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Chiral perturbation approach to the pp— pp=° reaction near threshold
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The usual theoretical treatments of the near-threspgld- pp° reaction are based on various phenom-
enological Lagrangians. In this work we examine the relationship between these approaches and a systematic
chiral perturbation method. Our chiral perturbation calculation indicates that the pion rescattering term should
be significantly enhanced as compared with the traditional phenomenological treatment, and that this term
should have substantial energy and momentum dependence. An important consequence of this energy-
momentum dependence is that, for a representative threshold kinematics and within the framework of our
semiquantitative calculation, the rescattering term interferes destructively with the Born term in sharp contrast
to the constructive interference obtained in the conventional treatment. This destructive interference makes
theoretical cross sections fpp— ppm® much smaller than the experimental values, a feature that suggests the
importance of the heavy-meson exchange contributions to explain the experimental data.

PACS numbsds): 13.75.Cs, 13.75.Gx, 12.39.Fe

[. INTRODUCTION The two coupling constants; andX, in Eq. (3) were deter-
mined from theS,; and S3; pion nucleon scattering lengths
Recently Meyeeet al.[1] carried out high-precision mea- a;;, andas, as
surements of the total cross sections near threshold for the

reaction m; mg
)\1:? 1+m_ (aypt2azp), (4a)

p+p—p+p+aL. ) N
These measurements were confirmed by Boredal. [2]. _m; 1 m; n
The early theoretical calculatioi8—5] underestimate these No=g| 1t my (8172~ 8g). (4b)

s-wave 7° production cross sections by a factor-eb.

The basic features of these early calculations may be sun¥he current algebra predictid6] for the scattering lengths,
marized as follows. The pion production reactions are asy - —2a,,=m_/47f2=0.175n_", implies that only chi-

sumed to be described by the single nucleon proc#®s 5 symmetry breaking terms will give a nonvanishing value
Born term), Fig. 1(a), and thes-wave pion rescattering pro- of the coupling constant, in Eq. (3). Thereforex, is ex-
cess, Fig. (b). Thew-N vertex for the Born term is assumed pected to be very small. Indeed, the empirical values
to be given by the pseudovector interaction Hamiltonian a,,~0.175m_* and ag,= —0.10an_* obtained by Haler

_ i et al. [7] lead to\;~0.005 and\,~0.05. So the contribu-
pl o V(rm)— s=—{oV,mm |y, (2) tion of thek; term in Eq.(3) is significantly suppressed.
2my Meanwhile, although\, is much larger tham ;, the isospin
structure of thex, term is such that it cannot contribute to
the 7° production from two protons at the rescattering vertex
in Fig. 1(b). Thus the use of the phenomenological Hamilto-
Ihians, Egs(2) and (3), to calculate the Born term and the
rescattering terms illustrated in Figs(al and Xb), gives
significantly suppressed cross sections for fe—ppm®
eaction near threshold. Therefore, theoretically calculated

by a factor of~m,/my, the contribution of the Born term cross sections can be highly sensitive to any deviations from

to s-wave pion production is intrinsically supp_r_essed, and 33his conventional treatment. These delicate features should
a consequence.the process becomes sensitive to tWO'.bO ¢ kept in mind in discussing the large discrepaayactor
cc_)ntr|but|.ons, Fig. (). The S-wave rescattering vertex in ¢ ~5) between the observed cross sections and the predic-
Fig. l(b)_ls cpmmonly calculated using the phenomenolog|—tions of the earlier calculations.
cal Hamiltonian[3] A plausible mechanism to increase the theoretical cross
N — Ny — section was suggested by Lee and Rig&l They proposed
T =Am—har mp+ AT —5 e wX T, ©) to supplement the contribution of the pion-exchange dia-
m; mz gram, Fig. 1b), with the contributions of the short-range
axial-charge exchange operators which were directly related
to heavy-meson exchanges in the nucleon-nucleon interac-
*On leave of absence from Department of Physics, Chungnartions[9]. According to Lee and Riska, the shorter-range me-
National University, Daejeon 305-764, Korea. son exchangesgscalar and vector exchange contributipns

. Oa
To= of
whereg, is the axial coupling constant, arfig = 93 MeV is
the pion decay constant. The first term represgntgave
pion-nucleon coupling, while the second term accounts fo
the nucleon recoil effect and makeg|, “Galilean invari-
ant.” For s-wave pion production only the second term con-
tributes. Since this second term is smaller than the first ter
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1520 PARK, MYHRER, MORONES, MEISSNER, AND KUBODERA 53
have seen above that, for tigpical threshold kinematics
. the exchanged pion can indeed be far off shell. The actual
n?,,/" kinematics of course may deviate from ttypical threshold
g kinematicsrather significantly due to energy-momentum ex-
changes between the two nucleons in the initial and final
P states, but the importance of the off shell kinematics for the
exchanged pion is likely to persist. Hémez and Oset ex-
amined two types of off-shell extrapolatiof) the Hamilton
2Py 150 model for N isoscalar amplitude based onexchange plus
a short range piecgl2], and (ii) an extrapolation based on
P I the current algebra constraints. In either case the enhance-
4 p ment of the total cross section due to the rescattering process
was estimated to be strong enough to reproduce the experi-
@) mental data. A more detailed momentum-space calculation
carried out by Hanharet al. [13] supports the significant
/q enhancement due to an off-shell effect in the rescattering
0 process, although the enhancement is not large enough to
explain the experimental data. It should be emphasized that
Hanhartet al’s calculation eliminates many of the kinemati-
- cal approximations employed in the previous calculations.
P2 ; P2 Given these developments based on the phenomenologi-
cal Lagrangians, we consider it important to examine the
33, Eix® 319, significance of these phenomenological Lagrangians in chiral
i perturbation theory¥PT) [14,15 which in general serves as

P2 P2

; a guiding principle for low-energy hadron dynamics. In the
p é P present work we shall describe an attempt at relating the
traditional phenomenological approachesxBT. The fact
(b) that yPT accounts for and improves the results of the current
algebra also makes it a natural framework for studying
FIG. 1. Single nucleon proce$Born term (a) and pion rescat- threshold pion production. Furthermore, in this low-energy
tze_rrﬂgzs +IDlYOCESS(lo) for the pp_—>|0p77° reaction near threshold. regime, it is natural to employ the heavy-fermion formalism
' L, denotes the isospin and angular momenta of the initial HFF) [16]. The HFF has an additional advantage of allow-
and final states. ing easy comparison with Eq€2) and (3).

