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Chiral perturbation approach to the pp˜ppp0 reaction near threshold
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~Received 18 December 1995!

The usual theoretical treatments of the near-thresholdpp→ppp0 reaction are based on various phenom-
enological Lagrangians. In this work we examine the relationship between these approaches and a syst
chiral perturbation method. Our chiral perturbation calculation indicates that the pion rescattering term sh
be significantly enhanced as compared with the traditional phenomenological treatment, and that this
should have substantial energy and momentum dependence. An important consequence of this e
momentum dependence is that, for a representative threshold kinematics and within the framework o
semiquantitative calculation, the rescattering term interferes destructively with the Born term in sharp con
to the constructive interference obtained in the conventional treatment. This destructive interference m
theoretical cross sections forpp→ppp0 much smaller than the experimental values, a feature that suggests
importance of the heavy-meson exchange contributions to explain the experimental data.

PACS number~s!: 13.75.Cs, 13.75.Gx, 12.39.Fe
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I. INTRODUCTION

Recently Meyeret al. @1# carried out high-precision mea
surements of the total cross sections near threshold for
reaction

p1p→p1p1p0. ~1!

These measurements were confirmed by Bondaret al. @2#.
The early theoretical calculations@3–5# underestimate these
s-wavep0 production cross sections by a factor of;5.

The basic features of these early calculations may be s
marized as follows. The pion production reactions are
sumed to be described by the single nucleon process~the
Born term!, Fig. 1~a!, and thes-wave pion rescattering pro
cess, Fig. 1~b!. Thep-N vertex for the Born term is assume
to be given by the pseudovector interaction Hamiltonian

H05
gA
2 f p

c̄S s•¹~t•p!2
i

2mN
$s•¹,t•ṗ% Dc, ~2!

wheregA is the axial coupling constant, andfp 5 93 MeV is
the pion decay constant. The first term representsp-wave
pion-nucleon coupling, while the second term accounts
the nucleon recoil effect and makesH0 ‘‘Galilean invari-
ant.’’ For s-wave pion production only the second term co
tributes. Since this second term is smaller than the first te
by a factor of;mp /mN , the contribution of the Born term
to s-wave pion production is intrinsically suppressed, and
a consequence the process becomes sensitive to two-
contributions, Fig. 1~b!. The s-wave rescattering vertex i
Fig. 1~b! is commonly calculated using the phenomenolo
cal Hamiltonian@3#

H154p
l1

mp
c̄p•pc14p

l2

mp
2 c̄t•p3ṗc. ~3!
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The two coupling constantsl1 andl2 in Eq. ~3! were deter-
mined from theS11 andS31 pion nucleon scattering lengths
a1/2 anda3/2 as

l15
mp

6 S 11
mp

mN
D ~a1/212a3/2!, ~4a!

l25
mp

6 S 11
mp

mN
D ~a1/22a3/2!. ~4b!

The current algebra prediction@6# for the scattering lengths,
a1/2522a3/25mp/4p f p

250.175mp
21 , implies that only chi-

ral symmetry breaking terms will give a nonvanishing valu
of the coupling constantl1 in Eq. ~3!. Thereforel1 is ex-
pected to be very small. Indeed, the empirical value
a1/2.0.175mp

21 and a3/2.20.100mp
21 obtained by Ho¨hler

et al. @7# lead tol1;0.005 andl2;0.05. So the contribu-
tion of the l1 term in Eq. ~3! is significantly suppressed.
Meanwhile, althoughl2 is much larger thanl1 , the isospin
structure of thel2 term is such that it cannot contribute to
thep0 production from two protons at the rescattering verte
in Fig. 1~b!. Thus the use of the phenomenological Hamilto
nians, Eqs.~2! and ~3!, to calculate the Born term and the
rescattering terms illustrated in Figs. 1~a! and 1~b!, gives
significantly suppressed cross sections for thepp→ppp0

reaction near threshold. Therefore, theoretically calculate
cross sections can be highly sensitive to any deviations fro
this conventional treatment. These delicate features sho
be kept in mind in discussing the large discrepancy~a factor
of ;5! between the observed cross sections and the pred
tions of the earlier calculations.

A plausible mechanism to increase the theoretical cro
section was suggested by Lee and Riska@8#. They proposed
to supplement the contribution of the pion-exchange dia
gram, Fig. 1~b!, with the contributions of the short-range
axial-charge exchange operators which were directly relat
to heavy-meson exchanges in the nucleon-nucleon intera
tions @9#. According to Lee and Riska, the shorter-range me
son exchanges~scalar and vector exchange contributions!

am
1519 © 1996 The American Physical Society
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1520 53PARK, MYHRER, MORONES, MEISSNER, AND KUBODERA
can enhance the cross section by a factor 3–5. Subseque
Horowitz et al. @10# demonstrated, for the Bonn meson ex
change potential, a prominent role of thes meson in enhanc-
ing the cross section, thereby basically confirming the co
clusions of Lee and Riska. The possible importance
heavy-meson exchanges may be inferred from the followi
simple argument. Consider Fig. 1~b! in the center-of-mass
~CM! system with the initial and final interactions turned o
and with the exchanged particle allowed to be any partic
~not necessarily a pion!. At threshold, q05mp , q50,
p185p2850, so that any exchanged particle must hav
k05mp/2570 MeV and uku5AmpmN1(mp/2)

2;370
MeV/c, which impliesk252mpmN . Thus the rescattering
process probes two-nucleon forces at distances; 0.5 fm
corresponding to a typical effective exchanged ma
AmpmN5 370 MeV. Its sensitivity to the intermediate-rang
N-N forces indicates the possible importance of the tw
body heavy meson axial exchange currents considered
Lee and Riska. The particular kinematical situation we co
sidered here shall be referred to as thetypical threshold ki-
nematics.

