2dy+ > Am(p+q)f e<p*q*m>y(R+yd)2dy]- (B3)
0 m=1 0

Thus

R3 2 R
| =47Tp8p8{ 3 —2d3ﬁAl(p+ Q)+ gAAPFa)~As(p+9)

. _ 1) e-mR
(p+a)(p+q+1)---(p+g+m—1) e ]’ ®

_ m—1
+mE:1 (-1 -~ 3
with

1
(n—1)!

An(p+Qq)= fo {1-(1+e )~ PFO4(—1)"(1+e*)~ (PTIIx"~1dx.

If R>d, the second term df [in Eq. (B4)] can be neglected. Thus we can write, for

A
1(p.q) = 3 pbp{R°~ 3R?dAs(p+q) + BRAPA,(p+ 1) ~ 6d°Aq(p+a)}. (B5)

APPENDIX C

The functions folN(py) andP(pg) are given by
N(po) =Ng+ N, X2+ N, Y2+ N,Z? (C1)
and
P(po) =Po+ Py X2+ P Y2+ P,Z?, (C2
where

127%a°

No— C29772/3A8
0= " 5p2 Po? 1

3/t A

4 (1 2254,332’3 ) )
? —2A; ? - 7Tan0 E [Al( )+A1(4)_ Al(s)]

_oR2 1/31 23 _
2oy 5| [A3)-2],

8
3 tA

11

8m2a® 97 14 328
( —)—ZAl(—H—zwza%éﬁ(E) CilAL(2) +AL(4)—2A((3)],

NFWCin

Ax 3 3

8

3\# 127%3  (9m\#® (8| 6h? [(97\¥ 2amT?(1\%® (1
. - Al 2 1 '

“Bpz POl g 3] BmPo T Re,TE 3

and

3 2/3 877233 9 2/3
Pi=27Tza3Cipg/3(E) _Wcipg(?)

2

2h277p0(977)2/3 zmez(l)Z’S (1)
_ - .

These functions are written at the equilibrium density. Using the density expdii&ioB1)] we get
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N(pon)=N°(pon+N(pon) T (€3
and
P(pon)= PO(pOn) + Pl(pOn)TZv (C4)

where the function®N(pg,) andP(pg,) are expanded iiX, Y, andZ up to second order. The result is

FOl= oM Fo X2+ FOYY2+ F 272, (CH)
where
o 12m?a® _, [9m\?F (8 14 11 5o 3 3\
NOZWCPOn 5 M|z A T 2A 3] [T 27 aCpon| 7| [AL(2) T AL(4)—2A4(3)]
27T B 3 213
— Ponl 7| [AGR)—2], (C6)
o 24m%a , (97 8 14 11\] 8% ./ 3%
Ni=——gpz=Criron| 57| [A1|3]TA1| 3| ~2A1 3| |+ 3pz Criron| 7| [AL(2)+A1(4)—2A.(3)]

2h?mp . 3\ 8n%a® [ (8 14 11
+ am PiPon pp [A1(3)—2]+3—bzcip0n Aq 3 +A; 3 —2A, 3
2/3
5 4/3 3
—2m%%0| 7| CilA2)+AL4)~2A(3)], €7
24r’a® , (97 14 11\] 8n?a® 3R
0=~ T5pz CPunP| 5| | Al g A T 2| T +ch0npt yps [A1(2) +A1(4)—2A4(3)]
2h2’77ﬂ 3 2/3
+3m ptpéﬁ(h) [AL(3)-2], (C8)
, 167%a? 9w\ (8 14 11)] 8=m%a® ./ 3%
Ni'=——3pz Cipwoon| 5 1|3/ A1 5| ~2Ad ] |+ 3pz PrPon| 7| [Ad2)FA(4) —2A4(3)], (C9)
PO= 2227l 3R 12772:;13C , [9m\*® (8| 67h® (97 2’3A 5 10
& Coon| gz~ mp? CPonl g | A3 Emrol g Ml3) (10
8n%a’C . 3\*® 8x%ad | 8\(9m\?® 24n%a%C , (9w 8 o s an~ | 3\°
Pi=——3riPon| -] ~ 3pz PanCifil3|| 5| T —gpz Piron| 5| Ailz|T2m@ponCil 1~
6mh? 9m\#® (5
+_5m PiPon| —g~ A1 3) (€11
, 8w 2a3 wdl 3\¥% 24m%a®  , [9m\?® (8| 6wh? 9m\#® (5 2mm (1\*® (1
Po=— Cowon| 7| + gpz CPwon| 5| Ail3]+ 5y PPon| 57| Adl3 T2, g Mgl
(C12)
and
, 8r%ad e, 167°a® , [9m\?® [8) 2m [1)\*R 1+3p;\ 2wh? 9m\# (5
Pi=——3"Cipwont —gpz— Cirwoon| 5| Ail3 ~ 72 2 A3/~ | 3m Pron| 57| Al 3]
n
(C13
APPENDIX D