, It should be mentioned, however, that the application of
can en_hance the cross section by a factor 3-5. Subsequen%-r to nuclei involves some subtlety. As emphasized by
Horowitz et al. [10] demonstrated, for the Bonn meson ex-\einberg[17], naive chiral counting fails for a nucleus,
change potential, a prominent role of theneson in enhanc- \yhich is a loosely bound many-body system. This is because
ing t_he cross section, th_ereby basically ponﬁrm'ng the cony urely nucleonic intermediate states occurring in a nucleus
clusions of Lee and Riska. The possible importance Otan have very low excitation energies, which spoils the or-
heavy-meson exchanges may be inferred from the followingjinary chiral counting. To avoid this difficulty, one must first
simple argument. Consider Fig(t} in the center-of-mass jassify diagrams appearing in perturbation series into irre-
(CM) system with the initial and final interactions turned off 4 ciple and reducible diagrams, according to whether or not
and with the exchanged particle allowed to be any particley giagram is free from purely nucleonic intermediate states.
(not necessarily a pion At threshold, go=m, 4=0,  Thys, in an irreducible diagram, every intermediate state
pr=p,=0, so that any exchanged particle must havecontains at least one meson. TRET can be safely applied
ko=m,/2=70 MeV and |k=+ym,my+(m./2)>~370 1o the irreducible diagrams. The contribution of all the irre-
MeV/c, which impliesk?=—m,my. Thus the rescattering ducible diagramsup to a specified chiral ordgis then to be
process probes two-nucleon forces at distance$.5 fm  used as an effective operator acting on the nucleonic Hilbert
corresponding to a typical effective exchanged masspace. This second step allows us to incorporate the contri-
vm,my= 370 MeV. Its sensitivity to the intermediate-range butions of the reducible diagrams. We may refer to this two-
N-N forces indicates the possible importance of the two-step procedure as theuclear chiral perturbation theory
body heavy meson axial exchange currents considered kywuclearxPT). This method was first applied by Weinberg
Lee and Riska. The particular kinematical situation we con{17] to chiral-perturbation-theoretical derivation of the
sidered here shall be referred to as thgical threshold ki- nucleon-nucleon interactions and subsequently used by van
nematics Kolck et al. [18]. Park, Min, and RhdPMR) [19] applied

Meanwhile, Hernadez and Osdil1] considered theff-  the nuclearyPT to meson exchange currents in nuclei. The
shelldependence of theN s-wave isoscalar amplitude fea- success of the nuclegPT in describing the exchange cur-
turing in the rescattering process, Figbjl They pointed out rents for the electromagnetic and weak interactions is well
that thes-wave amplitude could be appreciably enhanced folknown[19-21]. The present paper is in the spirit of the work
off-shell kinematics pertinent to the rescattering process. Wef PMR.
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This article is organized as follows: In the next section wesjon ind, /A. ¢, in HFF consists of chiral symmetric mo-

define our pion field and the chiral counting procedure. Ther,gmials constructed froy(x), N(x) and their derivatives

in Sec. Il we present the two lowest order Lagrangiansgng of symmetry-breaking terms involvingZ. The chiral
discuss their connection to the early works on this reactionyqer in HFF is defined by

and determine within certain approximations the numerical
values of the effective pion rescattering vertex strength,
K- In Sec. IV we briefly discuss the connection between the
transition matrix for this reaction and thePT calculated
amplitude. In Sec. V we present necessary loop correctionghered is, as before, the summed power of the derivative
to the Born term, and in Sec. VI we calculate the cross secand the pion mass, while is the number of nucleon fields
tion and discuss the various approximations and the uncemvolved in a given term. As before, a term i#¢, with
tainties of the low energy constants ¥PT. Finally in Sec. chiral orderr can be shown to carry a facto®(A)*<1. In
VI, after discussing some higher chiral order diagrams, wawhat follows, v stands for the chiral order defined in £§).

v=d+n/2—2, 9

present our main_cqnclgsion_s.. In addition to the chiral order index defined for each
A work very similar in spirit to ours has recently been term in ,, we assign a chiral order indexfor each irre-
completed by Cohert al. [22]. ducible Feynman diagram appearing in the chiral perturba-

tion series for a multifermion systefd7]. Its definition is
Il. CHIRAL PERTURBATION THEORY

The effective chiral Lagrangiar¥,, involves an SW(2) v=4—Ey—2C+2L+> 7 (10)
matrix U(x) that is nonlinearly related to the pion field and N T
that has standard chiral transformation properi23. An

example is24] where Ey is the number of nucleons in the Feynman dia-

. L the number of loops, an@ the number of discon-
AT 2 . gram, _ , _
VO)=NL=[a )/ i 7 700/ T ® nected parts of the diagram. The sum owveuns over all the

In the meson sector, the sum of chiral-invariant monomialg/ertices in the Feynman graph, andis the chiral order of
constructed fromU(x) and its derivatives constitutes the €ach vertex. One can shdw7] that an irreducible diagram
chiral-symmetric part ofZ,. Furthermore, one can con- Of chiral orderv carries a factor Q/A)"<1.

struct systematically the symmetry-breaking partaf, with In the literature the term “effective Lagrangiaror “ef-
the use of a mass matrixZ the chiral transformation of fective Hamiltonian’) is often used to imply that that La-
which is dictated by that of the quark mass term in the QCDgrangian(or Hamiltonian is only meant for calculating tree
Lagrangian. To each term appearingdfiy, one can assign a diagrams. The Hamiltonians given in E¢®) and (3) are

chiral order indexv defined by regarded as effective Hamiltonians of this type. We must
_ note, however, that the effective LagrangianyiRT has a
v=d-2, (6) different meaning. Not only car’, be used beyond tree

) o . approximation but, in fact, a consistent chiral counting even
whered is the summed power of the derivative and the piongemands inclusion of every loop diagram whose chiral order
mass involved in this term. A low energy phenomenon is,, s |ower than or equal to the chiral order of interest. As will
characterized by a generic pion moment@n which is  pe giscussed below, for a consistey®T treatment of the
small compared to the chiral scale~ 1 GeV. It can be  proplem at hand, we therefore need to consider loop correc-
shown that the contribution of a term of chiral ordecarry  tjons. However, since the inclusion of the loop corrections is
a factor Q/A)", whereQ represents eitheQ or the pion  rather technical, we find it useful to first concentrate on the
massm,. This suggests the possibility of describing low- tree-diagram contributions. This simplification allows us to
energy phenomena in terms &f., that contains only a man- understand the basic aspects of the relation between the con-
ageably limited number of terms of low chiral order. This is tributions from yPT and the phenomenological Hamilto-
the basic idea ok PT. nians, Eqs(2) and (3). Therefore, in the next two sections