Meanwhile, Herna´ndez and Oset@11# considered theoff-
shelldependence of thepN s-wave isoscalar amplitude fea-
turing in the rescattering process, Fig. 1~b!. They pointed out
that thes-wave amplitude could be appreciably enhanced f
off-shell kinematics pertinent to the rescattering process. W

FIG. 1. Single nucleon process~Born term! ~a! and pion rescat-
tering process~b! for the pp→ppp0 reaction near threshold.
2T11,2S11LJ denotes the isospin and angular momenta of the init
and final states.
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have seen above that, for thetypical threshold kinematics,
the exchanged pion can indeed be far off shell. The ac
kinematics of course may deviate from thetypical threshold
kinematicsrather significantly due to energy-momentum e
changes between the two nucleons in the initial and fi
states, but the importance of the off shell kinematics for
exchanged pion is likely to persist. Herna´ndez and Oset ex
amined two types of off-shell extrapolation:~i! the Hamilton
model forpN isoscalar amplitude based ons exchange plus
a short range piece@12#, and ~ii ! an extrapolation based o
the current algebra constraints. In either case the enha
ment of the total cross section due to the rescattering pro
was estimated to be strong enough to reproduce the ex
mental data. A more detailed momentum-space calcula
carried out by Hanhartet al. @13# supports the significan
enhancement due to an off-shell effect in the rescatte
process, although the enhancement is not large enoug
explain the experimental data. It should be emphasized
Hanhartet al.’s calculation eliminates many of the kinemat
cal approximations employed in the previous calculations

Given these developments based on the phenomeno
cal Lagrangians, we consider it important to examine
significance of these phenomenological Lagrangians in ch
perturbation theory (xPT! @14,15# which in general serves a
a guiding principle for low-energy hadron dynamics. In t
present work we shall describe an attempt at relating
traditional phenomenological approaches toxPT. The fact
thatxPT accounts for and improves the results of the curr
algebra also makes it a natural framework for study
threshold pion production. Furthermore, in this low-ener
regime, it is natural to employ the heavy-fermion formalis
~HFF! @16#. The HFF has an additional advantage of allo
ing easy comparison with Eqs.~2! and ~3!.

It should be mentioned, however, that the application
xPT to nuclei involves some subtlety. As emphasized
Weinberg @17#, naive chiral counting fails for a nucleus
which is a loosely bound many-body system. This is beca
purely nucleonic intermediate states occurring in a nucl
can have very low excitation energies, which spoils the
dinary chiral counting. To avoid this difficulty, one must fir
classify diagrams appearing in perturbation series into i
ducible and reducible diagrams, according to whether or
a diagram is free from purely nucleonic intermediate sta
Thus, in an irreducible diagram, every intermediate st
contains at least one meson. ThexPT can be safely applied
to the irreducible diagrams. The contribution of all the irr
ducible diagrams~up to a specified chiral order! is then to be
used as an effective operator acting on the nucleonic Hilb
space. This second step allows us to incorporate the co
butions of the reducible diagrams. We may refer to this tw
step procedure as thenuclear chiral perturbation theory
~nuclearxPT!. This method was first applied by Weinber
@17# to chiral-perturbation-theoretical derivation of th
nucleon-nucleon interactions and subsequently used by
Kolck et al. @18#. Park, Min, and Rho~PMR! @19# applied
the nuclearxPT to meson exchange currents in nuclei. T
success of the nuclearxPT in describing the exchange cu
rents for the electromagnetic and weak interactions is w
known@19–21#. The present paper is in the spirit of the wo
of PMR.

al
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53 1521CHIRAL PERTURBATION APPROACH TO THEpp→ppp0 . . .
This article is organized as follows: In the next section w
define our pion field and the chiral counting procedure. Th
in Sec. III we present the two lowest order Lagrangian
discuss their connection to the early works on this reacti
and determine within certain approximations the numeric
values of the effective pion rescattering vertex streng
k th . In Sec. IV we briefly discuss the connection between t
transition matrix for this reaction and thexPT calculated
amplitude. In Sec. V we present necessary loop correctio
to the Born term, and in Sec. VI we calculate the cross se
tion and discuss the various approximations and the unc
tainties of the low energy constants inxPT. Finally in Sec.
VII, after discussing some higher chiral order diagrams, w
present our main conclusions.

A work very similar in spirit to ours has recently bee
completed by Cohenet al. @22#.

II. CHIRAL PERTURBATION THEORY

The effective chiral LagrangianLch involves an SU~2!
matrix U(x) that is nonlinearly related to the pion field an
that has standard chiral transformation properties@23#. An
example is@24#

U~x!5A12@p~x!/ f p#21 it•p~x!/ f p . ~5!

In the meson sector, the sum of chiral-invariant monomia
constructed fromU(x) and its derivatives constitutes the
chiral-symmetric part ofLch. Furthermore, one can con-
struct systematically the symmetry-breaking part ofLch with
the use of a mass matrixM the chiral transformation of
which is dictated by that of the quark mass term in the QC
Lagrangian. To each term appearing inLch one can assign a
chiral order indexn̄ defined by

n̄[d22, ~6!

whered is the summed power of the derivative and the pio
mass involved in this term. A low energy phenomenon
characterized by a generic pion momentumQ, which is
small compared to the chiral scaleL; 1 GeV. It can be
shown that the contribution of a term of chiral ordern̄ carry
a factor (Q̃/L) n̄, whereQ̃ represents eitherQ or the pion
massmp . This suggests the possibility of describing low
energy phenomena in terms ofLch that contains only a man-
ageably limited number of terms of low chiral order. This i
the basic idea ofxPT.

The heavy fermion formalism~HFF! @16# allows us to
easily extendxPT to the meson-nucleon system. In HFF, th
ordinary Dirac fieldc describing the nucleon, is replaced b
the heavy nucleon fieldN(x) and the accompanying ‘‘small
component field’’n(x) through the transformation

c~x!5exp~2 imNv•x!@N~x!1n~x!# ~7!

with

v”N5N, v”n52n, ~8!

where the four-velocityvm is assumed to be almost static
i.e., vm'(1,0,0,0) @25#. Elimination of n(x) in favor of
N(x) leads to expansion in]m /mN . SincemN' 1 GeV
'L, an expansion in]m /mN may be treated like an expan
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sion in ]m /L. Lch in HFF consists of chiral symmetric mo
nomials constructed fromU(x), N(x) and their derivatives
and of symmetry-breaking terms involvingM. The chiral
order n̄ in HFF is defined by

n̄[d1n/222, ~9!

whered is, as before, the summed power of the derivat
and the pion mass, whilen is the number of nucleon field
involved in a given term. As before, a term inLch with
chiral ordern̄ can be shown to carry a factor (Q̃/L) n̄!1. In
what follows,n̄ stands for the chiral order defined in Eq.~9!.

In addition to the chiral order indexn̄ defined for each
term inLch, we assign a chiral order indexn for each irre-
ducible Feynman diagram appearing in the chiral pertur
tion series for a multifermion system@17#. Its definition is

n542EN22C12L1(
i

n̄ i , ~10!

whereEN is the number of nucleons in the Feynman d
gram,L the number of loops, andC the number of discon-
nected parts of the diagram. The sum overi runs over all the
vertices in the Feynman graph, andn̄ i is the chiral order of
each vertex. One can show@17# that an irreducible diagram
of chiral ordern carries a factor (Q̃/L)n!1.

