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Does the 3N force have a hard core?
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~Received 17 October 1995!

The meson-nucleon dynamics that generates the hard core of the RuhrPot two-nucleon interaction is
to vanish in the irreducible 3N force. This result indicates a small 3N force dominated by conventional light
meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian. The resulting RuhrPN
force is defined in the Appendix. A completely different result is expected when the Tamm-Dancoff–Blo
Horowitz procedure is used to define theNN and 3N potentials. In that approach~e.g., full Bonn potential!,
both theNN and3N potentials contain nonvanishing contributions from the coherent sum of meson-re
dynamics and the possibility of a large hard core requiring explicit calculation cannot be ruled out.

PACS number~s!: 21.30.2x, 13.75.Cs, 21.45.1v
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I. INTRODUCTION

Existing descriptions of the three-nucleon force@1# essen-
tially fall into two categories. The first is the semiphenom
enological approach adopted for the calculation of th
Tucson-Melbourne force@2–8#, where thepp, pr, and
rr contributions to the 3N interaction are fixed by subtract-
ing the forward-propagating Born amplitudes from
pN-scattering, photopion production, and photon-scatteri
data and the off-shell extrapolation that is necessary f
three-body applications is obtained from PCAC and curre
algebra. There is little doubt that atQ250, this force can be
regarded as essentially exact. The second approach, wh
has been adopted for the calculation of the Brazilian@9–13#
and RuhrPot 3N forces is to make use of a particular meson
theoretic model and directly calculate the leading-order co
tributions. We illustrate the two schemes in Fig. 1.

One important question that remains to be addressed
this: ‘‘Does the 3N interaction have a hard core like tha
found in the NN interaction?’’To address this question, we
will first recall the dynamical origins of the hard core in the
NN interaction, and then ask if such dynamics can produce
corresponding hard core in the three-body system.

About 5 years ago it was shown@14# that the hard core of
the NN-nucleon interaction arises naturally in a boson
exchange model when the dynamics is no longer truncated
include the exchange of only a few light mesons. In partic
lar, the RuhrPotNN interaction@14,15# introduces a closure
approximation to incorporate the additional (Jp;T)-
exchange dynamics that is required by completeness. C
ventional light-meson-exchange dynamics still contributes
theNN interaction at long distances, but the hard core regio
is now completely dominated by the additionalcontactcon-
tributions. We illustrate this two-phase approach in Fig. 2.

This natural separation of the long- and short-rangeNN
interaction dynamics has proven critical in resolving a num
ber of problems in existing boson-exchange potentia
~BEP’s!. For example, when the contact interactions are i
cluded to describe the hard core of theNN interaction, it is
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no longer necessary to adopt the artificialNN-meson cutoffs
that are required@16# in conventional boson-exchange mod
els. Instead, the RuhrPotNN interaction and associated ex
change currents@17,18# use self-consistently calculated form
factors @19,20# that possess an asymptoticQ2 dependence
which is consistent@21# with perturbative QCD@22#. In ad-
dition, the vector-meson couplings satisfy the SU(3)F pre-
diction of gNNv

2 /gNNr
2 ;9, which can be compared to value

near 27 that are typical@23# of conventional boson-exchange
potentials.

So how do the contact interactions effect the irreducib
3N force? What happens to the three-body force when two
three of the nucleons begin to overlap? Our answers to th
questions are organized as follows. In Sec. II, we summar
the Tamm-Dancoff–Bloch-Horowitz and unitary transforma
tion projection formalisms that define the one- and two
boson-exchange interactions in theA-body system. In Sec.
III we use these results to recall how the hard core of t
NN interaction arises naturally when the exchange dynam
is no longer arbitrarily truncated to include only the first few
light mesons. In Sec. IV we carry these ideas into the 3N

FIG. 1. Thepp, pr, and rr contributions to the Tucson-
Melbourne interactionVTM

3N are fixed by subtracting the forward-
propagating Born amplitudes frompN-scattering, photopion pro-
duction, and photon-scattering data. The RuhrPot interactionVRP