The heavy fermion formalisntHFF) [16] allows us to (11l and IV) we limit our discussion to tree diagrams. A more
easily extendyPT to the meson-nucleon system. In HFF, theelaborate treatment including loop corrections will be de-
ordinary Dirac fieldys describing the nucleon, is replaced by scribed in Sec. V.
the heavy nucleon fieltl(x) and the accompanying “small
component field’n(x) through the transformation

Yx)=exp(=imyo - X)[NGO +n(x)] ™ In order to produce the one-body and two-body diagrams
with depicted in Figs. (8 and Xb), we minimally needsee be-
low) terms withy=1 and 2 in%,. We therefore work with

Ill. TREE DIAGRAM CONSIDERATIONS

4N=N, &n=-n, (8)

—~ _— (0 (1

where the four-velocity , is assumed to be almost static, L= L0+ 2D, (11
i.e., v,~(1,0,0,0) [25]. Elimination of n(x) in favor of B B
N(x) leads to expansion i@, /my. Since my~ 1 GeV where #") represents terms of chiral order Their explicit
~A, an expansion i@, /my may be treated like an expan- forms are[15,26
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2

f
;Z‘O):Z’T Tg,UT*U+mi(UT+U-2)] (129
+N(iv-D+gaS-u)N (12b)
1 _
— 52 Ca(NI'AN)?, (129
2“F
ARES ig—AN{S- D,v-uiN (120
2my '
+2¢;m2NN Tr(U+U*t—-2) (120
+lc _g_,i N(v-u)2N+csNu-uN
27 gmy) 8
(12f)
9 (NN)(NiS-uN 12
Z_mN( )(NiS-uN) (129
_ 510 NNy (NiuN) (12h
2my w
In the above
§=VU(x), (13
u,=i(¢'d,¢- 0,8, (14)
D,N=(d,+3[£",d,£]N, (15)
andS, is the covariant spin operator defined by
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where

da

_ 1 — _
N[o- V(7 @) ]N+ 4?NT- X aN,
! (18a

=19

= 2¢c,m2 72
int 4meﬂ_ 1y

_ , 1
N{o-V,7 @}N+ Z

NN. (18b)

ga
| e— 2 2
(Cz 8 N) m°—C5(dm)

Here 77" represents the term of chiral order

We now compareZ;, resulting fromyPT, Eq.(17) with
the phenomenological effective Hamiltonia#i,+.7; , Egs.
(2) and(3). (The reader is reminded that the chiral index
should not be confused with the suffix appearing/ify and
771.) Regarding therNN vertices, we note that the first
term in.77(® and the first term in77*) exactly correspond
to the first and second terms, respectively,/ify. Thus the
so-called Galilean-invariance term naturally arises as a
1/my correction term in HFF. As for the7NN vertices, we
can associate the second term.ii{%) to the A, term in
7y, and second term in7{Y) to the\; term in.7;. This
suggests the following identifications:

N, 1
47Tm_3T:F3T (19)
and
2 2
mﬂT gA WqWg qk
47T7\1/m77=€{2C1— ( Co— ﬁ) r;_i_csm_i}
=«k(k,q). (20

In #1) above we have retained only terms of direct rel-|, Eq. (20), 9=(wq,q) andk=(wy k) stand for the four-

evance for our discussion. The coupling constants, and
c3 can be fixed from phenomenolo§¥5]. They are related
to the pion-nucleons term, o,y(t)~(p’|m(uu+dd)|p)
[m=average mass of the light quarks=(p’—p)?], the
axial polarizabilitya 5 and the isospin-evenfN s-wave scat-
tering lengtha™ = 3(a,,+ 2a5,) ~ — 0.008n_* [7]. (The ex-
plicit expressions will be given belowlt should be noted
that in HFF, a part of the term i) with the coefficient
(c,—gi/8my), namely the—gi/8my piece, represents the
s-wave 7-N scattering contribution, which in a traditional
calculation is obtained from the crossed Born term.

The four-Fermi nonderivative contact terms in E2)
were introduced by Weinbefd.7] and further investigated in
two- and three-nucleon systems by van Kolekal. [18].

momenta of the exchanged-and final pions, respectively; see
Fig. 1(b). Since, as already discussed, thg term is not
important for our purposes, we shall concentrate onxhe
term. The best available estimates of the coefficientsi
=1-3) can be found in Refd.15,27], which give

Although these terms are important in the chiral perturbative
derivation of the nucleon-nucleon interactidi¥,1§, they
do not play a major role in the following discussion of the
thresholdp p— pp#° reaction. We therefore temporarily ig-
nore these four-fermion terms and come back to a discussion
of these terms in the last section.

The Lagrangiar{1l) leads to the pion-nucleon interaction
Hamiltonian

H= T+ 7Y (17

Ci=— (0)+ 99, (219
177 am2 | TN T Bagt?
=-0.87+0.11 GeV %, (21b)
2 gAm. (77
ng_? aA+STfT Z8+gA
(219
=—5.25+0.22 GeV !, (210
f2 m 3gam?
=——|47| 1+ —|a"— -
T omZ [T e ® T Gantt
(219
2
Ja
+2c,—cCc3+ 8_mN (219)
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=3.34+0.27 GeV 1. (219

1523

“higher chiral order” corrections due t¢#?) [the term pro-
portional to @a/f,)? in Eq. (26)] indicates thatyPT does

The numerical results are based on the experimental valuegot converge very rapidly in this particular case. This appar-

o.n(0)=45+8 MeV [28], ap=2.28+0.10m_° [7], and
at=(—0.83+0.38)x lO*Zm;l [29]. We shall show in Sec.
VI that the uncertainties in the numerical value &rmight
be larger than quoted in ER1g. In fact, the terms in Egs.
(21b—(219 proportional to the g, /f,)? are O[(m,/A)3]
corrections arising from finite terms of(?). However, since

ent lack of convergence is probably due to the fact that the
first terms in expansion, the-N isoscalar scattering length
a*, is exceptionally small.