In the literature the term ‘‘effective Lagrangian’’~or ‘‘ef-
fective Hamiltonian’’! is often used to imply that that La
grangian~or Hamiltonian! is only meant for calculating tree
diagrams. The Hamiltonians given in Eqs.~2! and ~3! are
regarded as effective Hamiltonians of this type. We m
note, however, that the effective Lagrangian inxPT has a
different meaning. Not only canLch be used beyond tree
approximation but, in fact, a consistent chiral counting ev
demands inclusion of every loop diagram whose chiral or
n is lower than or equal to the chiral order of interest. As w
be discussed below, for a consistentxPT treatment of the
problem at hand, we therefore need to consider loop cor
tions. However, since the inclusion of the loop corrections
rather technical, we find it useful to first concentrate on
tree-diagram contributions. This simplification allows us
understand the basic aspects of the relation between the
tributions from xPT and the phenomenological Hamilto
nians, Eqs.~2! and ~3!. Therefore, in the next two section
~III and IV! we limit our discussion to tree diagrams. A mo
elaborate treatment including loop corrections will be d
scribed in Sec. V.

III. TREE DIAGRAM CONSIDERATIONS

In order to produce the one-body and two-body diagra
depicted in Figs. 1~a! and 1~b!, we minimally need~see be-
low! terms withn̄51 and 2 inLch. We therefore work with

Lch5L ~0!1L ~1!, ~11!

whereL ( n̄) represents terms of chiral ordern̄. Their explicit
forms are@15,26#
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L ~0!5
f p
2

4
Tr@]mU

†]mU1mp
2 ~U†1U22!# ~12a!

1N̄~ iv•D1gAS•u!N ~12b!

2
1

2(A CA~N̄GAN!2, ~12c!

L ~1!52
igA
2mN

N̄$S•D,v•u%N ~12d!

12c1mp
2 N̄N Tr~U1U†22! ~12e!

1S c22 gA
2

8mN
D N̄~v•u!2N1c3N̄u•uN

~12f!

2
c9
2mN

~N̄N!~N̄iS•uN! ~12g!

2
c10
2mN

~N̄SmN!~N̄iumN!. ~12h!

In the above

j[AU~x!, ~13!

um[ i ~j†]mj2j]mj†!, ~14!

DmN[~]m1 1
2 @j†,]mj#!N, ~15!

andSm is the covariant spin operator defined by

Sm[ 1
4g5@v” ,gm#. ~16!

In L (1) above we have retained only terms of direct re
evance for our discussion. The coupling constantsc1 ,c2 and
c3 can be fixed from phenomenology@15#. They are related
to the pion-nucleons term, spN(t);^p8um̄(ūu1d̄d)up&
@m̄5average mass of the light quarks,t5(p82p)2#, the
axial polarizabilityaA and the isospin-evenpN s-wave scat-
tering lengtha1[ 1

3(a1/212a3/2)'20.008mp
21 @7#. ~The ex-

plicit expressions will be given below.! It should be noted
that in HFF, a part of the term inL (1) with the coefficient
(c22gA

2/8mN), namely the2gA
2/8mN piece, represents the

s-wave p-N scattering contribution, which in a traditiona
calculation is obtained from the crossed Born term.

The four-Fermi nonderivative contact terms in Eq.~12!
were introduced by Weinberg@17# and further investigated in
two- and three-nucleon systems by van Kolcket al. @18#.
Although these terms are important in the chiral perturbati
derivation of the nucleon-nucleon interactions@17,18#, they
do not play a major role in the following discussion of th
thresholdpp→ppp0 reaction. We therefore temporarily ig
nore these four-fermion terms and come back to a discuss
of these terms in the last section.

The Lagrangian~11! leads to the pion-nucleon interaction
Hamiltonian

H int5H int
~0!1H int

~1! , ~17!
l-

ve

e

ion

where

H int
~0!5

gA
2 f p

N̄@s•¹~t•p!#N1
1

4 f p
2 N̄t•p3ṗN,

~18a!

H int
~1!5

2 igA
4mNf p

N̄$s•¹,t•ṗ%N1
1

f p
2 F2c1mp

2p2

2S c22 gA
2

8mN
D ṗ22c3~]p!2GN̄N. ~18b!

HereH int
( n̄) represents the term of chiral ordern̄.

We now compareH int resulting fromxPT, Eq.~17! with
the phenomenological effective HamiltonianH01H1 , Eqs.
~2! and ~3!. ~The reader is reminded that the chiral indexn̄
should not be confused with the suffix appearing inH0 and
H1 .) Regarding thepNN vertices, we note that the first
term inH (0) and the first term inH (1) exactly correspond
to the first and second terms, respectively, inH0 . Thus the
so-called Galilean-invariance term naturally arises as
1/mN correction term in HFF. As for theppNN vertices, we
can associate the second term inH int

(0) to the l2 term in
H1 , and second term inH int

(1) to thel1 term inH1 . This
suggests the following identifications:

4p
l2

mp
2 5

1

4 f p
2 ~19!

and

4pl1 /mp5
mp
2

f p
2 F2c12S c22 gA

2

8mN
D vqvk

mp
2 2c3

q•k

mp
2 G

[k~k,q!. ~20!

In Eq. ~20!, q5(vq ,q) and k5(vk ,k) stand for the four-
momenta of the exchanged-and final pions, respectively; s
Fig. 1~b!. Since, as already discussed, thel2 term is not
important for our purposes, we shall concentrate on thel1
term. The best available estimates of the coefficientsci ~i
51-3! can be found in Refs.@15,27#, which give

c152
1

4mp
2 FspN~0!1

9gA
2mp

3

64p f p
2 G ~21a!

520.8760.11 GeV21, ~21b!

c352
f p
2

2 FaA1
gA
2mp

8 f p
2 S 77481gA

2 D G
~21c!

525.2560.22 GeV21, ~21d!

c25
f p
2

2mp
2 F4pS 11

mp

mN
D a12

3gA
2mp

3

64p f p
4 G

~21e!

12c12c31
gA
2

8mN
~21f!
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53.3460.27 GeV21. ~21g!

The numerical results are based on the experimental va
spN(0)54568 MeV @28#, aA52.2860.10mp

23 @7#, and
a15(20.8360.38)31022mp

21 @29#. We shall show in Sec
VI that the uncertainties in the numerical value forc2 might
be larger than quoted in Eq.~21g!. In fact, the terms in Eqs
~21b!–~21g! proportional to the (gA / f p)

2 areO@(mp /L)3#
corrections arising from finite terms ofL(2). However, since
the present section is just an introduction to a later syst
atic treatment, this inconsistency in ‘‘accuracy’’ will be ig
nored for the moment.

Now, for on-shelllow energy pion-nucleon scattering, i.e
k;q;(mp ,0), we equate

4pl1 /mp5k0[k@k5~mp ,0!,q5~mp ,0!#, ~22!

where

k05
mp
2

f p
2 S c̃1

gA
2

8mN
D , ~23!

c̃[2c12c22c3 . ~24!

