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The effect of short-range correlations~SRC! on Ca isotopes is studied using a simple phenomenologic
model. Theoretical expressions for the charge~proton! form factors, densities, and moments of Ca nuclei ar
derived. The role of SRC in reproducing the empirical data for the charge density differences is exam
Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation
abilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the m
number is also discussed.

PACS number~s!: 21.60.Gx, 21.10.Ft, 21.30.Fe, 27.40.1z
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I. INTRODUCTION

Calcium nuclei have been of great experimental as well
theoretical interest. It is the only magic element for whic
precision measurements on isotope shifts@1,2# ~see also@3#!
have been carried out over a full neutron shell, namely t
1 f 7/2 shell between the two doubly magic isotopes

40Ca and
48Ca.
The empirical data for the isotope shifts@1# show an

anomalousA dependence. The addition of neutrons to th
40Ca core leads to an increase of the charge radii up
44Ca. Then adding more neutrons the charge radii start
decrease. The very interesting feature is that the charge r
of the two doubly magic nuclei40Ca and48Ca have practi-
cally the same value. It is noted, however, that the electr
scattering experiments have shown that the charge distri
tions of these magic nuclei are not identical@4#. Moreover,
Ca isotopes demonstrate clearly the very interesting differ
tial effect of the odd-even staggering of nuclear radii. That
the mean square~MS! radii of the odd neutron nuclei are
smaller than the average of their even neutron neighbors

Apart from laser spectroscopy, which provides very acc
rate experimental information about the isotope shifts of C
nuclei, other experimental techniques~muon spectroscopy,
electron and hadron scattering! offer additional information
on the charge and mass distributions@5#. Empirical data for
the form factors and their isotopic change for some ev
stable isotopes is available. Therefore, the rich experimen
input makes Ca nuclei attractive for theoretical study.

Brown et al. @6# calculated the charge distribution of th
Ca isotopes using a Woods-Saxon state dependent pote
with a density dependent symmetry potential which was d
termined in a self-consistent way and using noninteger oc
pation probabilities for the 1d3/2, 1f 7/2, and 2p3/2 states.
Bhattacharyaet al. @7# using an average one-body potentia
of Woods-Saxon type and experimental occupation pro
abilities have reproduced the parabolic variation of th
charge radii of the Ca isotopes. Zamick@8# and Talmi@9#, in
analogy with the binding energies, assumed that the effec
radius operator has a two body part as well as a one-b
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part. They were able to explain the odd-even staggering
fect observed in Ca isotopes assuming that a mechani
which gives rise to this odd-even variation is the polarizatio
of the core by the valence neutrons. Finally Barranco an
Broglia @10#, in perhaps the most fundamental approach, su
ceeded to explain the parabolic variation of the MS charg
radii introducing collective zero-point motion.

Mean field calculations fail to reproduce the parabolic be
havior of the charge radii of the Ca isotopes. This is a
indication that one has to go beyond the Hartree-Fock a
proach taking into account nuclear correlations. There a
various types of correlations. In Refs.@8–10# ground state
correlations have been accounted and their effect to the
production of the empirical data for the isotope shifts of C
nuclei was investigated. However, other types of nuclear co
relations might also be important, such as short-range cor
lations ~SRC! which describe the effect of the distortion of
the relative two-body wave function at small distances.

Correlated charge form factors,Fch(q), and densities of
s-p ands-d shell nuclei were calculated@11–15#, using Ja-
strow type correlations@16# for the correlated wave functions
of the relative motion and employing the factor cluster ex
pansion of Ristig, Ter Low, and Clark@17,18#. First the
method was applied to the doubly closed shell light nucl
4He , 16O, and40Ca and then it was extended in an approx
mate way to all nuclei in the region 4<A< 40.

In the present work the method is expanded to the stu
of the isotopes of the closed shell nuclei. The isotopic cha
of Ca nuclei has been chosen for the study, due to its spec
interest. The calculated values of the differences of th
charge density distributions of even Ca nuclei are compar
with the available experimental data@19,4#. Our aim is to
examine the effect of SRC on Ca nuclei as well as the
variation with the mass number.