To develop further the connection between the traditional
and theyPT approaches, we return to a discussion of Eq.
(20). Obviously, the constant; cannot be fully identified

the present section is just an introduction to a later systemwith «(k,q) which depends on the momergandk. In fact,
atic treatment, this inconsistency in “accuracy” will be ig- the momentum dependence ofk,q) should play a signifi-

nored for the moment.

Now, for on-shelllow energy pion-nucleon scattering, i.e.,

k~qg~(m,,0), we equate

A, /m_ =ko=«[k=(m,,0),qg=(m,,0)], (22
where
2 2
7| ~ gA
Ko= 72 (C ﬁ) (23
652(:1_02_03. (24)
From Eq.(21) we have
2 m 3gami] g%
C=——S5|4m| 1+ —|a* - rl—=, (2
which results in
m, 3ga mS
_ Bl )
Ko= 277(1+ — a +1287T fi' (26)
The above cited empirical value far leads to
€¢=(0.59+0.09 GeV !, (27
ko=(0.87+0.20 GeV 1. (28

We now interpret these results in terms of of Eq. (3).
Conventionally\ ; is determined from Eq4a) which is the
first term in Eq.(26). Thus

477}\1 mﬂ.
=-27 1+ —|a*, (29
m7T I’nN
which gives
477)\1
=(0.43+0.20 GeV %, (30

m

or A= 0.005+0.002. This is the “standard value” used in
the literaturg 7,30]. On the other hand, the right-hand side of

Eq. (22) based onyPT gives from Eq(28)

47T)\1 1
=(0.87-0.20 GeV -,

(31

m

cant role in describing the physical pion-nucleon elastic scat-
tering process where,= \m-+g°, w,=\m>+k? An ad-
ditional crucial point in the present context is that, in the
rescattering diagram Fig(Hld), the exchanged pion can be far
off-shell, and therefore thg and k dependence inc(k,q)
may play an even more pronounced role. As an illustration,
let us consider again theypical threshold kinematics
discussed in the introduction: g~(m,,0) and
k~(3m,,ym_my). If we denote by, the value of
x(k,q) [Eqg. (20)] corresponding to théypical threshold ki-
nematics we have

m2

- 1 i C3
Kth:f_Z 201_ E CZ ) - (32)

S 8my/ 2

The use of the central values for the coupling constants
C1,C, andcs leads to
4mnyIm_=ky~—15 GeV L. (33
Thus the strength of the-wave pion-nucleon interaction
here is much stronger than the on-shell cases, see(&i)s.
and (31), and the sign of the off-shell coupling strength is
oppositeto the on-shell cases. The first feature is qualita-
tively in line with the observation of Herndez and Oset
[11] that the rescattering term should be larger than previ-
ously considered. However, the sign of the typical off-shell
coupling in our casgEq. (33)] is opposite to the one used in
Ref. [11]. As will be discussed later, this flip of the sign
drastically changes the pattern of interplay between the Born
and rescattering terms. We must emphasize that the off-shell
enhancement depends strongly on the values, ptt,, and
c3, which, as discussed in Refd 5,27, are not known very
accurately. It is therefore important to examine to what ex-
tent the existing large ambiguities @y, ¢c,, andc; affect
the off-shell enhancement of thep— pp=° reaction. We
shall address this question in Sec. VI.

IV. TRANSITION OPERATORS FOR pp—ppm®

As explained earlier, in the nuclegyPT we first use
xPT to calculate the contributions of the irreducible dia-
grams. Let7 represent the contributions of all irreducible
diagrams (up to a specified chiral ordew) for the
pp— ppm° process. Then we USE as an effective transition
operator in the Hilbert space of nuclear wave functions. Con-

which is about twice as large as the conventional value. Thisequently, the two-nucleon transition matrix elem@&nfor
means the second term in EQ6) is almost as large as the the pp— pp#° process is given by

first term. ThusyPT leads to a substantial modification of the

commonly used formula, Eq4a or Eg. (29). This large

T=(D¢|7]D), (34)
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T = 2 TW), (395

T "

where. 7" represents the contribution from Feynman dia-
grams of chiral ordew, as defined in Eq(10). The lowest
value of v occurs for the Born term shown in Fig(é. For

s-wave 7 production at threshold th& N7z vertex with
v=0, the first term in Eq(17), cannot contribute; hence the
lowestv for NN vertex involving an external pion must be
v=1. The first term in Eq(18b) provides this vertex. Ac-
i P cording to Eq.(10), the chiral order of Fig. @) is given by
(a) v=4-2-2X2+2X0+1=-—1. As can be checked easily,

there are no diagrams with= 0 since in the rescattering
diagram, Fig. ?), the second term in E§18g, which gives
p the NN# 7 vertex withv=0, is not operative here due to the
g isospin selection rule. The rescattering diagram in Fig) 2
with the indicated value of at each vertex contributes to
7=1 1t should be noted that because of th&C term in
the chiral counting expression, E@L0), exchange-current-

; v=1 > type diagrams such as Fig(l2 give higher values ob. In
: this work we truncate the calculation of the transition opera-
o tor.7 at v=1. Thus
M
T=7 D4 70, (36)
P 5 p o . . :
T=0 The above enumeration is, as briefly discussed in Sec. lll,

(&) far from complete because loop diagrams and counter terms

and finite terms from#(?) have been left out. In Fig. 3 we
FIG. 2. Tree graphs: the Born terta) (v=—1) and the pion  show the loop corrections to the Born tefffig. 2(@)]. The
rescattering ternb) (v=1). diagrams in Fig. 3 all have= 1 and hence are of the same
chiral order as the leading order rescattering diagram, Fig.

where|®,) (|®;)) is the initial (final) two-nucleon state dis- 2(b). As discussed earlier, for thep—ppz® reaction at
torted by the initial-statéfinal-state interaction. These dis- threshold the contribution of the Born term is numerically
torted waves should be obtained by solving the Stimger suppressed so that the rescattering diagram, which is for-

equation with nucleon-nucleon interactions generated by irMally of higher chiral order by two units of, plays an

reducible diagrams pertinent to nucleon-nucleon scatteringe,SI’DS_I(?m"'?1I rldff' Th'? tlrl;(]plles t?at a metanlnlgféjl ?ﬂd Fon&stent
thereby incorporating an infinite number of “reducible” lad- X calcuiation ot this reaction must include the foop cor-

