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Thermostatic properties of semi-infinite polarized nuclear matter
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The surface and curvature properties of semi-infinite polarized nuclear matter~SPNM! are calculated using
an expansion for the Fermi integrals up toT2. A density matrix expansion is obtained for a modified form o
the Seyler-Blanchard interaction. New parameters that characterize the surface and curvature prope
SPNM are introduced. The level density parameter is extracted from the low temperature expansion of th
energy and compared with previous calculations. A reasonable agreement is obtained with the para
calculated before.

PACS number~s!: 21.651f, 21.30.Fe
r-
ded

ce

ic
al
it

M.
a
of

he
al-
us
he
ure
ults

of
ity
cal
,

to
in
-
lue

s

try
ter.
re
on
sti-
t of

i-
I. INTRODUCTION

One of the most exciting features of finite and sem
infinite quantum systems is their surfaces@1,2#. The surface
region of a nucleus greatly influences its binding energ
level spectra, and reactions.

One of the widely used models in studying these finit
and semi-infinite systems is the liquid drop model~LDM !. In
the liquid drop model, the binding energy of a nucleus i
written as a sum of volume, surface, curvature, and Coulom
terms. The volume term of polarized nuclear matter~PNM!
was studied before using Seyler-Blanchard@3# and effective
Skyrme interactions@4#. Surface and curvature energies ar
important in studying heavy ion collisions and in astrophys
cal applications@5#. Surface and curvature energies are als
instrumental in determining the size distribution of fragmen
which are emitted from the expanding collision for tempera
tures less than the critical temperatureT, at which the liquid-
gas phase transition occurs@6–8#. These are crucial in cal-
culating fission barrier heights and shapes of saddle po
configurations@9#. Also, in describing neutron stars@10# and
supernovas@11–13# it is important to determine the sizes of
nuclei, electron capture rates@14#, and level densities
@15,16#, all of which are sensitive to surface and curvatur
energies. The thermodynamical properties of nuclei ha
been studied theoreticaly by several authors@17–25# using
Hartree-Fock~HF! or extended Thomas-Fermi~ETF! @26–
30# methods at finite temperature. In fully self-consistent H
and ETF calculations atT.0 @17–26,28#, theT dependence
of surface and curvature terms is taken into account.

The surface symmetry energy is slightly increased wit
excitation energy@31–34#, and it is a relevant quantity in
studying nuclear fission. That is why knowledge of its varia
tion with temperature has to be considered.

The surface energy term of the LDM, the semi-infinite
slab model, originally suggested by Bethe@35# and later de-
veloped by Swiatecki@36#, was used to explore the sensitiv-
ity of the underlying nucleon-nucleon (N-N) interactions.
The study of the surface properties of semi-infinite nucle
matter ~SNM! is usually done by two methods. In the first
method, the surface energy is calculated by extracting fro
the total energy of SNM a reference energy which represen
the bulk contribution. The second method is based on pe
forming aT2 approximation for the free energy and then
536/53~4!/1670~14!/$10.00
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leptodermous expansion in powers ofA to account for
nuclear geometry@2,31,32,37–39#.

Dividing the energy of the system into volume and su
face terms means that the curvature energy is either inclu
by rescaling the surface energy term@40# or neglecting it
@4,41#. It is straightforward to show@37,42# that the curva-
ture energy may be simply extracted from the SNM surfa
energy. Chuet al. @43# extracted the curvature energy term
from semiclassical calculations of finite nuclei. For realist
nuclei the contribution of the curvature energy to the tot
energy is not insignificant and there is no reason to ignore
@28#. A model calculation has been done@41,44# by extract-
ing the curvature energy from the surface energy of SN
Farinel @45# used the soluble model of SNM to derive
closed expression for the curvature energy as a function
the surface profile asymmetry. Bracket al. @28# performed
very accurate semiclassical variational calculations for t
curvature energy term. Several attempts to carry out HF c
culations for the curvature energy using the leptodermo
expansion resulted in unacceptably large values with t
same interaction. There are large variations in the curvat
energy and the curvature symmetry energy among the res
for different interactions@42#.

Studying the temperature effect on the bulk properties
SNM leads to a sensitive quantity, namely, the level dens
parameter, which is a good quantity for testing the theoreti
calculations.~Applying the methods of statistical mechanics
Weisskopf@46# and Bethe@35,47# introduced the level den-
sity parameter.! These calculations have been restricted
relatively low excitations comapared to those encountered
heavy ion collisions@48#. The nuclear level density param
eter extracted from experimental data leads to the va
av050.125A MeV21 @9,16,49,50#, while that calculated us-
ing Skyrme forces, including volume effects only, give
av050.055A MeV21 @17,31,39#. This difference reflects the
importance of including surface, curvature, and symme
corrections in calculating the nuclear level density parame

The aim of this work is to test the interaction used befo
@3# and to study the effect of symmetry excess parameters
the surface and curvature properties of SNM. We also e
mate their temperature dependence by studying the effec
these parameters on the level density parameter.