High resolution electron scattering experiments hav
shown deviations from the mean field picture@20,21#. The
quantum states, especially those near the Fermi surface,
pear to be depleted. This is a clear demonstration that t
single-particle orbits are partially occupied because of th
nucleon-nucleon correlations@21#. The depletion of the oc-
1599 © 1996 The American Physical Society
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1600 53G. A. LALAZISSIS AND S. E. MASSEN
cupied states can be attributed to a coupling of the Hart
Fock ground state to low-lying collective modes and to S
due to hard collisions between nucleons at small distan
Calculations for nuclear matter including SRC have sho
@22,23# that the depletion of the otherwise filled orbits
10–20 %.

Recently, a simple method has been proposed for the
termination of the fractional occupation probabilities of t
shell model orbits of the ground state wave function as w
as the total depletion of the nuclear Fermi sea@24,25# ~see
also @15#!. The correlated densities are used as an input
the connection is done by means of the ‘‘natural orbit
representation@26#, which allows us to keep the simplicity o
the shell model picture. Here, employing this method,
determine the occupation numbers of the shell model or
and the total depletion of the nuclear Fermi sea. The la
reflects the influence of SRC to the deviation from the me
field approach. The variation of these quantities with
mass number is also studied.

The paper is organized as follows. In Sec. II the relev
formalism of SRC for the closed shell nuclei is shown.
Sec. III the expansion to the isotopes of the closed s
nuclei is presented. In Sec. IV the method for the determ
tion of the occupation numbers is briefly discussed. In Sec
the numerical results are reported and discussed. Fin
Sec. VI summarizes our main conclusions.

II. CORRELATED CHARGE FORM FACTOR, DENSITIES,
AND MS RADII FOR CLOSED SHELL NUCLEI

Expression for the correlated charge form facto
Fch(q), of the closeds-p ands-d shell nuclei were derived
@11–15# in the framework of the factor cluster expansion
Ristig, Ter Low, and Clark@17,18# using the Jastrow ansat
for the correlated wave functions. This type of correlations
characterized by the correlation parameterlnlS which enters
in the normalized correlated wave functions of the relat
motion:

cnlS~r !5NnlS@12exp~2lnlSr
2/b2!#fnl~r !, ~1!

whereNnlS are the normalization factors,fnl(r ) are the har-
monic oscillator ~HO! wave functions, andb5A2b1
(b15A\/mv) is the harmonic oscillator parameter for th
relative motion. In this approach the expression for the po
proton form factor,F(q), takes the form

F~q!5F1~q!1F2~q!, ~2!

where

F1~q!5
1

Z
expF2

b1
2q2

4 G (
k50

2

N2kS b1q2 D 2k ~3!

is the contribution of the one-body term toF(q) with

N052~h1s1h2s13h1p15h1d!,

N252 4
3 ~2h2s13h1p110h1d!, ~4!

N45
1
3 ~4h2s18h1d!
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andhnl is the occupation probability~0 or 1 in the present
case! of thenl state.

The contribution of the two-body term,F2(q), to the
form factorF(q) can be expressed in a rather simple way in
closed form by means of the matrix elements:

AnlS
n8 l 8S8~ j k!5^cnlSu j k~qr/2!ucn8 l 8S8&.

These are simple polynomials and exponential functions o
q2 @11–15#. In our study the correlation parameterlnlS is
taken state independent (lnlS 5 l). It is noted that it has
been shown in@15# that the effect of the state dependence o
the short-range correlations is small.

Then the charge form factor,Fch(q), is written

Fch~q!5 f p~q!3 fCM~q!3F~q!, ~5!

where f p(q) and fCM(q) are the corrections due to the finite
proton size@11# and the center of mass motion@27#, respec-
tively. The correlation parameterl and the HO parameter
b1 are determined by fitting formula~5! to the experimental
data ofFch(q).

An interesting feature of this method is the possibility of
finding an analytic form for the correction to the uncorrelated
charge~proton! density distribution by means of a Fourier
transform ofF2(q). Thus the correlated proton density dis-
tribution is written

rcor~r !5r1~r !1r2~r !. ~6!

Analytic expressions can also be derived for the various mo
ments of the charge~proton! density distribution. The mo-
ments have the form

^r k&5^r k&11^r k&2 , ~7!

where^r k&1 and ^r k&2 are the contributions of the one- and
two-body densityr1(r ) andr2(r ), respectively.