3N is
calculated from an effective meson-baryon model, as is the Braz
ian force. All of these approaches involve only light-meson
exchange dynamics, so that it remains to be seen if a hard c
exists in the 3N force.
1510 © 1996 The American Physical Society
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53 1511DOES THE 3N FORCE HAVE A HARD CORE?
system to investigate the existence of a possible hard cor
the irreducible 3N interaction. Within the unitary transforma
tion approach, we find thatthe class of(Jp;T)-exchange
processes generating the hard core repulsion in the Ruhr
NN interaction vanish in the nonrelativistic limit of the irre
ducible 3N interaction.This result is not confined to any
particular meson-theoretic model and it eliminates the m
likely source of a hard core in the 3N interaction. However,
a completely different result is expected when the Tam
Dancoff–Bloch-Horowitz procedure is used to define t
NNand 3N potentials. In that approach~e.g., full Bonn po-
tential! both theNN and3N potentials contain nonvanishin
contributions from the coherent sum of meson-recoil dyna
ics and the possibility of a large hard core requiring expli
calculation cannot be ruled out. Our conclusions are p
sented in Sec. V.

II. FORMALISM

The energy eigenvalue problem for an arbitrary intera
ing meson-baryon system is given by

HuC&5~H01HI !uC&5Ei uC&, ~2.1!

where the total HamiltonianH is separated into free an
interacting partsH0 andHI , and uC& denotes the complete
meson-baryon state with energyEi . This provides a relativ-
istic time-ordered framework, rather than a manifestly cov
iant one. A rigorous solution of Eq.~2.1! in it present form is
impossible because the wave functions contain not o
nucleon degrees of freedom, but explicit meson, resona
and antinucleonic degrees of freedom as well. However, a
well known, the problem can be reduced to a tractable fo
by partitioning the total Hilbert space into two parts,

Hh5$uN~1 !&,uN~1 !N~1 !&, . . . %,

Hl5$everything else%, ~2.2!

so thatHh is the Hilbert subspace consisting only of th
positive-frequency parts of the nucleon state vectors,

FIG. 2. The RuhrPotNN interaction introduces a closure ap
proximation to incorporate the additional (Jp;T)-exchange dynam-
ics that is required by completeness. Conventional light-mes
exchange dynamics still contributes to theNN interaction at long
distances, but the hard core region is now completely dominated
contactinteractions.
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Hl contains everything else, e.g.,uD&, uNp&, uNDpr&, etc.
The total wave function can now be expressed as,

uC&5huC&1luC&5uc&1uf&, ~2.3!

where we have introduced projection operators satisfying t
conventional algebrah25h, l25l, hl5lh50, and
h1l51 to obtainuc&5huC&PHh as a purely nucleonic
state anduf&5luC&PHl as a state whose description re
quires explicit meson- and/or resonance- and/or negativ
frequency degrees of freedom. We have not given explic
expressions forh and l, nor will we need to sinceuc&5
huc& anduf&5luf&. The point is that the energy eigenvalue
problem can now be written as

Ei uc&5hHhuc&1hHluf&, ~2.4a!

Ei uf&5lHhuc&1lHluf&. ~2.4b!

There are a number of different~but equivalent@24,25#!
ways in which Eq.~2.4! can be reduced whenuf& vanishes
in the observable states. One seeks to derive aneffective
HamiltonianHeff ~or an effective interactionVeff) which sat-
isfies,

Heffuc&5@H01Veff#uc&5Ei uc& ~2.5!

so that the matrix elements of the Hamiltonian between i
teracting meson-baryon wave functionsuC&, as required in
Eq. ~2.1!, can be computed as an effective Hamiltonian be
tween conventional nucleonic wave functionsuc&.

Perhaps the most commonly adopted reduction scheme
found in the Tamm-Dancoff approximation@26#, or in one of
the many equivalent schemes like that due to Bloch a
Horowitz @27#. Here one begins by noting that the free
energy Hamiltonian cannot cause transitions between t
Hilbert subspaces, solH0h50 can be used to reduce Eq
~2.4b! to

~Ei2H0!luf&5lHI@huc&1luf&]. ~2.6!

Collecting theluf& terms together gives@25# Sawada’s re-
sult,

luf&5
1

$12@l/~Ei2H0!#HI%

l

Ei2H0
HIhuc&. ~2.7!