In this model, we start with a two-body~extended Seyler-
Blanchard@3#! interaction to calculate the energy of sem
1670 © 1996 The American Physical Society
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53 1671THERMOSTATIC PROPERTIES OF SEMI-INFINITE . . .
infinite polarized nuclear matter~SPNM!; then, we expand
the density matrix in the relative coordinates up to seco
order to account for the gradient term of the potential. W
use the extended. Thomas-Fermi form of kinetic energy
write the total energy of the system. At low temperature w
perform an expansion in theT2 approximation of the ther-
modynamical quantities to get the free energy. Using th
Woods-Saxon form of the density, we expand the free ener
in powers ofA1/3, where analytical expressions for the sur
face and curvature properties as a function of the potent
parameters can be obtained up to second order in the sy
metry excess parameter and temperature. We use these
mulas to analyze the effect of temperature and symme
excess parameters on the surface and curvature propertie
semi-infinite polarized nuclear matter. Our results a
compared with the other calculations. New quantities, su
asav i , asi , andaci , are introduced and discussed. In Sec.
the model and calculations are given. Section III contains t
results and discussion, while Sec. IV is devoted to concl
sions.

II. MODEL AND CALCULATIONS

The direct two-body matrix element between a pair o
nucleons in statesi and j is given by

^ i j uVu i j &5E r i~rW1!r j~rW2!V~r ,s!drWdsW, ~1!

where rW5 1
2(rW11rW2) is the center of mass coordinates an

sW5(rW12rW2) is the relative coordinate. Expandingr, in pow-
ers ofs up to second order@51#, we obtain

r i~r 1!5r i~r 1!1 1
2sW•¹r i~r !1 1

8sWsW:¹¹r i~r !. ~2!

Substituting into Eq.~1! and integrating by parts overr , we
get ^ i j uVu i j &5*r i(r )r j (r )V(r ,s)d rWdsW

2
1

6E ¹E r i~r !•¹r j~r !V~r ,s!drW s2 dsW. ~3!

In our model we use the two-body interaction of Seyle
Blanchard@3,52,53#, with separations and relative momen-
tum p, which is a Yukawa force plus a momentum
dependent term. This interaction is

V~r ,s!52C1,u

e2s/a

s/a S 12
p2

b2D5V~r !V~s!, ~4!

where

V~r !52C1,uS 12
p2

b2D ~5!

and

V~s!5e2s/a/~s/a!. ~6!

The potential energy (Ep) of polarized NM is given in
Appendix A where the exchange term is neglected@3#.

For the kinetic energy, we used the extended TF formu
This formula was introduced to account for the density vari
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tion near the surface by including gradient-type correction
The kinetic energy density in the ETF is given by

Ekin5
\2

2mE Fart,s
5/31b

~¹rt,s!
2

rt,s
1g¹2rt,sGdrW, ~7!

wheret5neutron (n) or proton (p), ands5spin up (↑) or
down (↓),

a5 3
5 ~3p2/2!2/3,

b5
1

36F12
21p2

1238 S 3p2

2 D 4/3T2r4/3
1
3331p4

12238 S 3p2

2 D 8/3T2r8/3G . ~8!

At T50, the values ofb andg are taken to be@43,54–56#

b5 1
36 , g5 1

3 . ~9!

The nuclear density is calculated using the restricte
variational method. We take for this purpose the Woods
Saxon form for the density. This choice has been shown
give reliable results for both the surface energy and the d
fuseness parameters@2,41,42,57,58#. In our model, the pa-
rameters of the Woods-Saxon function, namely, the diffus
ness parameterd and the half-value radiusR, for SPNM are
put in a general form, namely,dt,s andRt,s , respectively.
However, the diffuseness paramters for neutrons and proto
are nearly equal@42# ~exactly equal for small neutron ex-
cesses! as can be demonstrated by considering the tw
coupled Euler-Lagrange equations, and consequen
dt,s5d.

The Woods-Saxon form for SPNM becomes

rt,s5
r0t,s

11exp@r2Rt,s#/d
, ~10!

wherer0t,s is the asymptotic density deep inside the system
The relation betweenr0t,s and the densityr0 of NM is given
by

r0n↑5
1
4 r0~11X1Y1Z!,

r0n↓5
1
4 r0~11X2Y2Z!,

~11!

r0p↑5
1
4 r0~12X1Y2Z!,

r0p↓5
1
4r0~12X2Y1Z!,

whereX, Y, andZ are the excess parameters defined by@3#

X5
N↑1N↓2Z↑2Z↓

A
5neutron excess parameter,

Y5
N↑2N↓1Z↑2Z↓

A

5spin-up nucleon excess parameter, ~12!



,

-

1672 53S. RAMADAN, M. ABD-ALLA, AND M. Y. M. HASSAN
Z5
N↑2N↓1Z↑1Z↓

A

5spin-up neutron excess parameter,

whereN↑ or N↓ is the number of neutrons with spin up o
down andZ↑ or Z↓ is the number of protons with spin up o
down.

The relation between the number of particles and th
densities is given by

E rn↑drW5N↑, E rn↓drW5N↓,

~13!

E rp↑drW5Z↑, E rp↓drW5Z↓.

These integrations are solved analytically~see Appendix B!
to give

E rt,sdrW5
4p

3
r0t,s~Rt,s

3 1p2d2Rt,s!. ~14!

Solving forRt,s we get

Rn↑5Rn↓5Rp↑5Rp↓5R5~3A/4pr0!
1/3

1
p2d2

3 S 4pr0
3A D 1/3. ~15!

This means that in our calculations the half-value radius
pends neither on the spin nor on the isotropic spin of
nucleons. This gives a zero neutron skin, which is the
sumption of the liquid drop model and the compressible
uid drop model@40#. This has been shown, experimenta
@59#, to be a good assumption for ordinary nuclei. Howev
for neutron-rich neutron star matter nuclei, this may not b
good assumption.