A very satisfactory approximate expression for the MS
charge radius is also derived,

^r 2&ch5CHOS 12
1

ADb121CSRCb1
2l23/21r p

21
N

Z
r n
2 , ~8!

wherer p
2 andr n

2 are the proton and neutron MS charge radii
respectively. For the latter the valuer n

2 5 20.116 fm2 is
used@28#. The constantsCHO andCSRCfor

40Ca areCHO5 3
andCSRC5 12.4673. It is noted that the values obtained with
formula ~8! differ less than 0.08% from those obtained with
the exact expression for the radii and therefore formula~8! is
suitable for practical use.

The merit of the approach is mainly the simplicity, as
most of the calculations are analytic. Another advantage
the possibility of obtaining approximate expressions of th
two body term of various quantities by expanding the expres
sion of the form factor in powers ofl. This allows the study
of the open shell nuclei in the region 4<A< 40 @13,14#.

III. EXTENSION TO THE ISOTOPES OF CLOSED SHELL
NUCLEI

The method described in the previous section is exact
applicable to doubly closeds-p and s-d shell nuclei and
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approximately to open shell nuclei in the region 4<A< 40.
Here, we extend the method to the study of the isotopes
the closed shell nuclei.

In an isotopic chain all nuclei have the same atomic num
ber Z. Thus we assume that the correlated charge~proton!
form factors, densities, and moments of the isotopes can
described by the same formulas~2!, ~6!, and~7! where, how-
ever, different values for the parametersl andb1 are used.
The correlation parameters as well as the size parameters
the isotopes could be easily determined if empirical data
the charge form factors~especially for high momentum
transfers! of all the isotopes were available. However, usu
ally this is not the case and therefore one has to try oth
possibilities.

First, the correlation parameter is written in a more co
venient way:
b
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l
. ~9!

Then we assume that the correlation parametersm(Ac1n)
and the HO parametersb1(Ac1n) of the isotopes can be
written

m~Ac1n!5m~Ac!1dm~Ac1n!, ~10!

b1~Ac1n!5b1~Ac!1db1~Ac1n!, ~11!

wherem(Ac) and b1(Ac) are the parameters of the corre
sponding closed shell nucleus (Ac). The differencesdm and
db1 express the change in the parameters due to the addi
of extra neutrons (n).

Using ~10! and ~11! expression~8! for the MS charge
radius,^r 2&ch5r 2, can be written in the following way:
r 2~Ac1n!5r 2~Ac!1dr 2~Ac1n!

5CHOS 12
1

Ac1nD @b1~Ac!1db1~Ac1n!#21CSRC

@m~Ac!1dm~Ac1n!#3

b1~Ac!1db1~Ac1n!
1r p

21
Ac2Z1n

Z
r n
2 . ~12!
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For the closed shell nuclei experimental data is availa
in most of the cases. The parametersm(Ac) andb1(Ac) can
be determined by a fit to the data. Thus the problem is
duced to the determination of the differencesdb1 and dm.
For this, additional input is necessary. In the present
proach the differences are determined using the empir
data for the isotope shifts and isospin dependent theore
expressions for the oscillator parameters.

In a very recent publication@29# new improved expres-
sions for the oscillator spacing\v were derived. These ex
pressions have the advantage of being isospin depend
They were obtained by employing new expressions for
MS radii of nuclei, which fit the experimental MS radii an
the isotope shifts much better than other frequently used
lations. In the present work the following formula for\v
taken from@29# is used:

\v538.6A21/3@111.646A2120.191~N2Z!A21#22.
~13!

The derivation of the HO parameters of the isotopes
means of~13! is straightforward:

b1~Ac1n!5A \2

38.6m
Ac
1/6S 11

n

Ac
D 1/6F11

1.646

Ac

3S 11
n

Ac
D 21

20.191
n

Ac
S 11

n

Ac
D 21G .

~14!

Formula~14! is used for the determination of the differ
ences db1(Ac1n). Finally, the isotopic changes
dm(Ac1n) of the correlation parameters are adjusted to
produce the empirical data of the isotope shif
dr 2(Ac1n), using Eq.~12!. Hence, in the present approac
le
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the parametersb1(Ac1n) and m(Ac1n), calculated from
~10! and~11!, respectively, are determined using the empir
cal data for the charge radii of the isotopic chain and th
information obtained from the experimental charge form fa
tor of the closed shell isotope.