After inserting this into Eq. ~2.4a! and noting that
hHIh50, a comparison with Eq.~2.5! shows that

Veff5HI

1

@12@l/~Ei2H0!#HI #

l

Ei2H0
HI . ~2.8!

Equivalently, we can recognize Eq.~2.6! as a recursive defi-
nition of uf&, so that

luf&5
l

Ei2H0
Ruc&, R5HI1HI

l

Ei2H0
R ~2.9!

and

Veff5HI

l

Ei2H0
R. ~2.10!

-

n-

by
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1512 53J. A. EDEN AND M. F. GARI
Expanding the interaction Hamiltonian in powers of t
strong coupling,

HI5(
i51

`

Hi ~2.11!

allows for the calculation of the effective interaction to a
desired order. In particular, the one-boson-exchange pote
~OBEP! in theA-nucleon system is given by

Veff
~2?!5H1

l

Ei2H0
H1 ~2.12!

and the corresponding two-boson-exchange potential is

Veff
~4?!5H1

l

Ei2H0
H1

l

Ei2H0
H1

l

Ei2H0
H1

1H2

l

Ei2H0
H1

l

Ei2H0
H1

1H1

l

Ei2H0
H2

l

Ei2H0
H1

1H1

l

Ei2H0
H1

l

Ei2H0
H21H2

l

Ei2H0
H2 . ~2.13!

We have labeled the order of the interactions in Eqs.~2.12!
and ~2.13! with question marks since these expressions
obtained from Eq.~2.10! by expanding the numerator to defi
nite order, but retaining the full~infinite order! energy depen-
dence in the denominator.

We now appear to have effective interactions for usag
Eq. ~2.5!. Indeed, if we setH250 in Eqs.~2.12! and ~2.13!,
we obtain the OBEP and TBEP interactions used in the
Bonn potential. However, it is easy to see that the Hermi
ity of these effective interactions is destroyed by an expl
dependence on the full initial-state energyEi . In addition,
from Eqs.~2.3! and~2.9! we observe that the wave function
are not orthonormal but instead satisfy

dfi5 K c fUF 11R†
l

Ef2H0

l

Ei2H0
RGUc i L . ~2.14!

As such, the orthonormality condition depends on the or
at which we truncate the interaction. These are certainly
wanted complications that will invite dubious approximatio

The problems associated with the Tamm-Dancoff
proach can be removed@24# by expanding the energyE in
the same way as we expanded the Hamiltonian in Eq.~2.11!.
It is then possible to obtain an interaction to a definite or
and to calculate a renormalization condition for the wa
functions. An equivalent solution, which was developed
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Okubo @25# and which we will refer to as theunitary trans-
formation method, proceeds by rewriting Eq.~2.4! in matrix
form as

Ei S uc&

uf&
D 5S hHh hHl

lHh lHl
D S uc&

uf&
D ~2.15!

and introducing new statesux& and uw& through a unitary
transformation,

S uc&

uf&D 5US ux&

uw&D . ~2.16!

In terms of the new states, the energy eigenvalue prob
reads

U†HUS ux&

uw&
D 5Ei S ux&

uw&
D . ~2.17!

Unlike the Tamm-Dancoff reduction, where we found th
Eqs.~2.7! and~2.9! relateduc& anduf&, we can now choose
U such that it is unitary and ensuresU†HU is diagonal, so
that ux& and uw& are completely decoupled orthonorm
states. In particular, for

U5S h~11A†A!21/2h 2hA†~11AA†!21/2l

lA~11A†A!21/2h l~11AA†!21/2l D ~2.18!

a short calculation shows that the nondiagonal element
Eq. ~2.17! vanish for anyA which satisfies

l~H1@H,A#2AHA!h50. ~2.19!

We will derive the operatorsA that satisfy Eq.~2.19! in a
moment. Whenuw& vanishes in the observable states, t
energy eigenvalue problem reduces to the conventio
Schrödinger equation

^CuHuC&5^xuHeffux&5^xuEi ux& ~2.20!

with the Hermitian effective interaction,

Heff5h~11A†A!21/2h~11A†!H~11A!h~11A†A!21/2h.
~2.21!

The complete meson-baryon wave functionsuC& are then
described in terms of the operatorsA and the nucleonic wave
functionsux&,

uC&5~11A!h~11A†A!21/2hux&. ~2.22!