. . . . _rections to the leading-order Born term. However, we con-
der diagrams. In this section we concentrate on the deriva- : X .
. . . : . inue to postpone the discussion of loop corrections to the
tion of the transition operator’, relegating the discussion of

next section.
T and Eq.(34) to Sec. V. The tree diagrams contributing to E®6), Figs. 4a) and

We decompose” as 2(b), are as follows. The Born term, Fig(a}, contributes to

R )

FIG. 3. Loop corrections to the Born term.
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71D and the rescattering term, Fig(k?, contributes to a2 o d
7M. These contributions are given, respectively, by ( 77) m my “(4m)™T| 1~ 2
g (41)
sBom_ __ IA i N0
= 4mewwqi§,2 oi-(p+p)7i, (374 , 1 m,
=2m;| L+ 16772|n Nk (42
_tes 9a gi-ki 7'|0 . . .
T o= 2, k(k; ,q)7—m2T (37  where the divergence is included in
=1,
N4 1
wherep, and p’; (i=1,2) denote the initial and final mo- L=T6-2lg=a " 5(75—1—"1477) : (43

menta of theith proton,k;=p;,—p’;; and «(k;,q) is as de-

fined in Eq.(20).

V. LOOP DIAGRAMS

We have emphasized above that the loop corrections to

the Born diagram, Fig. (@), which has chiral ordepr= —1,

are of the same chiral order=1 as the two-body pion res-
cattering process, Fig(ld. These loop corrections therefore

must be included in a consistent=1 calculation.

In this expressior\ denotes the dimensional regularization
scale andyg=0.557 215. Furthermore]l, and J, in Egs.
(40) are defined by

Jo(w)=—4L © l1-2in T
olw)=—4lot gz 12+~

(44)

- 4i\/7 arcco% ~ )

For our present purposes it is not necessary to go into a
general discussion of the renormalization of the parameterand
in Z.,. Instead we concentrate on an estimation of the size
of the finite loop corrections to the specific tree level terms
shown in Fig. 2. This will be done by applying standard
Feynman rules and using dimensional regularizafib].
Specifically, we need only consider the loop corrections tol he two contributions to”", Eqgs.(40¢) and(40d), originate

b il _
Jolw)= g7 l(ME=0?)Io(0)~0A ] (45)

the singlem®NN vertex in thes-wave channel:

78(){”_'_ 7c+oir (

)E [S-(pir +p)(v-q) 77,
(39)

2me

whereS = (0,30;) is the spin of théth proton and””is the
amplitude to be calculated. For the Born tefffig. 2(a)]
itself we have

V 9a=1 (39
given by Eq.(37a. The loop diagramgFigs. 3a)—3(f)],
which renormalize the-wave Born term, give the following
contributions:

~1(9a 23,(vp’) = Ja(vp)
e
, A
7'30= " ez (40b)
X 1 Jy(vp')—Jdy(vp)
[/ P—
73C 2f721_ Uq ’ (4OC)
Vs - 1 12 ’
3=z | 38+ [(0P)Io(vP) + () Ip(vP")]
2J _ ’ ZJ ’
+(vp) o(wp)=(vp')Jo(vp’) _ (40d)

vq

Here we have adopted the notations of R&b]. Thus

from two different combinations of terms in Eq&l8). To
calculate Eq(400), the second term in Eq18a and the first
term in Eq.(18b) are used at the vertices, whereas @d)
is calculated using the first term of E{.89 and the second
term of Eq.(18b).

The standard renormalization consists in the following
procedure.

(1) The loop contributions to”” are separated into a di-
vergent part, which we take to be proportionalltcof Eq.
(43) and which contains a pole dt=4, and a finite part:

,,7/-3: ;Z/éloo_F 7/-3|finite_ (46)

(2) Local counter terms, which are of the same chiral
order as the loop diagrams, are added. In our case these
counterterms must come from the Lagrangiait,

LR >, DiNO\N,

(47t )24

to give two-nucleon diagrams with=1. The unknown con-
stantsD; are then written as a sum of a finite and an infinite
part

(47)

D;=D;|™Me(\)+ (47)25L. (48)
The constants; are determined by requiring that the infinite
3/”. The remaining
finite contributions which should be added to the Born term
via Eq. (38), are

7 i00p= 73| "+ 7 "M (49

The amplitude7’; contains energy-independent and energy-
dependent parts, as can be seen in &§). The energy-
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independent part can be absorbed in the renormalization di-N wave functions. Park, Min, and RH&1] used this hy-
the following physical parameters: the pion wave functionbrid approach to study the exchange-current in the
renormalization factoZ , [Fig. 3(e)], the nucleon massly  n+p—y+d reaction and at least, for the low-momentum
and the nucleon wave function renormalization facyr  transfer process studied in R¢R1], the hybrid method is
[(Fig. 3(f)], as well as the axial coupling constagy [Figs.  known to work extremely well.

3@, 3(b), 3(e), 3(f)]. For the evaluation of the energy-  Apart from the above-mentioned problem, there is a deli-
dependent part we use thgpical threshold kinematics cate aspect in the derivation of an effective two-body opera-
vg=m,, vp;=m., vp,=0. Putting these values into the {or from a given Feynman diagram. Ordinarily, one works
corresponding terms in EG40), we obtain as the total con- it r.space transition operators acting bmepresentation
tribution of the diagrams in Fig. 3 wave functions, for the nuclear wave functions are com-
monly given in this representation. To this end, a Feynman
amplitude which is most conveniently given in momentum
space, is Fourier transformed into theepresentation. This
method works best for low momentum transfer processes
which have substantial transition amplitudes for on-shell ini-

75| "e~0.1. (50)