With these simplifications we see that the total ene
contains terms like*rqdrW and*rprqdrW.

Following the method adopted by Srivastava@60#, the in-
tegrals*rqdrW can be approximated in the form

E rt,s
q drW5

4p

3
r0t,s@R

323A1~q!R2d16A2~q!Rd2

26A3~q!d3#, ~16!

where the coefficientsAn(q) are given by

An~q!5
1

~n21!! E0
`

@~11e2x!2q

1~21!n~11e2x!2q#xn21dx. ~17!

Using the same technique, we found~see Appendix B! that

E rt,d
q rt,s

p drW5
4p

3
r0t,sr0t8,s8@R

323A1~p1q!R2d

16A2~p1q!Rd216A3~p1q!d3#. ~18!
r
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Applying these simplifications, we can calculate the total
energy E and correspondingly the free energyF
(F5E2ST, whereS is the entropy!. The expression forS in
the case of polarized NM is taken@3#, using the Fermi-liquid
approximation of Landau, to be

S5
1

r(t,s
1

~2p!3
E dkW @rt,sln~rt,s!1~12rt,s!ln~12rt,s!#,

~19!

which can be written in terms of Fermi integrals as

S5
1

r(t,s rt,sF53 j 3/2~ht,s!

3 j 1/2~ht,s!
2ht,sG . ~20!

In the low temperature limit, the entropy per nucleon be-
comes

S5
P2

4 (
t,s

rt,sF 2m

h2bt,skf
2GT10~T3!. ~21!

This equation can be expanded to second order inX, Y, and
Z @4# as

S5Sv1X2Sx1Y2Sy1Z2Sz , ~22!

where

Sv5p2mT/h2bt,sK f
2 ~23!

and

Sx5Sy5Sz52p2mT/9h2bt,sK f
2 .

We can express the total free energy as a sum of volume
surface, and curvature terms. Each term is a function of the
potential parameters, the density at saturation, and the sur
face diffuseness parameter. The resulting expression is writ-
ten as~see Appendix A!

F5FvA1FsA
2/31FcA

1/3, ~24!

where

Fv5Fv01FvxX
21FvyY

21FvzZ
2, ~25!

Fs5Fs01FsxX
21FsyY

21FszZ
2, ~26!

Fc5Fc01FcxX
21FeyY

21FczZ
2. ~27!

The surface diffuseness parameterd is obtained~as a
function of the symmetry parameters and temperature! by
minimization of the volume free energy with respect tod;
thus,]F/]d50. Since the volume free energy is independent
of d and the curvature energy depends quadratically ond,
we have

]F

]d
5

]Fs

]d
50.

If we write

Fs5P~r0!d1N~r0!/d,
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then

d5@N~r0!/P~r0!#
1/2, ~28!

where

N~r0!5N01NxX
21NyY

21NzZ
2,

P~r0!5P01PxX
21PyY

21PzZ
2,

where the functionsN0 , Ni , r0 , andr i are given in Appen-
dix C.

The density in the above equations is the equilibrium d
sity for zero temperature symmetric NM. The equilibriu
density, for zero temperature NM with a neutron excess,
deduced by Weiss and Cameron@61#, Bethe @62#, and
Dworzecka@63#. Hassanet al. @4,64# generalized the equilib
rium density for nonzero temperature and polarized NM
SPNM, to get the equilibrium density as a function of t
symmetry excess parameters and temperature, we mini
the free energy with respect tor0 . SinceA is finitely large in
the case of SPNM, we have@65#

]F

]r0
5

]Fv

]r0
50. ~29!

Following the strategy adopted by Hassanet al. @4#, we get
r0 up to second order inX, Y, Z, andT as

TABLE I. Coefficients of the density expansion@Eq. ~31!#. The
units of these coefficients are fm23. ~PW: present work.!

r0n rx ry rz r t r1 Ref.

0.145 1.176 1.214 1.115 0.002 20.0002 PW3
0.144 0.09 1.62 0.84 0.012 @4#

0.225 0.49 @62#
0.185 0.45 @56#
en-
m
was

-
In
he
mize

r05r0nF12
9r0n
K

]Fx

]r0n
Ur0nX21

]Fy

]r0n
Ur0nY2

1
]Fz

]r0n
Ur0nZ21 p2mT

3r5/3 S 2

3p2D 2/3G ~30!

and we get

r05r0n@12rtT
22~rx2r1T2!X22~ry2r1T2!Y2

2~rz2r1T2!Z2#. ~31!

To calculate the surface and curvature properties at th
equilibrum densityr0n , we have to rewrite the functions
N(r0) andP(r0) in terms ofr0n ~see Appendix C!.

The surface and curvature properties as well as the di
fuseness parameter have been calculated at the equilibriu
density of symmetric NM. The results up to second order in
X, Y, Z, andT are of the form

d5d01a0T
21~dx1axT

2!X21~dy1ayT
2!Y2

1~dz1azT
2!Z2, ~32!

F5Fs01as0T
21~Fsx1asxT

2!X21~Fsy1asyT
2!Y2

1~Fsz1aszT
2!Z2, ~33!

Fc5Fc01ac0T
21~Fcx1acxT

2!X21~Fcy1acyT
2!Y2

1~Fcz1aczT
2!Z2. ~34!

Analytic expressions are obtained for all the parameters a
pearing in Eqs.~32!–~34! ~see Appendix C!.