As already anticipated, we findux&PHh anduw&PHl pre-
serve the orthonormality ofuC&,
dfi5^C f uC i&5^x f uh~11A†A!21/2h~11A†!~11A!h~11A†A!21/2hux i&5^x f ux i&, ~2.23a!

dfi5^C f uC i&5^w f uh~11AA†!21/2h~12A!~12A†!h~11AA†!21/2huw i&5^w f uw i&. ~2.23b!
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We next derive the operatorsA that satisfy Eq.~2.19! by
expandingA and the Hamiltonian to which we already kno
it is related, in powersn of the coupling constant,

H5H01 (
n51

`

Hn , A5 (
n51

`

An , ~2.24!

whereA5lAh shows thatA050. Similarly, we note that
hHIh 5 hH0l 5 lH0h 50, so that Eq.~2.19! becomes

05 (
n51

`

lFHn1@H0 ,An#1 (
i51

n21

HiAn2 i

2 (
i51

n22

(
j51

n2 i21

AiH jAn2 i2 j ]h. ~2.25!

We choose to further constrainA by demanding Eq.~2.25! is
satisfied at each order ofn. With H0h5E ih, whereE i is the
free-particle energy of the initial state, we obtain,

~E i2H0!An5lFHn1 (
i51

n21

HiAn2 i

2 (
i51

n22

(
j51

n2 i21

AiH jAn2 i2 j Gh. ~2.26!

This completes the definition ofA. To calculate the OBEP
and TBEP interactions in theA-body system, we require
a

s

w A15
l

E i2H0
H1h, ~2.27a!

A25
l

E i2H0
H2h1

l

E i2H0
H1

l

E i2H0
H1h,

~2.27b!

A35
l

E i2H0
H3h1

l

E i2H0
H1

l

E i2H0
H2h

1
l

E i2H0
H1

l

E i2H0
H1

l

E i2H0
H1h

1
l

E i2H0
H2

l

E i2H0
H1

2
l

E i2H0

l

Ea2H0
H1haH1

l

E i2H0
H1h,

where Ea is the free-particle energy of an intermediat
h-space state. The OBEP in theA-body system is then given
by

Veff
~2!5h f HH1l

~1/2! ~E i1E f !2H0

~E f2H0!~E i2H0!
lH1J h i ~2.28!

and the corresponding TBEP is
Veff
~4!5h f HH1

l

E f2H0
H1l

~1/2!~E f1E i !2H0

~E f2H0!~E i2H0!
lH1

l

E i2H0
H12

1

2
H1

l

E f2H0
F l

Ea2H0
H1haH11H1haH1

l

Ea2H0
G

3
l

E i2H0
H11H2l

~1/2!~E f1E i !2H0

~E f2H0!~E i2H0!
lH21

1

2
~E f2E i !H1

l

E f2H0
FH1haH1

l

~Ea2H0!~E f2H0!

1
l

~E i2H0!~Ea2H0!
H1haH12H1

l

E f2H0
H1

l

E f2H0
2

l

E i2H0
H1

l

E i2H0
H1G l

E i2H0
H1

2FE f1E i

8
2
Ea

2 GH1

l

~Ea2H0!~E f2H0!
H1haH1

l

~Ea2H0!~E i2H0!
H11H2

l

E f2H0
H1

l

E i2H0
H1

1H1

l

E f2H0
H2

l

E i2H0
H11H1

l

E f2H0
H1

l

E i2H0
H21

1

2
~E f2E i !H2

l

E f2H0

3F l

E i2H0
H12H1

l

E f2H0
G l

E i2H0
H11

1

2
~E f2E i !H1

l

E f2H0
F l

E i2H0
H22H2

l

E f2H0
G l

E i2H0
H1

1
1

2
~E f2E i !H1

l

E f2H0
F l

E i2H0
H12H1

l

E f2H0
G l

E i2H0
H2J h i . ~2.29!
a

d

r:
ge
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en
By contrast to Eqs.~2.12! and~2.13!, Eqs.~2.28! and~2.29!
involve no references to the full energy and define OBEP
TBEP interactions to definite order.

The unitary transformation method has some signific
advantages over the Tamm-Dancoff approximation.