IV. THE METHOD FOR THE DETERMINATION OF THE
OCCUPATION NUMBERS

The correlated proton densitiesrcor(r ) can be used as an
input for the determination of the fractional occupation prob
abilities of the shell model orbits of the ground state wav
function@24#. The connection with short range correlations i
done by employing the ‘‘natural orbital’’ representation@26#.
The natural orbital approach has already been applied
nuclear studies in the past@30# ~see also@31#!. Recently it
was also employed@32# within a variational Jastrow-type
correlation method for the study of quantum liquid drops.

For spherical symmetric systems the density distributio
in the natural orbital representationrn.o.(r ) takes the simple
form

rn.o.~r !5
1

4p(
nl

~2 j11!hqufq~r !u2, ~15!

where hq is the occupation probability (hq < 1! of the
q(5nl j ) state. The ‘‘natural orbitals’’fq are approximated
by the radial part of the single-particle wave functions$R
nl% of a harmonic oscillator potential. The occupation prob
abilities are determined by assumingrcor(r )5rn.o.(r ). That
is, the correlated proton density distribution,rcor(r ), in
which the effect of short-range correlations is taken into a
count, equals with density distributionrn.o.(r ), correspond-
ing to the natural orbital representation. We demand the fi
few moments ofrcor(r ) to be equal to those ofrn.o.(r ) dis-
tribution,
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1602 53G. A. LALAZISSIS AND S. E. MASSEN
^r k&cor5^r k&n.o.. ~16!

The details of the calculations are described in Refs.@24,25#.
The merit of this approach is that by ‘‘mapping’’ the corr
lated density distributions to those calculated with the ‘‘na
ral orbitals’’ a relationship is established between the fr
tional occupation probabilities and the short-ran
correlations. The effect of short-range correlations is ta
into account in an effective way and it is absorbed in
values of the calculated occupation numbers and the
parametersb n.o.. It is a suitable way of keeping the simplic
ity and visuality of the single-particle picture. It should b
noted, however, that this relationship is not completely cl
because one is not able to distinguish the correction to
charge form factorFch(q) for largeq because of short-rang
correlations from the one due to meson exchange current
addition, the use of harmonic oscillator wave functions i
simplification. Proper linear combinations of oscillator wa
functions could be used instead. In such a case, however
method loses its simplicity.

The method was improved@25# by considering different
oscillator parameters for the hole states and those above
Fermi sea~FS!. Specifically thern.o.(r ) was divided in two
parts:

rn.o.~r !5rn.o.
,FS~r !1rn.o.

.FS~r !, ~17!

where each part is expressed by a harmonic oscillator b
characterized by the oscillator parametersb and b̃, respec-
tively. In addition, it was assumed that forrn.o.

,FS(r ) the oc-
cupancy of the states above the Fermi level is practic
zero, while forrn.o.

.FS(r ) only the states above the Fermi s
have occupancies which appreciably differ from zero. T
two parts ofrn.o.(r ) in ~17!, somehow, reflect nuclear cha
acteristics which are sensitive to the low and high mom
tum component of the charge form factor, respectively. In
present work the formalism of Ref.@25# has been adopted.

V. NUMERICAL RESULTS AND DISCUSSION

In Table I the correlation parametersm(Ac1n) and the
HO parametersb1(Ac1n) for all Ca isotopes considered i
this approach are shown. Their calculation has been d
with the aid of formulas~11! and ~10!. The parameters
m(Ac) andb1(Ac) of the closed shell nucleus~core nucleus
Ac 5 40! were determined by fitting the theoretical expre

TABLE I. The values of the HO parametersb1 ~in fm! and the
SRC parametersm ~in fm! for the Ca nuclei.

A b1 m

40 1.860 0.499
41 1.857 0.504
42 1.855 0.548
43 1.853 0.534
44 1.851 0.566
45 1.849 0.543
46 1.848 0.545
47 1.846 0.527
48 1.845 0.528
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sion of the charge form factor,Fch(q), of
40Ca to the experi-

mental data. The differencesdb1 are determined using for-
mula ~14! while dm are adjusted so that expression~12! for
the MS charge radii to reproduce the empirical data of th
isotope shifts,dr 2, of Ca nuclei@1#.