It is straightfoward to deduce the level density paramete
from the dependence of the total free energy as well as th
total energy onT2 through the low temperature expansion
@22,39# and using the TF or ETF formula~for kinetic en-
ergy!. This gives voume (av), surface (as), and curvature
(ac) level density parameters. The results are

ai5ai01aixX
21aiyY

21aizZ
2, i5v,s,c, ~35!

whereav0 is obtained as
TABLE II. Coefficients of the diffuseness parameter expansion equation~32!. The units ofdi are fm and
the units ofa i are fm MeV22. ~PW: present work.!

aReference@32#.
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TABLE III. Coefficients of the surface free energy expansion@Eq. ~33!#. The units ofFsi are MeV and the
units ofasi are MeV21.

aReference@32#.
bReference@65#.
cReference@31#.
dReference@34#.
eReference@42#.
fReference@66#.
gReference@26#.
hReference@30#.
dy
he
-
a-

la
or
m
in
av05
p2m

3\2r0
2/3 ~36!

and

avx5avy5avz52 1
9av0 . ~37!

III. RESULTS AND DISCUSSION

In previous work@3# we have studied the bulk propertie
of polarized nuclear matter~PNM!, focusing our attention on
s

the equation of state. Here we restrict ourselves to the stu
of the surface and curvature properties of SPNM using t
extended form of the Seyler-Blanchard interaction intro
duced before. Our extended potential has a set of fitting p
rameters, and we took into account only the direct term.

For the kinetic energy density, we used the ETF formu
which contains gradient and Laplacian terms to account f
variation of the density near the surface. The Laplacian ter
is equal to zero as a result of neglecting the neutron sk
thickness. We consideredb51/36@43,54–56#, and we found
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TABLE IV. Same as Table III but for the curvature free energy expansion@Eq. ~34!#.

aReference@42#.
bReference@34#.
cReference@66#.
dReference@26#.
eReference@30#.
fReference@58#.
the diffuseness parameter in case of PW2~PW1 and PW3!.
that a large value ofb gives rise to a large value of the
surface energy@43,54–56#.

The results below are carried out for different forms o
r0 , namely,

r05r0n , ~38!

r05r0n~12rTT
2!, ~39!

and the full expansion form ofr0 given by Eq.~31!. Equa-
tions ~38!, ~39!, and~31! are referred to in the text as~PW1!,
~PW2!, and~PW3!, respectively.

Table I gives the coefficients of the density expansio
@Eq. ~31!# compared with previous calculations. We notic
that there is fair agreement between the values of the coe
cientsry and r̄z with those of Hassanet al. @4#, but there is
a difference in the values of the coefficientrx . It has been
shown @61# that these coefficients are strongly correlate
with the values ofEx , Ey , andEZ . In our case, we have
Ex533.4 MeV, which differs from that used by Hassanet al.
@4# (Ex528 MeV!, while the values ofEy andEZ are nearly
the same. This is reflected in the agreement ofry andrZ in
both calculations.

The half-value radiusR can be easily deduced from the
relationR5(3A/4pr0)

1/3, keeping only theA1/3 term in the
expansion ofR as a first approximation@9#. Using Eq.~31!
we get
f

n
e
ffi-

d

R5~3A/4pr0n!
1/3@11 1

3r tT
21 1

3 ~rx2r lT2!X2

1
1

3
~ry2r lT2!Y21 1

3 ~rz2r lT2!Z2]. ~40!

From this equation, the half-value radiusR increases with
increasingX, Y, Z, andT. The coefficientr lT2 has a small
effect in the range of temperature considered (9–12 MeV!.

Table II gives the coefficients of the expansion of the
diffuseness parameterd, Eq. ~32!. The value ofd0 is slightly
less than the empirical value (d050.5 fm @51#!. This result
can be modified by using the Fermi distribution for the den-
sity @31,42#. The parametera0 has different values corre-
sponding to the application of different forms ofr0 . It is also
sensitive to the two-body interaction used@32#.

To the best of our knowledge, the valuesdx , dy , dz ,
ax , ay , andaz have not been reported before. The effect of
di ( i5x,y,z) is to decrease the diffuseness parameter in the
case of PW3@9#. An opposite effect is obtained for the two
cases PW1 and PW2. This is in agreement with the other
calculations@62,66#. The effect ofa i is to decrease~increase!
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The parameters of the surface energy, Eq.~33!, are listed
in Table III. The values ofFs0 are in reasonable agreeme
with the previous calculations@67,68#. The value ofas0 is
very sensitive to the form of the density used~PW1, PW2,
and PW3!, and it varies largely with the type of the forc
used. We notice from Table III that the values found in t
literature for the surface symmetry energyFsx range between
222 and 97 MeV@29,30,50# and our value ofFsx lies in this
range. The surface free energy for the symmetric unpolari
system (X5Y5Z50) vanishes at temperatures betwe
10.6 and 12.1 MeV for PW1 and PW2. This temperatu
range is critical, because in this temperature range, the s
metry free energies have very large negative values and
diffuseness parameter increases to very large positive va
This critical temperature may be understood from the f
that with the increasing of temperature, the system underg
a phase transition from the liquid to the gas phase. T
phase transition starts at a critical temperatureTc159 MeV
@3# and continues until a layer of the gas phase covers
surface of the system at the temperatureTc512 MeV at
which the surface energy vanishes@3#. A similar critical tem-
perature was obtained by Stocker and Burzlaff@26,49# for
symmetric unpolarized NM. It was also found in the H
calculations of Boncheet al. @18,19,22# that there exists a
limiting temperature (Tc58–10 MeV! beyond which the
nucleus becomes unstable. At this temperature, no solu
for the HF equations can be obtained. The same kind
instability was found by Bonche and Levitt@19# and Krappe
et al. @69#, using a semiclassical approximation for hot nuc
(Tc58 MeV!. The parametersFsy andFSZ have a similar
effect onFS asFSX has; namely,FS decreases with the in
creasing ofX, Y, andZ. The parametersasi differ for dif-
ferent forms ofr0 . The value ofasx is larger than that ob-
tained numerically in Ref.@31#.