Thus 75| ™ amounts to 10% of the Born terfiFig. 2a)].
In addition we have finite contributions from the counter-
terms of #(®), 7,/ We note that only very few of the " _ A
low energy constants in the counterterrds|ie()\) are tial a_nd final plane-wave states. However, .I]blppr'zT
known [15]. Some of the low energy constants ir®, re_act|on gt thrgshold dpes not belqng to this category._For
Bilfinite()\) have been estimated in RefL5] assumingA this reaction it is essentl_al to recqgnlze thgt the rjucleon I_mes
resonance saturation. The result indicate|™e()) f[hat appear as external lines in F|g. 2arein fact. internal _Ilnes
~0(0.1). For an estimate of the low energy constantd" larger diagrams illustrated in _F_lg. 1. Thgse mterngl lines
D|finte(\) in 3 it seems reasonable to assume that theyan be far off—s.hell due' to the |n|t|a.l- and flnal—state interac-
are of the same order of magnitude as ®ge(\) in  tions. Indeed without this off-shell kinematics, the Born term
2@ To be conservative let us assurbg™te(\)~0(1); [Fig. 2(@)] would not contribute at all. In the conventional
then we expect”,,|™®©~0.1. It is clear that, if those coef- approach, however, one ignores this feature in derivinin
ficients were “unreasonably large,” the convergence of thecoordinate representation. For example, in Fourier trans-
whole chiral series would be destroyed. forming an operator of the type of 'Y}, Eq. (37b), even
Altogether, after renormalization the total contributionsthoughp;, andp/ in Eq. (37b) in fact can be anything due to
from the loop terms are expected to amount to at mosgnomentum transfers caused by the initial and fiNaN in-
20% of the Born term. This is not a completely negligible teractions, it is a common practice to keep the energy of the
contribution in the present context because, as will be diSpropagating pion fixed at the value determined by the asymp-
cussed in the next section, there can be a significant cancebtic energies of the nucleons. Hanhattal. [13] made a
lation between the Born and the rescattering terms. Nevelyritical study of the consequences of avoiding these kine-
theless, since our present treatment involves other larggehatical approximations. They worked directly with the two-
Uncertainties, we will neglect the renormalization of the Bornnudeon wave functions in momentum representation_ In the
term and henceforth concentrate on the bare Born {&ith  present work we do not attempt at detailed momentum-space

2(a)] and the rescattering terfiFig. 2(b)]. calculations and simply use the “conventional” Fourier
transform method. Because of this and a few other approxi-
VI. CALCULATION OF THE TWO-NUCLEON mations adopted, the numerical work presented here is ad-
TRANSITION MATRIX mittedly of exploratory nature. Nonetheless, as we shall

] ) ] N show, our semiquantitative study @f based on the chiral-
We derived in Sec. IV the effective transition operatortheoretically motived transition operatof” provide some
7 arising from the tree diagrams and, in Sec. V, we estiygjyable insight into the dynamics of the threshold
mated the additional contributions due to the loop correcyn, yp 70 reaction.
tions and presented an argument for ignoring the loop cor- | et ys denote the contribution of Fig(l®} for plane-wave
rections in this work. These considerations lead to the HFF, 7D|p,;,p,). We first

) b - ! initial and final states byp;,p5.q
expression of7” up to orderr = 1, given in Eqs(36) and 50 jate this matrix element for thgpical threshold kine-
(37), and this.7 is to be used in Eq(34) to obtain the

two-nucleon fransition matrisy matics described earlier; for the meson Vvariables,
- . X . : g=(m,,0) and k=(m_/2,k) with |k|=+m,my. Corre-

_ A_form_ally consistent” treatment of Eq(34) would con- spondingly, the coupling strengt(k,q) [Eq. (37b)] is taken
sist in using for|®;) and|®;) two-nucleon wave functions to be kq= — 1.5 GeV! [Eq. (33)]. Subsequently, by liberat-
generated by irreducible diagrams of order upitel. A in thethmoméntum variab-l N and ’,from the
problem in this “consistent’yPT approach is that the inter- 9 rabiess Bl'gpz’ P2
mediate two-nucleon propagators in Fig. 1 can be signifi—on,'m"’,‘SS'S/hﬁI)I conditions pﬁ—_mN, o) /we treat
cantly off-mass-shell, which creates a difficulty in apPT Pl'pZ*cﬂ'/, I,pl,p2> as a function ofpy, py, pz, and
calculation. Another more practical problem is that, if we P2- L€t T(P1,P2P1,p2) stand for this function. We still re-
include the initial and final two-nucleorN¢N) interactions — guire momentum conservation at each vertex, which imposes

in diagrams up to chiral order=1, theseN-N interactions the conditions p;+p,=p;+p;+d=0, and k=p;—p;

are not realistic enough to reproduce the kndwhl observ-  =P2—P2. T(P1,P2P1,P2) can be easily Fourier transformed
ables. A pragmatic remedy for these problems is to use o give.7'] in r representation. The simplified treatment

phenomenologicaN-N potential to generate the distorted described here, which is commonly used in the litera-



53 CHIRAL PERTURBATION APPROACH TO THEpp—pp#®. .. 1527

ture, shall be referred to as thdixed kinematics TABLE I. J®™ and J'$* for the threshold kinematicEEgs.

approximation (549,(54b)], calculated with the Hamada-JohnsdttJ) and Reid
Now, in the fixed kinematics approximatipn/~ [Eqs.  soft-core(RSQ potentials.

(36), (37)] is translated into differential operators acting on

relative coordinate of the two-nucleon wave functions: HJ RSC
3 gam JEqn —0.672 -0.515
FBm_2A T3y, (518 Jres +0.505 +0.413
f7r rnN
jrfi: _ 20a kg T (r), (51b) wherea is the_ scattering Igngth of thN potential. Then
fr the cross section can be simply expressed as

where the derivative operator with subscrigé to act on the g2
relative coordinater between two protons, an®=3 Utot=%
(o= o). The trivial isospin operatoriO has been dropped. \/Eﬂfwmﬁ
The Yukawa functiorf (r)=exp(—u'r)/4mr is defined with
the effectivemassu’ = V312 m,.. We reemphasize that the
simple Yukawa formf(r) arises only when théixed kine- |J|2:|JBorn+JreS|2 (583
matics approximatiorjust discussed is used. -1 oTee

From this point on, our calculation &f follows exactly

19171 (E), (57)

where

E - ’ ’
the traditional pattern described in the literature. Thuis I(Ef)zf dep/ VE; Epz\/Ep . (580
evaluated by inserting the transition operator§2™ and 0 1+mya’Ey

~res . .
7771, Eq. (51), between the initial and final nuclear states Under the approximatiofB6), the energy dependence of the

() — ; i5, 1/2(3,3 cross section is solely given ByE;), which incorporates
Hi(1) (\/Elpr)ml,o(r)e (4m) T Po), (52 the phase space and the final state interaction effiedhe
B1(1)=(1Ip'r)Ug o(1)e 0 47)14315), Watson approximatiof31]).