~1! The wave functions are orthonormal, and remain
whenA is truncated to a definite order.

~2! The effective Hamiltonian is Hermitian and depen
only on thefree ~not full! energy of the observables state
nd

nt

so

s
.

~3! The interaction is well defined to any definite orde
the definition of the OBEP interactions does not chan
when higher-order interactions are introduced.

From the above discussion we realize that, given any
croscopic model definition for theNN interaction, a corre-
sponding definition of the 3N interaction follows immedi-
ately. However, we have also seen that the unit
transformation method possesses operators which are
tirely absent from the Tamm-Dancoff result. Without ev
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1514 53J. A. EDEN AND M. F. GARI
writing down a Lagrangian, we will later see that, in appl
cations assuming orthogonal wave functions, the Tam
Dancoff approximation~as used to define the Bonn mode!
guarantees a 3N force which possesses a hard core, where
the unitary transformation method~as used to define the
RuhrPot model! ensures the corresponding dynamics vani
in the 3N system.

III. OBEP AND THE HARD CORE
OF THE NN INTERACTION

The characteristic behavior of theNN interaction has
been known for a long time. A weak attraction results at lon
ranges almost entirely from the exchange of the bound-st
p meson. At intermediate ranges multiple-pion exchange b
comes important, so that one-boson-exchange potent
~OBEP’s! generally need to account for correlated 2p and 3
p exchange by including ther andv mesons. The appar-
ently less important uncorrelated 2p exchange requires ex-
plicit calculation of a two-boson-exchange potential~TBEP!.
Moving towards the hard core, heavier mesons gain an o
vious importance as a means of effectively describing high
correlated and complicated exchange processes.

The generic form of theNN interaction is written sym-
bolically as

VOBEP5 (
ap5p-like

Vap
5Vp1Vp81Vp91•••

1 (
ar5r-like

Var
5Vr1Vr81Vr91•••

1 (
av5v-like

Vav
5Vv1Vv81Vv91••• ~3.1!

A, ~3.2!

where, for each (Jp;T), an entire spectrum of exchange pro
cesses contribute to the interaction. The problem is how
include such dynamics without introducing too many param
eters.

The conventional approach in meson physics is simply
forget about everything except the mesons with masses un
about 1 GeV. This certainly seems reasonable when we c
sider the individual contribution of any given heavy meso
After all, a large meson mass causes the meson propagato
suppress the contribution to theNN interaction at low ener-
gies, and in any event the coupling constants and form fac
scales are mostly unknown.

But is it reasonable to neglect thesummedcontribution of
all of the additional exchange processes? For simplicity,
us focus on thep-like contributions to OBEP, i.e., the part o
the NN interaction characterized by (Jp;T)5(02;1) ex-
change with a~not necessarily sharp! massmap

. This does
not restrict us to consider only bound-state heavy meson
changes, but it does imply a common operator structu
Mp-like , so that theNN interaction takes the form
-
-

as

h

g
ate
e-
ials

b-
ly

-
to
-

to
der
on-
.
r to

tor

let

ex-
re

Vp-like5Mp-like (
ap5p-like

gNNap

2

4p

FNNap

2 ~Q2!

map

2 1Q2

5Mp-like

gNNp
2

4p

FNNp
2 ~Q2!

mp
21Q2

1Mp-like (
apÞp

gNNap

2

4p

FNNap

2 ~Q2!

map

2 1Q2 , ~3.3!

where we have separated out the lightest meson contribut
from the remaining processes. Note that the addition
(Jp;T)5(02;1) exchange contributions are required b
completeness and necessarily add coherently withno possi-
bility for cancellation.

From Eq. ~3.3! it appears that we have conventiona
OBEP and a summation over heavy meson-exchange p
cesses. If the summationa over the (Jp;T)5(02;1) ex-
changes could be truncated at sufficiently low order, this i
terpretation might suffice. If not, then Eq.~3.3! introduces a
semiphenomenological description of all (Jp;T)5(02;1)
exchange dynamics, not just meson exchanges.