The coefficients of the expansion of the curvature fr
energy@Eq. ~34!# are listed in Table IV.Fc0 agrees with the
known theoretical value of 10 MeV@70#. If we take into
account the compression of the bulk@71#, one obtains a
smaller value ofFc055.64 MeV. This value is in agreemen
with the findings of the recent analysis of nuclear masses
fission barrier heights@69,72#. The curvature symmetry
energyFcx agrees with the values extracted from the therm
dynamic potential of Kolehmainenet al. @42#. More calcula-
tions are still necessary to determine the precise value
Fcx .

The surface and curvature parametersasi and aci , dis-
cussed before, are essentially those which appear in the
density parameter formula@Eq. ~35!#. The volume level den-
sity parameters@Eq. ~36!# are given in Table V for PW3. The
results for PW1 and PW2 are the same as those of PW3
av0 , but differ slightly forav i . The value ofav0 is in agree-
ment with the value@8,61,73–76# a5(1/8.8)A MeV21. The
values ofav i are directly related toav0 . The symmetry ef-
fects have been found to be negligible. In order to hav
closer assessment of the level density parametera
(a5avA1asA

2/31acA
1/3), it is depicted in Fig. 1 togethe

with previous results as well the experimental data@70#. We
notice that the agreement between our results and the ex
mental values is reasonable. It has been stressed be
@39,77# that the value of the level density parameter depe
on the value of the effective massm* , and we obtain better
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results when the value of the effective massm* is near to
that of the bare massm. In our case,m* /m51.

IV. CONCLUSION

The agreement between the calculated level density p
rameter and the experimental values reflects the fact that o
formulas for the temperature dependence of the surface a
curvature properties are reasonable. If the level density p
rametera comes out to be close to experiment@39#, this is a
pure accident due to cancellation of two different errors.

~i! The HF and ETF methods cannot give the experime
tal level densities. They are known to be systematically to
low by 20–30% due to correlations. Only at large tempera
tures do these@78,79# correlations become less important.

~ii ! The present approximation of usingT50, ETF func-
tionals, and adding the lowestT2 correlation—the so-called
low temperature approximation—has been shown to fail fo
the level density parametera @28#, giving an overestimation
of about 30%.

Several new parameters were introduced in this work su
asav i , asi , andaci . We believe that their values need to be
tested for different interactions. This will be done in the nea
future.

FIG. 1. Level density parametera as a function ofA. Ref. @26#
5 SKM (m* /m51), Ref. @74# 5 CI, present work5 PW, Ref.
@39# 5 SVI, SIII, SKM ~ITF!, SII, and experimental data5 Ref.
@70#.

TABLE V. Volume level density parameters@Eqs.~35! and~36!#
in units of MeV21.

Force av0 avx avy avz

PW3 0.075 20.008 20.008 20.008
SII 0.041a 20.0035b

SIII 0.054b,c 20.0061c

SIV 0.068b 20.0082b

SV 0.026c

SVI 0.068c

SKM 0.053b 20.005b

aReference@32#.
bReference@31#.
cReference@26#.
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APPENDIX A

The potential energy (Ep) of polarized NM~the exchange term is neglected@3#! is

Ep522pa3C11E ~rn↑
2 1rn↓

2 1rp↑
2 1rp↓

2 !drW1
12pa3C11

5b2 S 3p2

2 D 2/3E ~rn↑
8/31rn↓

8/31rp↑
8/31rp↓

8/3!drW

2
12pa5C11

5b2 S 3p2

2 D 2/3E ~¹rn↑!
2rn↑

2/31~¹rn↑!
2rn↑

2/31~¹rn↑!
2rn↑

2/31~¹rn↑!
2rn↑

2/3drW

12pa5C11E ~¹rn↑!
21~¹rn↑!

21~¹rn↑!
21~¹rn↑!