' We have calculated the integral8y" and J's5 for repre-
wherep andp’ are the asymptotic relative three-momenta ofsentative nuclear potentials: the Hamada-Johnétth po-
the initial and final two-proton systems. The wave functionstential[32], and the Reid soft-core potenti@SC [33]. The
are normalized agL’Jrif"sin(p —3mL+ 8. ;) with 5 ; be-  results are given in Table I, and the corresponding cross sec-
ing theN-N scattering phase shifts. For simplicity, the Cou- tions are presented in Table II. These results indicate that, for
lomb interactions between the two protons is ignor@he  the nuclear potentials considered here, the valu¢Jpfis
Coulomb force is known to reduce the cross section up ténuch too small to reproduce the experimental cross section.
30%][4].) The explicit expression for the transition amplitude If we define the discrepancy ratR by
at threshold is obtained as
R= &P g8, (59
T(Ep)=4m(ga/f,mum5?) (32" + D). (53
with o taken from Ref[1], thenR= 80 (R= 210) for the
Here, Eq=E, +q?/2m, is the kinetic energy of the final Hamada-JohnstofReid soft-corg potential, andR happens
state, and to be almost constant for the whole rangese& 23 MeV for
5 which o is known. Thus, although the off-shell behavior
Jliolrn_ lim _m”fmdr rz@(iJrg) Uso (549 of the s-wave pion scattering amplitude derived from the

= n s

b’ 0 r\dr or)r chiral Lagrangian does enhance the contribution of the re-
scattering process over the value reported in the literature,
s . m_M, (= , the sign change that occurs inas one goes fromxy [Eq.
t1= lim 2Ktth0 drugef' (Nue. (54D (22)] 10 ki [EQ. (32)] results in a significant cancellation
p’'—0 between the Born terrd®3" and the rescattering terdf?s,

The total cross section is obtained by multiplying the absoleading to the very small cross sections in Tablg3H]. The
lute square of the transition amplitudaveraged over the drastic cancellation betwee?y" andJ’; found here means

initial spins and summed over the final spingith the ap-  that the calculated cross sections are highly sensitive to the
propriate phase space facto(E;) and the flux factor 1/: various approximations used in our calculation and also to

the precise values of the constaais c,, andc; of Eq. (21).
27 5 We will discuss these two questions in the next two para-

o-tot:Tj dp(Ef)|T(Ef)| . (55) graphs_

We adopted the threshold kinematics approximation and

For a rough estimation one may approximate the energy dareglected the energy-momentum dependence irfZByand

pendence of the transition matrix g&l] treated the vertices in Figs. 1 and 2 as fixed numbers, i.e.,
) x(k,q) = k4 = constant. In addition, although the loop
|T(Ef)|2= |T(0)| (56) corrections of chiral order = 1, shown in Fig. &), auto-
1+ p’zaz’ matically introduces energy-momentum dependent vertices,
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TABLE II. The total cross sectiongin ub) as functions of where g is the pion momentum andb+=(—0_044
n=+2E;/m_, calculated with the Hamada-JohnstétJ) and Reid i0.00?)’n;e’ [7]. If we use ¥ to calculate thes-wave
soft-core(RSQ potentials. pion-nucleon amplitude we find

n OHy ORsc

. m,| tfm,)? ALl
0.03 0.0000 0.0000 b= 1 (K) G2 Ca™ 8_mN> m2’
0.06 0.0003 0.0001 (63
0.09 0.0011 0.0004
0.12 0.0024 0.0009 and then Eq(32) leads to
0.15 0.0043 0.0016 o

m m
o P oo K=z Cy—mm? | 1+ m—;)b+=(—2.7¢ 0.6) Gev L.
0.24 0.0138 0.0052 (64)
0.27 0.0182 0.0068
0.30 0.0232 0.0087 Sincecj is given directly by the experimental quantity,
0.33 0.0289 0.0108 [Eqg. (21d)], we consider Eq(63) as an alternative input to
0.36 0.0352 0.0131 determinec, in terms ofb™ andc;. Then Eqs(63), (21d),
0.39 0.0421 0.0157 and the experimental value bf" [7] give
0.42 0.0496 0.0185
0.45 0.0577 0.0215 C,=(4.5+0.7) GeV . (65)
0.48 0.0665 0.0248
0.51 0.0759 0.0283 We note that this value is larger than the one given in Eq.
0.54 0.0859 0.0320 (219g), indicating that the determination 0§ requires further
0.57 0.0965 0.0360 studies. Wlth the new va_lue ofy, given in Eq.(64) we find
0.60 0.1078 0.0402 that the discrepancy rati® [Eq. (59)] can be as small as

~10. (In this casgJ"|>|J5"; the exact cancellation be-
tween the Born and the pion rescattering term occurs for
we ignored this feature. The fact that the kinematics of the<in~—2 GeV ™ *.)
reaction Eq(1) requires highly off-shell vertices leads to the ~ Without attaching any significance to the detailed num-
expectation that the vertex form factors can be very imporbers above, we still learn the extreme sensitivityo@f° to
tant and invalidate the¢hreshold kinematics approximation the input parameters and that, despite this high sensitivity,
leading to Eq.(51). In this connection we note that a o(aCstill falls far short ofaSi? (within the framework of the
momentum-space calculatidd3], which is free from this fixed kinematics approximatin
approximation, indicates that even a negative value\ pf
could lead to the moderate enhancement of the cross sect_ion. VII. DISCUSSION AND CONCLUSIONS

The strong cancellation between the Born and rescattering
terms also means that, even within the framework of the In this work we have usegPT to calculate the effective
fixed kinematics approximatiothe large errors that exist in pion-exchange current contribution to th@— pp=° reac-
the empirical value o&™ and thec,, c,, andc; constants tion at threshold. As stated repeatedly, our aim here is to
can influence the cross sections significantly. To assess thigirry out a systematic treatment of up to chiral order

influence, we rewrite Eq32) as v=1 [see Eq(36)]. However, in order to make contact with
the expressions appearing in the literafi8k let us consider
2 2.3 o i -
m:, m;\ ., 3gam; a very limited number ob=2 diagrams. To be specific, we
Kin=72 C1= ™ 1+ my a + 25672 (60 consider a diagram in Fig. (8) but with the »=0

(p-wave wNN vertex replaced with a=1 (s-wave ver-

The use of the experimental values faf andc, quoted (€. Then, instead of Eq51b), we will obtain
earlier leads to

+f(r)—Vr},
(66)

~res Oa
kin=(—1.5+0.4) GeV L. 61) 12T T K {“‘ (r)(

With this uncertainty taken into account, the raRoranges

from R=25 to R=2100 for the Hamada-Johnston potential, which is the two-body transition operator used in R&i.