From Eq.~21! we have

c̃52
fp
2

2mp
2 F4pS 11

mp

mN
D a12

3gA
2mp

3

64p f p
4 G2

gA
2

8mN
, ~25!

which results in

k0522pS 11
mp

mN
Da11

3gA
2

128p

mp
3

f p
4 . ~26!

The above cited empirical value fora1 leads to

c̃5~0.5960.09! GeV21, ~27!

k05~0.8760.20! GeV21. ~28!

We now interpret these results in terms ofl1 of Eq. ~3!.
Conventionally,l1 is determined from Eq.~4a! which is the
first term in Eq.~26!. Thus

4pl1

mp
522pS 11

mp

mN
Da1, ~29!

which gives

4pl1

mp
5~0.4360.20! GeV21, ~30!

or l15 0.00560.002. This is the ‘‘standard value’’ used i
the literature@7,30#. On the other hand, the right-hand side
Eq. ~22! based onxPT gives from Eq.~28!

4pl1

mp
5~0.8760.20! GeV21, ~31!

which is about twice as large as the conventional value. T
means the second term in Eq.~26! is almost as large as th
first term. ThusxPT leads to a substantial modification of th
commonly used formula, Eq.~4a! or Eq. ~29!. This large
ues:

m-
-

.,

n
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e
e

‘‘higher chiral order’’ corrections due toL (2) @the term pro-
portional to (gA / f p)

2 in Eq. ~26!# indicates thatxPT does
not converge very rapidly in this particular case. This app
ent lack of convergence is probably due to the fact that
first terms in expansion, thep-N isoscalar scattering length
a1, is exceptionally small.

To develop further the connection between the traditio
and thexPT approaches, we return to a discussion of E
~20!. Obviously, the constantl1 cannot be fully identified
with k(k,q) which depends on the momentaq andk. In fact,
the momentum dependence ofk(k,q) should play a signifi-
cant role in describing the physical pion-nucleon elastic sc
tering process wherevq5Amp

21q2, vk5Amp
21k2. An ad-

ditional crucial point in the present context is that, in th
rescattering diagram Fig. 1~b!, the exchanged pion can be fa
off-shell, and therefore theq and k dependence ink(k,q)
may play an even more pronounced role. As an illustrati
let us consider again thetypical threshold kinematics
discussed in the introduction: q;(mp ,0) and
k;( 12mp ,AmpmN). If we denote by k th the value of
k(k,q) @Eq. ~20!# corresponding to thetypical threshold ki-
nematics, we have

k th5
mp
2

f p
2 F2c12 1

2 S c22 gA
2

8mN
D 2

c3
2 G . ~32!

The use of the central values for the coupling consta
c1 ,c2 andc3 leads to

4pl1 /mp5k th;21.5 GeV21. ~33!

Thus the strength of thes-wave pion-nucleon interaction
here is much stronger than the on-shell cases, see Eqs.~30!
and ~31!, and the sign of the off-shell coupling strength
oppositeto the on-shell cases. The first feature is quali
tively in line with the observation of Herna´ndez and Oset
@11# that the rescattering term should be larger than pre
ously considered. However, the sign of the typical off-sh
coupling in our case@Eq. ~33!# is opposite to the one used i
Ref. @11#. As will be discussed later, this flip of the sig
drastically changes the pattern of interplay between the B
and rescattering terms. We must emphasize that the off-s
enhancement depends strongly on the values ofc1 , c2 , and
c3 , which, as discussed in Refs.@15,27#, are not known very
accurately. It is therefore important to examine to what e
tent the existing large ambiguities inc1 , c2 , andc3 affect
the off-shell enhancement of thepp→ppp0 reaction. We
shall address this question in Sec. VI.

IV. TRANSITION OPERATORS FOR pp˜ppp0

As explained earlier, in the nuclearxPT we first use
xPT to calculate the contributions of the irreducible di
grams. LetT represent the contributions of all irreducibl
diagrams ~up to a specified chiral ordern) for the
pp→ppp0 process. Then we useT as an effective transition
operator in the Hilbert space of nuclear wave functions. C
sequently, the two-nucleon transition matrix elementT for
the pp→ppp0 process is given by

T5^F f uT uF i&, ~34!
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whereuF i& (uF f&) is the initial ~final! two-nucleon state dis-
torted by the initial-state~final-state! interaction. These dis-
torted waves should be obtained by solving the Schro¨dinger
equation with nucleon-nucleon interactions generated by
reducible diagrams pertinent to nucleon-nucleon scatteri
thereby incorporating an infinite number of ‘‘reducible’’ lad
der diagrams. In this section we concentrate on the deri
tion of the transition operatorT , relegating the discussion of
T and Eq.~34! to Sec. VI.

We decomposeT as

FIG. 2. Tree graphs: the Born term~a! (n521) and the pion
rescattering term~b! (n51).
ir-
ng,
-
va-

T 5(
n
T ~n!, ~35!

whereT (n) represents the contribution from Feynman dia
grams of chiral ordern, as defined in Eq.~10!. The lowest
value ofn occurs for the Born term shown in Fig. 2~a!. For
s-wave p production at threshold theNNp vertex with
n̄50, the first term in Eq.~17!, cannot contribute; hence the
lowestn̄ for NNp vertex involving an external pion must be
n̄51. The first term in Eq.~18b! provides this vertex. Ac-
cording to Eq.~10!, the chiral order of Fig. 2~a! is given by
n54222232123011521. As can be checked easily
there are no diagrams withn5 0 since in the rescattering
diagram, Fig. 2~b!, the second term in Eq.~18a!, which gives
theNNpp vertex withn̄50, is not operative here due to the
isospin selection rule. The rescattering diagram in Fig. 2~b!
with the indicated value ofn̄ at each vertex contributes to
T (n51). It should be noted that because of the22C term in
the chiral counting expression, Eq.~10!, exchange-current-
type diagrams such as Fig. 2~b! give higher values ofn. In
this work we truncate the calculation of the transition oper
tor T at n51. Thus

T 5T ~21!1T ~1!. ~36!

The above enumeration is, as briefly discussed in Sec.
far from complete because loop diagrams and counter ter
and finite terms fromL (2) have been left out. In Fig. 3 we
show the loop corrections to the Born term@Fig. 2~a!#. The
diagrams in Fig. 3 all haven5 1 and hence are of the sam
chiral order as the leading order rescattering diagram, F
2~b!. As discussed earlier, for thepp→ppp0 reaction at
threshold the contribution of the Born term is numerical
suppressed so that the rescattering diagram, which is
mally of higher chiral order by two units ofn, plays an
essential role. This implies that a meaningful and consist
xPT calculation of this reaction must include the loop co
rections to the leading-order Born term. However, we co
tinue to postpone the discussion of loop corrections to t
next section.