21~¹rn↑!
2drW24pa3C1uE ~rn↑rn↓1rp↑rp↓!drW

1
12pa3C1u

5b2 S 3p2

2 D 2/3E ~rn↑
5/3rn↓1rn↓

5/3rn↑1rp↑
5/3rp↓1rp↓

5/3rp↑!drW14pa5C1uE ~¹rn↑¹rn↓1¹rp↑¹rp↓!drW

2
12pa2C1u

5b2 S 3p2

2 D 2/3E ~¹rn↑¹rn↓¹rn↑
2/31¹rn↑¹rn↓¹rn↑

2/31¹rp↑¹rp↓¹rp↑
2/31¹rp↑¹rp↓¹rp↓

2/3!drW

1
12pa3C1u

5b2 S 3p2

2 D 2/3E ~rp↑rn↑
5/31rp↑

5/3rn↑1rn↓
5/3rp↓1rp↓

5/3rn↓!drW14pa3C1uE ~¹rn↑¹rp↑1¹rn↓¹rp↓!drW

14pa5Cu1E ~¹rn↑¹rp↑1¹rn↓¹rp↓!drW2
12pa5Cu1

5b2 S 3p2

2 D 2/3E ~¹rn↑¹rp↑rn↑
2/31¹rn↑¹rp↑rp↑

2/3

1¹rn↓¹rp↓rn↓
2/31¹rn↓¹rp↓rp↓

2/3!drW24pa5CuuE ~rn↓rp↑1rn↑rp↓!drW

1
12pa5Cuu

5b2 S 3p2

2 D 2/3E ~rn↓
5/3rp↑1rn↓rp↑

5/31rn↓
5/3rp↓1rn↑rp↓

5/3!drW14pa5CuuE ~¹rn↓¹rp↑1¹rn↑¹rp↓!drW

2
12pa5Cuu

5b2 S 3p2

2 D 2/3E ~¹rn↑¹rp↓rn↑
2/31¹rn↑¹rp↓rp↓

2/31¹rn↓¹rp↑rn↓
2/31¹rn↓¹rp↑rp↑

2/3!drW. ~A1!

The total free energy isF5Fv1FsA
2/31FcA

1/3,

Fv05
3pa3

5b2
Cr0

5/3S 3p2

2 D 2/32 3h2

10m
r0
2/3S 3p2

2 D 2/32 p2mT2

2h2r0
2/3S 2

3p2D 2/3, ~A2!

Fv i5
2pa3

3b2
Cir0

5/32
pa3

2
Cir01

h2

6m
r0
2/3S 3p2

2 D 2/32 p2mT2

18h2r0
2/3S 2

3p2D 2/3, ~A3!

Fs052p2a3r0
4/3dCS 3

4p D 2/32 12p2a3dC

5b2
r0
2A1S 83D S 98D

2/3

2
2p2a5

d
CS 3

4p D 2/3@A1~2!1A1~4!22A1~3!#r0
5/3

1
12p2a5C

b
r0
2S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G2
6h2d

5m
r0S 9p

8 D 2/3A1S 53D2
2h2pb

md
r0
1/3S 3

4p D 2/3@A1~3!2~2!#

1
2mT2d

h2r0
1/3 A1S 13D S 12D

2/3

, ~A4!

Fsi52p2a3dr0
4/3S 3

4p D 2/3Ci2
2p2a5

d
Cir0

4/3S 3

4p D 2/3@A1~2!1A1~4!22A1~3!#2
8p2a5d

3b2
Cir0

2S 9p

8 D 2/3A1S 83D
2
8p2a5

3b2d
Cir0

2S 9p

8 D 2/3FA1S 83D1a1S 143 D22A1S 113 D G2
2h2pd

3m
r0S 9p

8 D 2/3A1S 53D2
2pmT2d

9h2r1/3
A1S 13D S 12D

2/3

, ~A5!
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Fc05
4p3a3

5b2
r0
7/3S 12D

1/3F6A2S 83Dd22p3Ad2326a2A2S 83D1A2S 143 D22A2S 113 D GC
2
2p2h2d2

5m
r0
4/3S 12D

1/3Fp226A2S 53D G1
2ph2

m
br0

2/3S 3

4p D 1/31 2p2mT2d2

3h2 S 1

3p2D 1/3Fp226A2S 13D G , ~A6!

Fci5
8p3a3

5b2
r0
7/3F6d2A2S 83D2p2d226a2A2S 83D12A2S 143 D22A2S 113 D GCi

2
2p2h2d2

3h2
r0
4/3S 12D

1/3Fp226A2S 13D G2
2p2m2d2

27h2 S 1

3p2D 1/3Fp226A2S 13D G , ~A7!
where

C5C111C1u1Cu11Cuu ,

Cx52C1112C1u2C1u2Cuu ,

Cx85C111C1u2Cu12Cuu ,

Cy52C112C1u12Cu12Cuu ,

Cy85C112C1u1Cul2Cuu ,

Cz52C112C1u2Cu112Cuu ,

Cz85C112Cu12Cu11Cuu , ~A8!

and i runs overx, y, andz.

APPENDIX B: CALCULATION OF INTEGRALS
INVOLVING TWO MULTIPLIED WOODS-SAXON

FUNCTIONS TO A POWER

The Woods-Saxon form of the density is given by

r~r !/r05$11exp@~r2R!/d#%21. ~B1!

In our model calculations, we need to calculate integrals
the form

I ~p,q!5E
0

`

rp~r !rq~r !drW,

where

rp~r !5r0
p/$11exp@~r1R1!/d1#%

p

and

rq~r !5r0
q/$11exp@r2R2#/d2%q.

In our calculations we set

R15R25R, d15d25d.

Equation~B1! can be evaluated by noting that
of

I54pE
0

R

rq~r !rp~r !r 2dr14pE
R

`

rq~r !rp~r !r 2dr

5I 11I 2 .

For I 1 , r,R, and thus we define

2x5~r2R!/d

and we get

I 154pdr0
pr0

qE
0

R/D

~11e2x!2q~11e2x!2p~R2dx!2dx

54prqr0
pE

0

R/D

~11e2x!2~p1q!~R2dx!2dx

using

~11e2x!2~p1q!

511 (
m51

`

~21!m

3
~p1q!~p1q11!•••~p1q1m21!e2mx

m!