In the RuhrPotNN interaction these additional contribu-
tions are retained by writing theNN interaction as

Vp-like;Mp-like

gNNp
2

4p

FNNp
2 ~Q2!

mp
21Q2

1Mp-likeSp-likeFNNp-like
2 ~Q2!, ~3.4!

where the additional ‘‘contact’’ term introduces an effectiv
constantSp-like through a closure approximation. The Ruhr
PotNN interaction also includes analogousSr-like , Sv-like ,
andSe-like contact terms.

The contact interactions completely dominate in the r
gion of the hard core, but are essentially vanishing at t
larger distances where the meson-exchange dynamics t
over. It is important to note that the meson-exchange con
butions in the RuhrPot model are heavily cut down in th
region of the hard core. This results because the mes
nucleon vertices are dressed with form factors that obey
asymptoticQ2 dependence predicted by perturbative QC
@22#. In particular, the Dirac and Pauli form factors used i
the RuhrPot model are given by@21#

F ~1!5
L1
2

L1
21Q̂2

L2
2

L2
21Q̂2

, ~3.5a!

F ~2!5F ~1!
L2
2

L2
21Q̂2

, ~3.5b!

where

Q̂25Q2logFL2
21Q2

LQCD
2 G Y logF L2

2

LQCD
2 G . ~3.6!

The meson scalesL1 have been obtained from direct calcu
lation of the meson-baryon form factors@19,20#, and the
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53 1515DOES THE 3N FORCE HAVE A HARD CORE?
QCD scalesL2 and LQCD are obtained from a fit to the
nucleon electromagnetic form factors atQ2 ranging to about
30 GeV2.

The RuhrPotNN interaction@15# fits the scattering phase
with x2/datum51.6 and the deuteron observable
ED522.224 575~9! MeV, QD50.2860~15! fm2,
AS50.8846~8! fm1/2, D/S50.0272~4!, and r D51.9560~68!
fm ~none of which are fitted! are all reasonably predicted a
ED522.224 MeV, QD50.276 fm2, AS50.882 fm1/2,
D/S50.025, andr D51.932 fm. The SU(3)F result ofgNNv

2 /
gNNr
2 5 9 is retained, which can be compared to values
around 27 required in conventional BEP@23#. This clearly
has consequences for a consistent specification of therpg-
andvpg-exchange currents@17,18# required in the calcula-
tion of electromagnetic observables.

IV. CONTACT INTERACTIONS IN THE 3 N SYSTEM

In the previous section we recalled how the RuhrP
NN interaction retains contact terms to include the summ
(Jp;T) exchange dynamics. This led naturally to a hard c
in the OBEPNN interaction. But what about the 3N force?
What happens when the TBEP dynamics of the 3N interac-
tion is extended to include contact interactions? This sim
question needs to be answered with some care.

In Sec. II we obtained two equivalent and mode
independent definitions of the TBEP. In theTamm-Dancoff
approximation, as is used to define the full Bonn potential
example, the wave functions necessarily violate the conv
tional orthonormality requirement and the explicit energy d
pendence destroys the Hermiticity of the effective intera
tion. When the energy of theA-particle system is assumed t
be conserved in all intermediate states the need for no
thogonal wave functions remains, but the non-Hermiticity
the effective interaction is no longer apparent and the res
ing TBEP in the three-body system is given by

Veff
~4?!5hHH1

l

E2H0
H1

l

E2H0
H1

l

E2H0
H1 ~4.1a!

1H2

l

E2H0
H1

l

E2H0
H1 ~4.1b!

1H1

l

E2H0
H2

l

E2H0
H1 ~4.1c!

1H1

l

E2H0
H1

l

E2H0
H2J h, ~4.1d!

whereE is the full ~including binding! energy of the three-
nucleon system.

Alternatively, from Sec. II we recall that a Hermitian in
teraction requiring orthonormal wave functions can be o
tained from theunitary transformationprocedure, as has
been done to define the RuhrPotNN and 3N interactions.
Adopting energy conservation for comparison with Eq.~4.1!,
the resulting TBEP contributions to the three-body syst
are given by
s

s

of

ot
ed
re

le

l-

or
en-
e-
c-

or-
of
ult-

-
b-

m

Veff
~4!5hHH1

l

E2H0
H1

l

E2H0
H1

l

E2H0
H1 ~4.2a!