and fromR=50 to R=3.4x 10" for the Reid soft-core po- Thus we do recover the usual phenomenological parameter-

tential. To further examine the uncertainties in t#é) con-  ization in yPT, but this is just one of many=2 diagrams.

stants we remark that the value ©f+c5; can be extracted Our systematio=1 calculation excludes all=2 diagrams.

from the known pion-nucleon effective range parameter We have also ignored the exchange current contributions

b*. The low energy pion-nucleon scattering amplitude isfrom scalar and vector two-nucleon exchanges. Following

expanded as the yPT of Refs.[17,18 the vector meson exchange is

largely accounted for via the four-nucleon contact terms il-

ff=a"+b"g?+---, (62) lustrated in Fig. 4a). If we had retained the last two terms of
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(a)

(b)

(b)

FIG. 4. Generic four-fermion-pion vertégontact term (a) and
an example of a loop correction to a contact tefn

Eq. (12, the pion-nucleon interaction7}), Eq. (18b),
would have had an additional piece(%)’

()
Co

T = m(NN)[Nﬂ" V(7 @)N] FIG. 5. A few higher order diagrams contributing to the effec-
NTm tive two-nucleon scalar exchange in nuclgddT.
+ C10 (NUN){NV( 7 m)N]. culation, the contact term Fig. (@ corresponding to
amyf . s-wave pion production will play no role. Including meson

(67) loops corrections to these contact terfas example illus-
trated in Fig. 4b)] would smear out thé-function behavior,

: ) ) ; allowing them to have a finite contribution to the threshold
means it describep-wave pion production and therefore pp—ppn° reaction. This involves, however, diagrams of

does not contribute to the threshgig— pp® reaction. The  gyen higher chiral order tham= 2. Thus, in order to include
s-wave pion production contact term, also belonging to thene sirong effective isoscalar-vector repulsion of tieN
type of diagram illustrated in Fig.(d), enters as a Iy forces ( exchangg contained in the four-nucleon contact
recoil correction toiﬁi(nlt) and therefore is of chiral order  terms of Weinberg'§17] and van Kolck’set al’s [18] xPT

= 2. Formally, the chiral order=2 diagrams have no place description, we have to go to chiral orde+ 3.

in the present calculation limited te=1. However, in view Meanwhile, one may picture the “effective heavy me-
of the great current interest in the possible large contributiorsons” as generated by multipion exchange diagrams like
of the heavy-meson exchange diagrams, we make a few réhose illustrated in Fig. 5. These diagrams, which necessarily
marks on thes-wave v=2 contact terms depicted in Fig. contain loops, represent a very limited class:e$3 dia-
4(a). We note that the coordinate representation of this congrams. For example, an important part of the effective scalar
tact term containss®(r). Meanwhile, in the threshold exchange between two nucleons involve intermediate

pp— pp° reaction the initial two-nucleon relative motion s-wave interaction which requires at least two loop diagrams
must be inp wave (because of parifyand so its wave func- like Fig. 5c). Thus, if we are to interpret the heavy-meson
tion vanishes at=0. Thus, even in a chiral order=2 cal- exchange diagrams of Lee and RigB4in the framework of

The %I(r,lt)’ term of Fig. 4a) has ao-q structure, which



1530 PARK, MYHRER, MORONES, MEISSNER, AND KUBODERA 53

nuclear yPT, we must deal with terms with chiral order ics approximation Such a calculation will allow us to work
v=3, which at present is beyond practical calculations.  with full off-shell kinematics, to incorporate thePT form
We now recapitulate the main points of this article. factors in the Born term, and to reduce ambiguities in our
(1) Using xPT in a systematic fashion we have shown thatcalculation down to the level of uncertainties in the input
the contribution of the pion rescattering term can be muctparameters iyPT and the chiral counter terms.
larger than obtained in the traditional phenomenological cal- (3) Several work48,10,13 indicate that the two-nucleon
culations. This fact itself supports the suggestion of HernanScalar ¢) exchange can be very important. We gave in the
dez and Osef11] that the off-shells-wave pion-nucleon introduction a simple kinematical argument for its plausibil-
scattering should enhance the rescattering contribution sig: and our dynamical calculatiofalbeit of semiquantitative
nificantly. However, the sign of the enhanced rescattering/@luré seems to indicate the necessity of theexchange
vertex obtained inyPT is oppositeto that used in Ref11] contribution in order to explain the observed cross sections
at least for thetypical threshold kinematicsiefined in the fof the thresholcp— ppr® reaction. Itis of great interest to
text. This sign change in the coupling constaptleads to a  S€€ to what extent an improvegPT calculation based on

destructive interference between the Born and rescatterirg‘omem“m'Sp""Ce representation helps sharpen the conclu-
terms instead of the constructive interference found in RefS!ON 0N the necessity of the sigma exchange diagram. Such a

[11]. The significant cancellation between these terms givé&alculation is now in progress. If it is established that the
rise to the very small cross section for the near-threshold©2vy meson exchgmge diagrams play an essential role in the
pp— ppm®° reaction calculated in this work. Although our thrésholdpp—ppw™ reaction, it seems that we must resort
particular numerical results were obtained in what we calf® @ modified version ofPT, for a brute force extension of
the fixed kinematics approximatiothese results at least in- OUr réatment ta=2 seems extremely difficult. An attempt
dicate that the large enhancementafﬁ'c obtained in Ref. to include vector meson degrees of freedoms exp_I|C|tIy can
[11] is open to more detailed examinations. be found, e.g., n Re{.19]. A purely phenomenologlcal ap-

(2) The fixed kinematics approximatiofwhich is com- proach as used if8] may also be a useful alternative.
monly used in the literatujeshould be avoided. There are at
least two reasons why this is not a good approximation for
this reaction:(i) the initial- and final-state interactions play = We are grateful to U. van Kolck for the useful communi-
an essential role in the near-threshplg— pp=° reaction;  cation on Ref[22]. One of us(B.-Y.P) is grateful for the
(i) the theoretical cross section within the framework of thehospitality of the Nuclear Theory Group of the University of
Born plus rescattering terms is likely to depend on the deli-South Carolina, where the main part of this work was done.
cate cancellation between these two terms. In a momenturfhis work is supported in part by the National Science Foun-
space calculatiofil3], we can easily avoid thiixed kinemat-  dation, Grant No. PHYS-9310124.
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