511 (
m51

`

Am~p1q!e2mx,

I 154pdr0
pr0

qE
0

R/dS 11 (
m51

`

Am~p1q!e2mxD ~R2dx!2dx

54pdr0
pr0

qH R3

3d
1 (

m51

`

Am~p1q!eR/dSR2

m
2
2Rd

m2 1
2d2

m3

2
2d2

m3 e
2mR/dD J . ~B2!

For I 2 , r.R, and therefore we define

y5~r2R!/d,
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I 254pdr0
pr0

qE
0

`

~11ey!2~p1q!~R1yd!2dy54pdr0
pr0

qE
0

`

e2~p1q!y~11e2y!2~p1q!~R1yd!2dy

54pdr0
pr0

qE
0

`

e2~p1q!yH 11 (
m51

`

Am~p1q!e2myJ ~R1yd!2dy

54pdr0
pr0

qH E
0

`

e2~p1q!y~R1yd!2dy1 (
m51

`

Am~p1q!E
0

`

e2~p1q1m!y~R1yd!2dyJ . ~B3!

Thus

I54pr0
pr0

qH R3

3
22d3

R2

2d2
A1~p1q!1

R

d
A2~p1q!2A3~p1q!

1 (
m51

`

~21!m21
~p1q!~p1q11!•••~p1q1m21!

m!

e2mR/d

m3 J , ~B4!

with

An~p1q!5
1

~n21!! E0
`

$12~11e2x!2~p1q!1~21!n~11ex!2~p1q!%xn21dx.

If R.d, the second term ofI @in Eq. ~B4!# can be neglected. Thus we can write, forI ,

I ~p,q!5
4p

3
r0
pr0

q$R323R2dA1~p1q!16Rd2A2~p1q!26d3A3~p1q!%. ~B5!

APPENDIX C

The functions forN(r0) andP(r0) are given by

N~r0!5N01NxX
21NyY

21NzZ
2 ~C1!

and

P~r0!5P01PxX
21PyY

21PzZ
2, ~C2!

where

N05
12p2a5

5b2
Cr0

2S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G22p2a5Cr0
4/3S 3

4p D 2/3@A1~2!1A1~4!22A1~3!#

22h2pbr0
1/3S 3

4p D 2/3@A1~3!22#,

Ni5
8p2a5

3b2
Cir0

2S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G22p2a5r0
4/3S 3

4p D 2/3Ci@A1~2!1A1~4!22A1~3!#,

P052p2a3Cr0
4/3S 3

4p D 2/32 12p2a3

5b2
Cr0

2S 9p

8 D 2/3A1S 83D2
6h2

5m
r0S 9p

8 D 2/31 2pmT2

h2r1/3 S 12D
2/3

A1S 13D ,
and

Pi52p2a3Cir0
4/3S 3

4p D 2/32 8p2a3

3b2
Cir0

2S 9p

8 D 2/32 2h2pr0
3m S 9p

8 D 2/3A1~5/3!1
2pmT2

h2r0
1/3 S 12D

2/3

A1S 13D .
These functions are written at the equilibrium density. Using the density expansion@Eq. ~31!# we get
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N~r0n!5N0~r0n1N1~r0n!T
2 ~C3!

and

P~r0n!5P0~r0n!1P1~r0n!T
2, ~C4!

where the functionsN(r0n) andP(r0n) are expanded inX, Y, andZ up to second order. The result is

F0,15F0
0,11Fx

0,1X21Fy
0,1Y21Fz

0,1Z2, ~C5!

where

N0
05

12p2a5

5b2
Cr0n

2 S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G22p2a5Cr0n
3/4S 3

4p D 2/3@A1~2!1A1~4!22A1~3!#

2
2p2b

m
r0n
1/3S 3

4p D 2/3@A~3!22#, ~C6!

N1
052

24p2a5

5b2
Cr ir0n

2 S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G1
8p2a5

3b2
Cr ir0n

4/3S 3

4p D 2/3@A1~2!1A1~4!22A1~3!#

1
2h2pb

3m
r ir0n

1/3S 3

4p D 2/3@A1~3!22#1
8p2a5

3b2
Cir0n

2 FA1S 83D1A1S 143 D22A1S 113 D G
22p2a5r0n

4/3S 3

4p D 2/3Ci@A1~2!1A1~4!22A1~3!#, ~C7!

N0
152

24p2a5

5b2
Cr0n

2 r tS 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G1
8p2a5

3b2
Cr0n

4/3r tS 3

4p D 2/3@A1~2!1A1~4!22A1~3!#

1
2h2pb

3m
r tr0n

1/3S 3

4p D 2/3@A1~3!22#, ~C8!

Ni
152

16p2a2

3b2
Cir tr0n

2 S 9p

8 D 2/3FA1S 83D1A1S 143 D22A1S 113 D G1
8p2a5

3b2
r tr0n

4/3S 3

4p D 2/3@A1~2!1A1~4!22A1~3!#, ~C9!