The tree diagrams contributing to Eq.~36!, Figs. 2~a! and
2~b!, are as follows. The Born term, Fig. 2~a!, contributes to
FIG. 3. Loop corrections to the Born term.
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T (21) and the rescattering term, Fig. 2~b!, contributes to
T (1). These contributions are given, respectively, by

T 21
Born5

gA
4mNf p

vq (
i51,2

si•~pi81pi !t i
0 , ~37a!

T 11
res52

gA
f p

(
i51,2

k~ki ,q!
si•kit i

0

ki
22mp

21 i«
, ~37b!

wherepi and p8i ( i51,2) denote the initial and final mo
menta of thei th proton,ki[pi2p8i ; andk(ki ,q) is as de-
fined in Eq.~20!.

V. LOOP DIAGRAMS

We have emphasized above that the loop corrections
the Born diagram, Fig. 2~a!, which has chiral ordern521,
are of the same chiral ordern51 as the two-body pion res
cattering process, Fig. 2~b!. These loop corrections therefor
must be included in a consistentn51 calculation.

For our present purposes it is not necessary to go int
general discussion of the renormalization of the parame
in Lch. Instead we concentrate on an estimation of the s
of the finite loop corrections to the specific tree level term
shown in Fig. 2. This will be done by applying standa
Feynman rules and using dimensional regularization@15#.
Specifically, we need only consider the loop corrections
the singlep0NN vertex in thes-wave channel:

T 21
Born1T 11

corr5S 2
gA

2mNf p
D (
i51,2

@Si•~pi81pi !#~v•q!t i
0
V ,

~38!

whereSi5(0,12si) is the spin of thei th proton andV is the
amplitude to be calculated. For the Born term@Fig. 2~a!#
itself we have

V 2a51 ~39!

given by Eq. ~37a!. The loop diagrams@Figs. 3~a!–3~f!#,
which renormalize thes-wave Born term, give the following
contributions:

V 3a5
1

4 S gAf p
D 2 J2~vp8!2J2~vp!

vq
, ~40a!

V 3b52
Dp

2 f p
2 , ~40b!

V 3c5
1

2 f p
2

J2~vp8!2J2~vp!

vq
, ~40c!

V 3d5
1

2 f p
2 S 3Dp1@~vp!J0~vp!1~vp8!J0~vp8!#

1
~vp!2J0~vp!2~vp8!2J0~vp8!

vq D . ~40d!

Here we have adopted the notations of Ref.@15#. Thus
to

a
ers
ize
s
d

to

Dp[
1

i E ddl

~2p!d
1

mp
22 l 2

5mp
d22~4p!d/2GS 12

d

2D
~41!

52mp
2 S L1

1

16p2 ln
mp

l D , ~42!

where the divergence is included in

L5
ld24

16p2 F 1

d24
1
1

2
~gE212 ln4p!G . ~43!

In this expressionl denotes the dimensional regularization
scale andgE50.557 215. Furthermore,J0 and J2 in Eqs.
~40! are defined by

J0~v!524Lv1
v

8p2 S 122ln
mp

l D
2

1

4p2Amp
22v2arccosS 2v

mp
D ~44!

and

J2~v!5
1

d21
@~mp

22v2!J0~v!2vDp#. ~45!

The two contributions toV , Eqs.~40c! and ~40d!, originate
from two different combinations of terms in Eqs.~18!. To
calculate Eq.~40c!, the second term in Eq.~18a! and the first
term in Eq.~18b! are used at the vertices, whereas Eq.~40d!
is calculated using the first term of Eq.~18a! and the second
term of Eq.~18b!.

The standard renormalization consists in the followin
procedure.

~1! The loop contributions toV are separated into a di-
vergent part, which we take to be proportional toL of Eq.
~43! and which contains a pole atd54, and a finite part:

V 35V 3u`1V 3ufinite. ~46!

~2! Local counter terms, which are of the same chira
order as the loop diagrams, are added. In our case the
counterterms must come from the LagrangianL (3),

L ~3!5
1

~4p f p!2(i DiN̄OiN, ~47!

to give two-nucleon diagrams withn51. The unknown con-
stantsDi are then written as a sum of a finite and an infinit
part

Di5Di ufinite~l!1~4p!2d iL. ~48!

The constantsd i are determined by requiring that the infinite
part of Di cancel the divergent partV 3u`. The remaining
finite contributions which should be added to the Born term
via Eq. ~38!, are

V loop5V 3ufinite1V c.t.ufinite. ~49!

The amplitudeV 3 contains energy-independent and energy
dependent parts, as can be seen in Eq.~40!. The energy-
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independent part can be absorbed in the renormalization
the following physical parameters: the pion wave functio
renormalization factorZp @Fig. 3~e!#, the nucleon massmN
and the nucleon wave function renormalization factorZN
@~Fig. 3~f!#, as well as the axial coupling constantgA @Figs.
3~a!, 3~b!, 3~e!, 3~f!#. For the evaluation of the energy
dependent part we use thetypical threshold kinematics:
vq5mp , vp15mp , vp250. Putting these values into the
corresponding terms in Eq.~40!, we obtain as the total con-
tribution of the diagrams in Fig. 3

V 3ufinite'0.1. ~50!

ThusV 3ufinite amounts to 10% of the Born term@Fig. 2~a!#.
In addition we have finite contributions from the counte
terms ofL (3), V c.t.ufinite. We note that only very few of the
low energy constants in the countertermsDi ufinite(l) are
known @15#. Some of the low energy constants inL (2),
Bi ufinite(l) have been estimated in Ref.@15# assumingD
resonance saturation. The result indicatesBi ufinite(l)
'O(0.1). For an estimate of the low energy constan
Di ufinite(l) in L(3) it seems reasonable to assume that th
are of the same order of magnitude as theBi ufinite(l) in
L (2). To be conservative let us assumeDi ufinite(l)'O(1);
then we expectV c.t.ufinite'0.1. It is clear that, if those coef-
ficients were ‘‘unreasonably large,’’ the convergence of t
whole chiral series would be destroyed.

Altogether, after renormalization the total contribution
from the loop terms are expected to amount to at mo
20% of the Born term. This is not a completely negligib
contribution in the present context because, as will be d
cussed in the next section, there can be a significant can
lation between the Born and the rescattering terms. Nev
theless, since our present treatment involves other lar
uncertainties, we will neglect the renormalization of the Bo
term and henceforth concentrate on the bare Born term@Fig.
2~a!# and the rescattering term@Fig. 2~b!#.