In Fig. 1 the isotopic changedm of the correlation param-
eterm as function of the mass number is shown. It is ob-
served that the parameterm, which expresses the strength of
the short-range correlations, is increasing up to44Ca and
then starts decreasing following the same variation with th
isotope shifts~see for example Fig. 49 of@1#!. This indicates
that there is a proportion between the strength of SRC an
the size of the nucleus, that is when SRC become strong
the charge radii become larger. It is interesting to note that,
for the determination ofb1 isospin independent expressions
of \v ~see for example Refs.@33–35#! were used instead,
the two quantities do not show the same variation. In thi

FIG. 1. The isotopic changedm of the correlation parameter
m as function of the mass numberA.

FIG. 2. The difference of the charge distributions of42Ca 2
40Ca, multiplied byr 2, ~dashed line! calculated in the present ap-
proach together with the experimental data~solid line! taken from
Ref. @19#.
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53 1603EFFECTS OF SHORT-RANGE CORRELATIONS ON Ca ISOTOPES
case, as the mass number increases the correlation par
eters have opposite variation compared with the one of t
charge radii. On the other hand the use of such expressi
for \v does not provide a satisfactory description of th
empirical data for the charge density difference of48Ca 2
40Ca.
Using the values of Table I the charge~proton! form fac-

tors, density distributions as well as the differences of th
density distributionsDr(401n)5@r(401n)2r(40)# can
be easily calculated. In Figs. 2 and 3 the quanti
Drch(401n)r 2 for the charge distribution differences of
42Ca2 40Ca and44Ca2 40Ca, respectively, are compared
with the empirical data~solid lines!. The same is also in Fig.
4 for the difference48Ca2 40Ca. In this case the available
experimental values correspond to the proton density dis
butions. The two solid lines correspond to the upper an
lower values of the proton density difference. It is seen th
the theoretical curves~dashed lines! show the correct trend.
The calculatedDrch(401n)r 2 reproduce the behavior of the
data. That is, the charge flows from the center~and the outer
skin in 48Ca! into a region around the half-density radius
The comparison is not very good in all cases. Especially

FIG. 3. The same as in Fig. 2, for the charge distribution diffe
ence of44Ca2 42Ca.
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Fig. 4 for the difference48Ca2 40Ca, where the maximum
is not reproduced well. However, in the present approa
SRC are only accounted. This indicates that additional c
relations, as for example surface vibrations, are necessar
improve the agreement with the experiment. In this analys
only a small part of their effect, ‘‘hidden’’ in the empirical
data of the isotope shifts~used for the determination of
dm), might be accounted. It should be noted, however, th
in this approach the parametersm andb1 are not free. If one
or both of them were free, then one could expect bett
agreement. In such a case the effect of other type correlati
would have been taken into account effectively. Thus, f
example, the parametersm andb1 could be determined by
direct fits to the experimental charge form factors. This pr
cedure was not followed because experimental data for
charge form factors of all Ca nuclei is not available. More
over, this data do not cover the region of the high momentu
transfers (q.3 fm21).

Next, the calculated proton density distributionsrcor(r )

r- FIG. 4. The difference of the point proton distributions o
48Ca 2 40Ca multiplied by r 2 ~dashed line! calculated in the
present approach together with the empirical data taken from R
@4#. The two solid lines correspond to the upper and lower values
the experimental proton density difference.
TABLE II. The calculated harmonic oscillator parameters,b and b̃ ~in fm! together with the occupation
probabilities of the shell model orbits of Ca nuclei.

A 40 41 42 43 44 45 46 47 48

b 1.893 1.892 1.892 1.887 1.889 1.884 1.883 1.882 1.880

b̃ 1.734 1.732 1.729 1.726 1.724 1.723 1.721 1.720 1.719

1s 1.000 0.999 0.860 0.983 0.709 0.911 0.884 0.999 1.000
1p 0.822 0.815 0.677 0.643 0.625 0.639 0.677 0.682 0.657
1d 0.565 0.550 0.592 0.643 0.625 0.638 0.636 0.606 0.631
2s 0.565 0.550 0.480 0.448 0.486 0.458 0.462 0.458 0.450
1 f 0.424 0.438 0.479 0.448 0.486 0.458 0.462 0.458 0.449
2p 0.058 0.059 0.105 0.097 0.134 0.107 0.111 0.086 0.092

Depl. % 31.45 32.56 36.72 34.24 38.05 35.26 35.63 34.68 34.23
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are used for the determination of the occupation number
the shell model orbits of Ca nuclei following the procedu
described in Refs.@24,25#. In Table II the calculated siz
parametersb, and b̃ of the two natural orbital bases a
shown together with the occupation probabilities of Ca
clei. The total depletion of the nuclear Fermi sea, which
flects the effect of the short-range correlations and give
measure of the deviation from the mean field picture is a
shown.