P0
052p2a3Cr0n

4/3S 3

4p D 2/32 12p2a3

5b2
Cr0n

2 S 9p

8 D 2/3A1S 83D2
6ph2

5m
r0nS 9p

8 D 2/3A1S 53D , ~C10!

Pi
052

8p2a3C

3
r ir0n

4/3S 3

4p D 2/32 8p2a3

3b2
r0n
2 CiA1S 83D S 9p

8 D 2/31 24p2a3C

5b2
r ir0n

2 S 9p

8 D 2/3A1S 83D12p2a3r0n
4/3Ci S 3

4p D 2/3
1
6p\2

5m
r ir0nS 9p

8 D 2/3A1S 53D , ~C11!

P0
152

8p2a3

3
Cr tr0n

4/3S 3

4p D 3/21 24p2a3

5b2
Cr tr0n

2 S 9p

8 D 2/3A1S 83D1
6ph2

5m
r tr0nS 9p

8 D 2/3A1S 53D1
2pm

\2r1/3S 12D
2/3

A1S 13D ,
~C12!

and

Pi
152

8p2a3

3
Cir tr0n

3/41
16p2a3

5b2
Cir tr0n

2 S 9p

8 D 2/3A1S 83D2
2m

\2r0n
1/3S 12D

2/3

A1S 13D S 113r i
9 D1

2p\2

3m
r tr0nS 9p

8 D 2/3A1S 53D .
~C13!

APPENDIX D

We shall use Eqs.~C3! and~C4! to express the surface energy and the diffuseness parameter in terms ofr0n . The result up
to second order inX, Y, Z, andT is written in the form

d5d01a0T
21~dx1axT

2!X21~dy1ayT
2!Y21~dz1azT

2!Z2, ~D1!
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F5Fs01as0T
21~Fsx1asxT

2!X21~Fxy1asyT
2!Y21~Fsz1aszT

2!Z2, ~D2!

where

d05~N0
0/P0

0!1/2, ~D3!

a05
1
2d0@~N0

1/N0
0!2~P0

1/P0
0!#, ~D4!

a i5
1
2d0$

1
2 @~Ni

0/N0
0!2~Pi

0/P0
0!#@~N0

1/N0
0!2~P0

1/P0
0!#1~N0

1/N0
0!@~Ni

1/N0
1!2~Ni

0/N0
0!#

2~P0
1/P0

0!@~Pi
1/P0

1!2~Pi
1/P0

0!#%, ~D5!

di5
1
2d0@~Ni

0/N0
0!2~Pi

0/P0
0!#, ~D6!

Fs052~N0
0P0

0!1/2, ~D7!

as052~a0P0
01d0P0

1!1/2, ~D8!

asi52~a0Pi
01d0Pi

11a iP0
0!1/2, ~D9!

and

Fsi52~diP0
01d0Pi

0!. ~D10!

In order to obtain a similar formula for the curvature energy, we expandd2 up to second order inX, Y, Z, andT. The result
is

Fc5Fc01ac0T
21~Fcx1acxT

2!X21~Fcy1aayT
2!Y21~Fcz1aczT

2!Z2, ~D11!

where

Fc05
6p3a3

5b2
Cr0n

7/3S 12D 1/3F6A2S 83D 2p2G SN0
0

P0
0D 1

3p2h2

5m
r0n
4/3F6A2S 53D 2p2G SN0

0

P0
0D 1

2p2h2b

m
r2/3S 3

4p D 1/3
2
36p3a3

5b2
Cr0n

7/3S 12D 1/3FA2S 83D 1A2S 143 D 22A2S 113 D G , ~D12!

ac05
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5b2
Cr0n

7/3S 12D 1/3F6A2S 83D 2p2G S d12 7r tN0
0

3P0
0 D 1

3p2h2

5m
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4/3F6A2S 53D 2p2G S d12 4r tN0
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0 D

2
4ph2b

3m
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2/3S 3

4p D 1/31 2p2m

3h2 S 1

3p2D 1/3SN0
0

P0
0D 1

84p3a5

5b2
Cr tr0n

7/3S 12D 1/3FA2S 83D 1A2S 143 D 22A2S 113 D G ,
~D13!

Fci5
6p3a3

5b2
r0n
7/3S 12D 1/3F6A2S 83D 2p2GFCS d12 7r iN0

0
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10CiN0
0

9P0
0 G1

3p2h2

3m
r0n
4/3F6A2S 53D 2p2GF5N0

0

9P0
0 1d2i2

4r iN0
0

3P0
0 G

2
36p3a5

5b2
r0n
7/3S 12D 1/3FA2S 83D 1A2S 143 D 22A2S 113 D S 109 Ci2

7

3
Cr i D G2

3p\2

3m
r0n
2/3r i S 3

4p D 1/3, ~D14!

and
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6p3a3

5b2
r0n
7/3S 12D 1/3F6A2S 83D 2p2GFCS d3i2 7

3
d1r i2

7

3
d2r tD 1

10

9
Ci S d12 7r tN0

0

3P0
0 D G

1
2p2m

27h2 S 1

3p2D 1/3F6A2S 13D 2p2G SN0
0

P0
0D 1

56p3a5

3b2
Cir tr0n

7/3S 12D 1/3FA2S 83D 1A2S 143 D 22A2S 113 D G
1
3p2h2

3m
r0n
4/3F6A2S 53D 2p2GFd3i2 4

3
r idi2

4

3
r td2i1

5

9 S d12 4r tN0
0

3P0
0 D G , ~D15!
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where

d15@~N0
1/N0

0!2~P0
1//P0

0!#/~P0
0!2,

d2i5@~Ni
0/N0

0!2~Pi
0/P0

0!#/~P0
0!2,

and

d3i5~N0
1/P0

0!@~Ni
0/N0

0!2~Pi
0/P0

0!#2@N0
0P0

1/~P0
0!2#@~P1

1/P0
0!2~Ni

1/N0
0!#

1~N0
0/P0

0!@~Ni
0/N0

0!2~Pi
0/P0

0!#@~N0
1/N0

0!2~P0
1/P0

0!#.
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