VI. CALCULATION OF THE TWO-NUCLEON
TRANSITION MATRIX

We derived in Sec. IV the effective transition operato
T arising from the tree diagrams and, in Sec. V, we es
mated the additional contributions due to the loop corre
tions and presented an argument for ignoring the loop c
rections in this work. These considerations lead to the H
expression ofT up to ordern 5 1, given in Eqs.~36! and
~37!, and thisT is to be used in Eq.~34! to obtain the
two-nucleon transition matrixT.

A formally ‘‘consistent’’ treatment of Eq.~34! would con-
sist in using foruF i& and uF f& two-nucleon wave functions
generated by irreducible diagrams of order up ton51. A
problem in this ‘‘consistent’’xPT approach is that the inter-
mediate two-nucleon propagators in Fig. 1 can be sign
cantly off-mass-shell, which creates a difficulty in anyxPT
calculation. Another more practical problem is that, if w
include the initial and final two-nucleon (N-N) interactions
in diagrams up to chiral ordern51, theseN-N interactions
are not realistic enough to reproduce the knownN-N observ-
ables. A pragmatic remedy for these problems is to use
phenomenologicalN-N potential to generate the distorte
of
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N-N wave functions. Park, Min, and Rho@21# used this hy-
brid approach to study the exchange-current in th
n1p→g1d reaction and at least, for the low-momentum
transfer process studied in Ref.@21#, the hybrid method is
known to work extremely well.

Apart from the above-mentioned problem, there is a del
cate aspect in the derivation of an effective two-body oper
tor from a given Feynman diagram. Ordinarily, one work
with r -space transition operators acting onr -representation
wave functions, for the nuclear wave functions are com
monly given in this representation. To this end, a Feynma
amplitude which is most conveniently given in momentum
space, is Fourier transformed into ther representation. This
method works best for low momentum transfer process
which have substantial transition amplitudes for on-shell in
tial and final plane-wave states. However, thepp→ppp0

reaction at threshold does not belong to this category. F
this reaction it is essential to recognize that the nucleon lin
that appear as external lines in Fig. 2 are in fact internal lin
in larger diagrams illustrated in Fig. 1. These internal line
can be far off-shell due to the initial- and final-state interac
tions. Indeed without this off-shell kinematics, the Born term
@Fig. 2~a!# would not contribute at all. In the conventional
approach, however, one ignores this feature in derivingT in
coordinate representation. For example, in Fourier tran
forming an operator of the type ofT 11

res , Eq. ~37b!, even
thoughpi andpi8 in Eq. ~37b! in fact can be anything due to
momentum transfers caused by the initial and finalN-N in-
teractions, it is a common practice to keep the energy of t
propagating pion fixed at the value determined by the asym
totic energies of the nucleons. Hanhartet al. @13# made a
critical study of the consequences of avoiding these kin
matical approximations. They worked directly with the two
nucleon wave functions in momentum representation. In th
present work we do not attempt at detailed momentum-spa
calculations and simply use the ‘‘conventional’’ Fourier
transform method. Because of this and a few other appro
mations adopted, the numerical work presented here is a
mittedly of exploratory nature. Nonetheless, as we sha
show, our semiquantitative study ofT based on the chiral-
theoretically motived transition operatorT provide some
valuable insight into the dynamics of the threshold
pp→ppp0 reaction.

Let us denote the contribution of Fig. 2~b! for plane-wave
initial and final states bŷ p18 ,p28 ,quT (1)up1 ,p2&. We first
calculate this matrix element for thetypical threshold kine-
matics described earlier; for the meson variables
q5(mp ,0) and k5(mp/2,k) with uku5AmpmN. Corre-
spondingly, the coupling strengthk(k,q) @Eq. ~37b!# is taken
to bek th521.5 GeV21 @Eq. ~33!#. Subsequently, by liberat-
ing the momentum variablesp1 , p18 , p2 , andp28 from the
on-mass-shell conditions (p1

25mN
2 , . . . ), we treat

^p18 ,p28 ,quT (1)up1 ,p2& as a function ofp1 , p18 , p2 , and
p28 . Let T(p18,p28;p1,p2) stand for this function. We still re-
quire momentum conservation at each vertex, which impos
the conditions p11p25p181p281q50, and k5p182p1
5p22p28 . T(p18,p28;p1,p2) can be easily Fourier transformed
to give T̃ 11

res in r representation. The simplified treatmen
described here, which is commonly used in the litera
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ture, shall be referred to as thefixed kinematics
approximation.

Now, in the fixed kinematics approximation, T @Eqs.
~36!, ~37!# is translated into differential operators acting
relative coordinate of the two-nucleon wave functions:

T̃ 21
Born5

gA
f p

mp

mN
S•¹r , ~51a!

T̃ 11
res52

2gA
f p

k thS• r̂ f 8~r !, ~51b!

where the derivative operator with subscriptr is to act on the
relative coordinater between two protons, andS[ 1

2

(s12s2). The trivial isospin operatort i
0 has been dropped

The Yukawa functionf (r )[exp(2m8r)/4pr is defined with
the effectivemassm85A3/2mp . We reemphasize that th
simple Yukawa formf (r ) arises only when thefixed kine-
matics approximationjust discussed is used.

From this point on, our calculation ofT follows exactly
the traditional pattern described in the literature. ThusT is
evaluated by inserting the transition operators,T̃ 21

Born and
T̃ 11

res , Eq. ~51!, between the initial and final nuclear state

f i~r!5~A2/pr !iu1,0~r !eid1,0~4p!1/2u3,3P0&,
~52!

f f~r!5~1/p8r !u0,0~r !eid0,0~4p!1/2u3,1S0&,

wherep andp8 are the asymptotic relative three-momenta
the initial and final two-proton systems. The wave functio
are normalized asuL,J →

r→`sin(pr21
2pL1dL,J) with dL,J be-

ing theN-N scattering phase shifts. For simplicity, the Co
lomb interactions between the two protons is ignored.~The
Coulomb force is known to reduce the cross section up
30%@4#.! The explicit expression for the transition amplitud
at threshold is obtained as

T~Ef !54p~gA / f pmNmp
3/2!~J21

Born1J11
res!. ~53!

Here, Ef5Ep81q2/2mp is the kinetic energy of the fina
state, and

J21
Born5 lim

p8→0

2mp
2

pp8
E
0

`

dr r 2
u0,0
r S ddr 1

2

r D u1,0r , ~54a!

J11
res5 lim

p8→0

2k th

mpMn

pp8
E
0

`

dr u0,0f 8~r !u1,0. ~54b!