1H2

l

E2H0
H1

l

E2H0
H1 ~4.2b!

1H1

l

E2H0
H2

l

E2H0
H1 ~4.2c!

1H1

l

E2H0
H1

l

E2H0
H2 ~4.2d!

2
1

2
H1

l

E2H0
F l

E2H0
H1hH1

1H1hH1

l

E2H0
G l

E2H0
H1J h ~4.2e!

whereE is the free energy of the three-body system.
Equation~4.2a! describes meson-recoil, vector-meson d

cay, and baryon resonance contributions to the 3N interac-
tion, whereas Eqs.~4.2b!–~4.2d! describe contributions in-
volving less than four vertices, at least one of which is
second order. These operators are already different in
Tamm-Dancoff and unitary transformation schemes beca
of the appearance of full and free-particle energies, resp
tively. However, the most obvious cost in achieving Herm
ticity and orthonormality in the unitary transformatio
scheme is found in the explicit appearance of the wave fu
tion reorthonormalization contributions of Eq.~4.2e!. These
are entirely absent in the Tamm-Dancoff scheme.

So does Eq.~4.2! imply that the 3N interaction has a hard
core? It is important to realize that the three-body for
should include all (Jp;T)-exchange dynamics. Nothing in
Eq. ~4.2!, or indeed the projection formalisms described
Sec. II, indicates that we can arbitrarily truncate the dyna
ics to include only the lightest exchange processes. As in
NN interaction, our task is to include these additional co
tributions without introducing too many parameters.

Consider the 3N interactions involving the exchange o
two arbitrary mesons, saya and b. Equations~4.2a! and
~4.2e! involve a product of coupling constantsgNNa

2 gNNb
2 , or

if an arbitrary baryon resonanceN* is excited,
gNNagNN* agNN* bgNNb . Conversely, Eqs.~4.2b!–~4.2d! in-
volve gNNagNNabgNNb . As such, when we sum over all me
sonsa and/orb, only the contributions from Eqs.~4.2a! and
~4.2e! without nucleon resonances are certain to form a
herent sum with no possibility for cancellation. This iden
fies the most likely source of a possible hard core in t
3N force.

The situation is, however, fundamentally different to th
NN interaction because Eq.~4.2! involves a linear combina-
tion of meson recoil and wave function reorthonormalizati
processes and these are of opposite sign. In Fig. 3 we il
trate these contributions for the exchange of arbitrary mes
a andb. The meson-recoil and reorthonormalization grap
are shown only for the time-ordered topologie
ab
†(3)aa

†(2)ab(2)aa(1) and ab
†(3)ab(2)aa

†(2)aa(1), re-
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spectively, since all other time orderings can be reac
through time reversal and permutations of the nucleon n
bers.

Denoting the common operator structure for these con
butions asM, the nonrelativistic contribution to the poten
tial energy from the meson-recoil processes of Figs. 3~a!–
3~d! are

Vrecoil
3N 5M(

ab
F 22

va~va1vb!vb
1

21

va~va1vb!va

1
21

vb~va1vb!vb
G ~4.3!

and the corresponding contribution from the wave funct
reorthonormalization processes of Figs. 3~e!–3~h! are

Vrenorm
3N 52

1

2
M(

ab
F 22

va
2vb

1
22

vavb
2 G . ~4.4!

In other words, for the RuhrPot 3N interaction we have

Vrecoil
3N 1Vrenorm

3N 50⇒no hard core. ~4.5!

Although this cancellation of wave function reorthonorm
ization and meson recoil terms doesnot hold in theNN
system, in the 3N system it holds for all mesons, regardle
of their mass and quantum numbers. This result is not dep
dent on the details of any meson-theoretical model an
eliminates the most likely source of a hard core in theN
interaction. The result is good news for existing definitio
of the 3N interaction@2–13# and rigorous applications@28–
33# because it lends support to the notion that the 3N force
can be reasonably described with only light meson-excha
dynamics. Preliminary applications using a consistent defi
tion of the RuhrPotNN @15# and 3N ~see the Appendix!
interactions have reported@34# a noteworthy agreement wit
experiment. In particular, while the triton binding energy c
culated with theNN interaction alone givesEB527.64