In Fig. 5 the relative depletion of Ca isotopes is plott
against the mass numberA. As relative depletion we defin
the quantity

relative depletion5@depl.~401nCa!2depl.~40Ca!#/

depl.~40Ca).

A clear parabolic shape analogous to that of Fig. 1
observed. This is because the depletion of the nuclear F
sea expresses the effect of SRC and thus a similar varia
with the correlation parametersm should be expected.

In Fig. 6 the variation with the mass number of the oc
pation probabilities of the shell model orbits of Ca nucle
shown. For the very deep states the occupation probabi
~see also Table II! are very close to one while the surfa

FIG. 5. The variation with the mass numberA of the relative
depletion of Ca nuclei.

FIG. 6. The variation with the mass numberA of the occupation
probabilities of the shell model orbits of Ca nuclei.
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levels deviate significantly from unity, manifesting thus the
effect of SRC. Their variation with the mass number show
the correct behavior and it is consistent with Fig. 1 for the
correlation parametersm, which measures the strength of
SRC. That is for stronger SRC a larger ‘‘fraction’’ of protons
is moved above the Fermi level.

It is noted that the occupation probabilities are not di
rectly measured quantities. The experimental occupatio
probabilities are usually obtained by extrapolating the ex
perimental spectral functions by means of a Gaussian fit.
general they are of limited accuracy and the comparison wit
the theory varies in the various models. The ‘‘experimental
information about the occupation probabilities of Ca isotope
is limited to the magic nucleus40Ca. On the other hand,
there are no theoretical predictions in the literature~to our
knowledge! for the other Ca nuclei. In Table III the occupa-
tion probabilities of 40Ca, calculated in this work, together
with the ‘‘experimental’’ values@36,37# and those from other
theoretical analyses@38–40# are shown for the sake of com-
parison.

Finally we note that in Figs. 1, 5, and 6 a kind of odd-
even effect is also observed. The effect of SRC appears to
weaker for the odd nuclei compared with their even partner
It should be noted, however, that in the framework of this
simple approach, one cannot draw easily conclusions abo
the odd isotopes, where additional effects have to be take
into account. One could say that the correlation paramete
dm are adjusted to reproduce the isotopic changes of th
charge radii and therefore are somewhat ‘‘forced’’ to follow
such a variation.

VI. SUMMARY

In the framework of a simple phenomenological mode
theoretical expressions for the correlated charge~proton!
form factors, densities, and moments of the isotopes o
closed shell nuclei are derived. SRC are accounted usin
Jastrow type wave functions for the correlated wave func
tions of the relative motion. In the present work the isotopic
chain of Ca nuclei is studied and the influence of SRC on C
isotopes is examined by comparing with the available em
pirical data for the charge~proton! density differences. The
calculated values for the differences of the density distribu
tions show the correct trend. However, the present study in
dicates that additional correlations could improve the de
scription of the experimental data.

TABLE III. Comparison of the occupation probabilities of
40Ca calculated in this work (hq) together with ‘‘experimental’’ and
theoretical values from other studies.

nl hq Expt. @36#. Expt. @37#. @38,39# @40#

1s 1.000 0.820 0.750 0.970 0.990
1p 0.822 0.767 0.950 0.975 0.986
1d 0.565 0.720 0.770 0.884 0.962
2s 0.565 0.740 0.650 0.870 0.960
1 f 0.424 0.307 0.071 0.030
2p 0.058 0.100 0.035 0.010
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The role of SRC on the depletion of the Fermi sea as w
as its variation with the mass number is discussed. The
cupation probabilities of the shell model orbits of Ca nucl
are calculated. One should keep in mind, however, the la
uncertainties concerning their experimental determinati
and the model dependence of the various theoretical an
ses.

Concluding we would like to mention that the main ad
vantage of the present analysis is its simplicity. The meth
can be applied to other isotopic chains to provide predictio
for the charge form factors, charge density differences, a
ell
oc-
ei
rge
on
ly-

-
od
ns
nd

other quantities for which the effect of SRC is important.
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