The total cross section is obtained by multiplying the ab
lute square of the transition amplitude~averaged over the
initial spins and summed over the final spins! with the ap-
propriate phase space factorr(Ef) and the flux factor 1/v:

s tot5
2p

v E dr~Ef !uT~Ef !u2. ~55!

For a rough estimation one may approximate the energy
pendence of the transition matrix as@31#

uT~Ef !u25
uT~0!u2

11p82a2
, ~56!
n

of
ns

-

to
e

o-

de-

wherea is the scattering length of theNN potential. Then
the cross section can be simply expressed as

s tot5
gA
2

A2p f p
2mp

2
uJu2I ~Ef !, ~57!

where

uJu25uJ21
Born1J11

resu2, ~58a!

I ~Ef !5E
0

Ef
dEp8

AEf2Ep8AEp8
11mNa

2Ep8
. ~58b!

Under the approximation~56!, the energy dependence of the
cross section is solely given byI (Ef), which incorporates
the phase space and the final state interaction effect~in the
Watson approximation@31#!.

We have calculated the integralsJ21
Born andJ11

res for repre-
sentative nuclear potentials: the Hamada-Johnston~HJ! po-
tential @32#, and the Reid soft-core potential~RSC! @33#. The
results are given in Table I, and the corresponding cross s
tions are presented in Table II. These results indicate that,
the nuclear potentials considered here, the value ofuJu is
much too small to reproduce the experimental cross sectio
If we define the discrepancy ratioR by

R[s tot
exp/s tot

calc, ~59!

with s tot
exp taken from Ref.@1#, thenR> 80 (R> 210) for the

Hamada-Johnston~Reid soft-core! potential, andR happens
to be almost constant for the whole range ofEf<23 MeV for
which s tot

exp is known. Thus, although the off-shell behavior
of the s-wave pion scattering amplitude derived from the
chiral Lagrangian does enhance the contribution of the r
scattering process over the value reported in the literatu
the sign change that occurs ink as one goes fromk0 @Eq.
~22!# to k th @Eq. ~32!# results in a significant cancellation
between the Born termJ21

Born and the rescattering termJ11
res ,

leading to the very small cross sections in Table II@34#. The
drastic cancellation betweenJ21

Born andJ11
res found here means

that the calculated cross sections are highly sensitive to t
various approximations used in our calculation and also
the precise values of the constantsc1 , c2 , andc3 of Eq. ~21!.
We will discuss these two questions in the next two para
graphs.

We adopted the threshold kinematics approximation an
neglected the energy-momentum dependence in Eq.~20! and
treated the vertices in Figs. 1 and 2 as fixed numbers, i.
k(k,q) 5 k th 5 constant. In addition, although the loop
corrections of chiral ordern 5 1, shown in Fig. 3~a!, auto-
matically introduces energy-momentum dependent vertice

TABLE I. J21
Born and J11

res for the threshold kinematics@Eqs.
~54a!,~54b!#, calculated with the Hamada-Johnsotn~HJ! and Reid
soft-core~RSC! potentials.

HJ RSC

J21
Born 20.672 20.515
J11
res 10.505 10.413
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we ignored this feature. The fact that the kinematics of t
reaction Eq.~1! requires highly off-shell vertices leads to th
expectation that the vertex form factors can be very imp
tant and invalidate thethreshold kinematics approximation
leading to Eq. ~51!. In this connection we note that a
momentum-space calculation@13#, which is free from this
approximation, indicates that even a negative value ofl1
could lead to the moderate enhancement of the cross sec

The strong cancellation between the Born and rescatter
terms also means that, even within the framework of t
fixed kinematics approximation, the large errors that exist in
the empirical value ofa1 and thec1 , c2 , andc3 constants
can influence the cross sections significantly. To assess
influence, we rewrite Eq.~32! as

k th5
mp
2

f p
2 c12pS 11

mp

mN
Da11

3gA
2mp

3

256p f p
4 . ~60!

The use of the experimental values fora1 and c1 quoted
earlier leads to

k th5~21.560.4! GeV21. ~61!

With this uncertainty taken into account, the ratioR ranges
from R525 toR52100 for the Hamada-Johnston potentia
and fromR550 to R53.43104 for the Reid soft-core po-
tential. To further examine the uncertainties in theL (1) con-
stants we remark that the value ofc21c3 can be extracted
from the known pion-nucleon effective range parame
b1. The low energy pion-nucleon scattering amplitude
expanded as

f15a11b1q21•••, ~62!

TABLE II. The total cross sections~in mb) as functions of
h[A2Ef /mp, calculated with the Hamada-Johnston~HJ! and Reid
soft-core~RSC! potentials.

h sHJ sRSC

0.03 0.0000 0.0000
0.06 0.0003 0.0001
0.09 0.0011 0.0004
0.12 0.0024 0.0009
0.15 0.0043 0.0016
0.18 0.0069 0.0026
0.21 0.0100 0.0037
0.24 0.0138 0.0052
0.27 0.0182 0.0068
0.30 0.0232 0.0087
0.33 0.0289 0.0108
0.36 0.0352 0.0131
0.39 0.0421 0.0157
0.42 0.0496 0.0185
0.45 0.0577 0.0215
0.48 0.0665 0.0248
0.51 0.0759 0.0283
0.54 0.0859 0.0320
0.57 0.0965 0.0360
0.60 0.1078 0.0402
he
e
or-

tion.
ing
he

this

l,

ter
is

where q is the pion momentum andb15(20.044
60.007)mp

23 @7#. If we useL (1) to calculate thes-wave
pion-nucleon amplitude we find

b15
1

2p S 11
mp

mN
D 21Smp

f p
D 2S c21c32

gA
2

8mN
D 1

mp
2 ,

~63!

and then Eq.~32! leads to

k th5
2mp

2

f p
2 c12pmp

2 S 11
mp

mN
Db15~22.760.6! GeV21.

~64!

Sincec3 is given directly by the experimental quantityaA
@Eq. ~21d!#, we consider Eq.~63! as an alternative input to
determinec2 in terms ofb1 andc3 . Then Eqs.~63!, ~21d!,
and the experimental value ofb1 @7# give

c25~4.560.7! GeV21. ~65!

We note that this value is larger than the one given in E
~21g!, indicating that the determination ofc2 requires further
studies. With the new value ofk th given in Eq.~64! we find
that the discrepancy ratioR @Eq. ~59!# can be as small as
;10. ~In this caseuJ11

resu.uJ21
Bornu; the exact cancellation be-

tween the Born and the pion rescattering term occurs
k th;22 GeV21.)

Without attaching any significance to the detailed num
bers above, we still learn the extreme sensitivity ofs tot

calc to
the input parameters and that, despite this high sensitiv
s tot
calc still falls far short ofs tot

exp ~within the framework of the
fixed kinematics approximation!.