We shall use EqgC3) and(C4) to express the surface energy and the diffuseness parameter in tesgas @he result up
to second order iX, Y, Z, andT is written in the form

d=do+ T2+ (dy+ a, T X2+ (dy + ay T Y2+ (d,+ a,T?) Z2, (D1)
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F=FeotagT?+ (Foxt agTH) X2+ (Fyy+agy T?) Y2+ (Fg+a5,T%) 22, (D2)

where
do=(Ng/Pg)* (D3)
o= 7ol (Ng/Ng) — (P5/Po)], (D4)

o= 5do{ 3[(NY/NG) — (PY/P)TLING/NG) — (Pg/PY)]+ (NG/NIL(NJ/NG) — (NP/NJ)]
—(P3/POIL(P{1PG) — (PP}, (D5)
di=zdo[ (NY/Ng) — (PY/Pg)], (D6)
Foo=2(NgPg)"2, (D7)
aso=2(aoPg+doPg) 2, (D8)
agi=2(aoP?+dgP!+ a; P92, (D9)
and

Fei=2(d;PS+d,P?). (D10)

In order to obtain a similar formula for the curvature energy, we expingp to second order iX, Y, Z, andT. The result
is

Fe=FeotacoT?+ (Fext AT A)X2+ (Feoy+ag, T2 Y2+ (F,+ac,T9)Z2, (D11)
where
3,3 1/3 21,2 22 1/3
Feo= o 0p8’3(£) [eAz(g) (NO) T 6Az(§) (NO) M 2/3( )
Cl
5b ni2 3 Py 5m Fon 3 PO m 4a
36ma’ 41 Y N VL P e o1
5b Pon 2 2 3 2 3 2 3 ’ ( )

6’77 a 1/3
A= gz 5 pgﬁ( )

7TpNg)  37%h? 5 ) 4pNJ
) Kdl_ 3pg | ¥ Tem Pon| OA2| 3] T || T R0
2

A4mh’p e 3\ 2m’m/ 1 Y3NG L BAmaS g1 1’3A 8, (14, (1
“3m PtPon E 3h2 | 3742 P_g “gpZz “PtPon| 5 2\ 3 2| 3 2l 37| |
(D13)
_emfad L 1\" oA 2| ol 4 7piNg| 10CiNg| 3wh? ] a8 2 5NQ iy 4piNQ
¢i”gpZ Pon| 2 2|3/ " 1" 3pPY 9PY 3m Pon| PR2l 37T |1 gp0 T2 T T3pD
36r%a® . (1|" N TN P TE LA 3mwh? L, [ 3)\'° -y
5p2 Pon| o 2|3 2\ 3 2| 37| g v 3P 3m PonPil g (D19

and

6mad 1\ Y 8
aci= 5b2 pg?(z) 6A2 § _772

10 7pNJ
]

C( dsi— d1P| d2pt 9 3p
0

2m’m| 1 1’36A 1) ](Ng 56m°a° _ 7,311’A 8 o [H (1
Tm?\3a2) %3] T\ Y] T Tapr Vitven| ) | Ao 5] TR 3] A T

5

(D15)

4 4
dsi— §Pidi_ §Ptd2i+
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where
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d;=[(NYNQ)— (PEIPS)1/(P)?,

dai =[(NY/NS) — (PY/P3)1/(PY)?,

and

dgi=(NY/ P (NY/N3) — (PP 1—[NSPH (P2 (P1/PY) — (NH/ND)]

+(N/POL(NY/NG) — (PY/P) IL(NG/NG) — (Pg/PY)].
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