VII. DISCUSSION AND CONCLUSIONS

In this work we have usedxPT to calculate the effective
pion-exchange current contribution to thepp→ppp0 reac-
tion at threshold. As stated repeatedly, our aim here is
carry out a systematic treatment ofT up to chiral order
n51 @see Eq.~36!#. However, in order to make contact with
the expressions appearing in the literature@3#, let us consider
a very limited number ofn52 diagrams. To be specific, we
consider a diagram in Fig. 2~b! but with the n̄50
(p-wave! pNN vertex replaced with an̄51 (s-wave! ver-
tex. Then, instead of Eq.~51b!, we will obtain

T 112
res 52

gA
f p

k thS•F r̂ f 8~r !S 21
mp

2mN
D1 f ~r !

mp

mN
¹r G ,

~66!

which is the two-body transition operator used in Ref.@3#.
Thus we do recover the usual phenomenological parame
ization in xPT, but this is just one of manyn52 diagrams.
Our systematicn51 calculation excludes alln52 diagrams.

We have also ignored the exchange current contributio
from scalar and vector two-nucleon exchanges. Followi
the xPT of Refs. @17,18# the vector meson exchange i
largely accounted for via the four-nucleon contact terms
lustrated in Fig. 4~a!. If we had retained the last two terms o
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Eq. ~12!, the pion-nucleon interactionH int
(1) , Eq. ~18b!,

would have had an additional pieceH int
(1)8

H int
~1!85

c9
4mNf p

~N̄N!@N̄s•¹~t•p!N#

1
c10

4mNf p
~N̄sN!•@N̄¹~t•p!N#.

~67!

The H int
(1)8 term of Fig. 4~a! has as•q structure, which

means it describesp-wave pion production and therefore
does not contribute to the thresholdpp→ppp0 reaction. The
s-wave pion production contact term, also belonging to t
type of diagram illustrated in Fig. 4~a!, enters as a 1/mN

recoil correction toH int
(1)8 and therefore is of chiral ordern

5 2. Formally, the chiral ordern52 diagrams have no place
in the present calculation limited ton51. However, in view
of the great current interest in the possible large contributi
of the heavy-meson exchange diagrams, we make a few
marks on thes-wave n52 contact terms depicted in Fig
4~a!. We note that the coordinate representation of this co
tact term containsd3(r). Meanwhile, in the threshold
pp→ppp0 reaction the initial two-nucleon relative motion
must be inp wave~because of parity! and so its wave func-
tion vanishes atr50. Thus, even in a chiral ordern52 cal-

FIG. 4. Generic four-fermion-pion vertex~contact term! ~a! and
an example of a loop correction to a contact term~b!.
e

n
re-

n-

culation, the contact term Fig. 4~a! corresponding to
s-wave pion production will play no role. Including meson
loops corrections to these contact terms@an example illus-
trated in Fig. 4~b!# would smear out thed-function behavior,
allowing them to have a finite contribution to the threshol
pp→ppp0 reaction. This involves, however, diagrams o
even higher chiral order thann52. Thus, in order to include
the strong effective isoscalar-vector repulsion of theN-N
forces (v exchange! contained in the four-nucleon contac
terms of Weinberg’s@17# and van Kolck’set al.’s @18# xPT
description, we have to go to chiral ordern53.

Meanwhile, one may picture the ‘‘effective heavy me
sons’’ as generated by multipion exchange diagrams li
those illustrated in Fig. 5. These diagrams, which necessa
contain loops, represent a very limited class ofn>3 dia-
grams. For example, an important part of the effective sca
exchange between two nucleons involve intermediatep-p
s-wave interaction which requires at least two loop diagram
like Fig. 5~c!. Thus, if we are to interpret the heavy-meso
exchange diagrams of Lee and Riska@8# in the framework of

FIG. 5. A few higher order diagrams contributing to the effec
tive two-nucleon scalar exchange in nuclearxPT.
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nuclear xPT, we must deal with terms with chiral orde
n>3, which at present is beyond practical calculations.

We now recapitulate the main points of this article.
~1! UsingxPT in a systematic fashion we have shown th

the contribution of the pion rescattering term can be mu
larger than obtained in the traditional phenomenological c
culations. This fact itself supports the suggestion of Hern
dez and Oset@11# that the off-shells-wave pion-nucleon
scattering should enhance the rescattering contribution
nificantly. However, the sign of the enhanced rescatter
vertex obtained inxPT isoppositeto that used in Ref.@11#,
at least for thetypical threshold kinematicsdefined in the
text. This sign change in the coupling constantk th leads to a
destructive interference between the Born and rescatte
terms instead of the constructive interference found in R
@11#. The significant cancellation between these terms g
rise to the very small cross section for the near-thresh
pp→ppp0 reaction calculated in this work. Although ou
particular numerical results were obtained in what we c
the fixed kinematics approximation, these results at least in
dicate that the large enhancement ofs tot

calc obtained in Ref.
@11# is open to more detailed examinations.

~2! The fixed kinematics approximation~which is com-
monly used in the literature! should be avoided. There are
least two reasons why this is not a good approximation
this reaction:~i! the initial- and final-state interactions pla
an essential role in the near-thresholdpp→ppp0 reaction;
~ii ! the theoretical cross section within the framework of t
Born plus rescattering terms is likely to depend on the d
cate cancellation between these two terms. In a momen
space calculation@13#, we can easily avoid thefixed kinemat-
r

at
ch
al-
n-

ig-
ng

ing
ef.
ive
old
r
all
-

t
for

e
li-
tum

ics approximation. Such a calculation will allow us to work
with full off-shell kinematics, to incorporate thexPT form
factors in the Born term, and to reduce ambiguities in o
calculation down to the level of uncertainties in the inpu
parameters inxPT and the chiral counter terms.

~3! Several works@8,10,13# indicate that the two-nucleon
scalar (s) exchange can be very important. We gave in th
introduction a simple kinematical argument for its plausibi
ity, and our dynamical calculation~albeit of semiquantitative
nature! seems to indicate the necessity of thes exchange
contribution in order to explain the observed cross sectio
for the thresholdpp→ppp0 reaction. It is of great interest to
see to what extent an improvedxPT calculation based on
momentum-space representation helps sharpen the con
sion on the necessity of the sigma exchange diagram. Suc
calculation is now in progress. If it is established that th
heavy meson exchange diagrams play an essential role in
thresholdpp→ppp0 reaction, it seems that we must reso
to a modified version ofxPT, for a brute force extension of
our treatment ton>2 seems extremely difficult. An attempt
to include vector meson degrees of freedoms explicitly c
be found, e.g., in Ref.@19#. A purely phenomenological ap-
proach as used in@8# may also be a useful alternative.
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