FIG. 3. The RuhrPot model adopts the unitary transformat
definition of the effective 3N interaction, so that the recoil~a!–~d!
and wave function reorthonormalization~e!–~h! contributions can-
cel in the nonrelativistic limit. The dynamics producing the ha
core in the RuhrPotNN interaction therefore vanishes in the Ruh
Pot 3N force. By contrast, potentials defined within the Tam
Dancoff–Bloch-Horowitz definition~e.g., the full Bonn potential!
do not include wave function reorthonormalization contributions,
that the surviving recoil dynamics sums coherently to create aN
force that is expected to be large when two or three of the nucle
are at small separations.
hed
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3
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MeV, when the consistently defined 3N interaction is in-
cluded the result becomesEB528.34 MeV. This compares
favorably with the experimental result ofEB528.48 MeV.

We stress that the unitary transformation procedure d
scribed in Sec. II is central to our definition of the RuhrPot
N interaction. It ensures only Hermitian and energy indepe
dent operators arise and that they are to be taken betw
orthonormal wave functions. It generates wave function r
orthonormalization terms that cancel the recoil dynamic
and we have seen that this is central to eliminating the m
likely source of a hard core in the 3N interaction.

Had we adopted a procedure like the Tamm-Dancoff a
proximation, as has been done to define the full Bonn pote
tial, our results would be changed completely. From Sec.
we realize that such operators would be non-Hermitian a
energy dependent and that they would need to be compu
between nonorthogonal wave functions. Moreover, sin
there would be no wave function reorthonormalization term
nothing would cancel the recoil dynamics and a hard core
the 3N interaction would result from the summed recoil dy
namics. In other words, for a 3N interaction consistent with
the full Bonn potential,

Vrecoil
3N Þ0⇒hard core exists. ~4.6!

Both theNN and 3N Tamm-Dancoff effective interactions
become consistent with the unitary transformation resu
only when Hermiticity is restored by removing the spuriou
energy dependence and the matrix elements are compu
with reorthonormalized wave functions. Until such rigor i
introduced into three-body applications that use Tamm
Dancoff effective interactions, it is to be hoped that any di
crepancies with the~already rigorous! unitary transformation
results will not be interpreted in terms of model Lagrangian

V. CONCLUSIONS

The dynamics that generates the hard core in the Ruhr
NN interaction has been considered in the irreducible thre
body force. After presenting a detailed summary of the fo
mal definitions of OBEP and TBEP, we recalled that the ha
core of the NN interaction arises naturally when the
(Jp;T)-exchange dynamics is no longer truncated to inclu
only the lightest few mesons. We explored the effect of in
troducing such dynamics into the 3N system. We isolated
those contributions that necessarily add coherently and the
fore cannot possibly be expected to cancel. Finally, w
showed that these contributions to the irreducible 3N force
vanish identically in the static limit. This is a model-
independent result. It lends support to the conventional a
sumption that the 3N force can reasonably be described u
ing only light-meson-exchange dynamics.

A completely different result is expected when the Tamm
Dancoff–Bloch-Horowitz procedure is used to define th
NN and 3N potentials. In that approach~e.g., full Bonn po-
tential!, both theNN and3N potentials contain nonvanishing
contributions from the coherent sum of meson-recoil dynam
ics and the possibility of a large hard core requiring explic
calculation cannot be ruled out.
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APPENDIX: THE RUHRPOT 3 N INTERACTION

The RuhrPot 3N interaction is obtained from the unitar
transformation result of Eq.~2.29!. We present here the
y

leading-order contributions shown in Figs. 1~c!–~e! in the
nonrelativistic limit. The meson recoil contributions are ne
glected because they are exactly canceled by the wave fu
tion reorthonormalization terms, the latter being absent in th
Tamm-Dancoff definition of TBEP. All coupling constants
and form factors are taken to be consistent with the RuhrP
NN interaction@15#.

For the excitation of aD-resonance mediated by the ex-
change ofp- or r-mesons we have,
VDpp52
2

9

gNNp
2 gNDp

2

~2p!6~2m!4
FNNp~kW1

2!FNDp~kW1
2!FNNp~kW2

2!FNDp~kW2
2!

~kW1
21mp

2 !~kW2
21mp

2 !~mD2m!

3~sW 1•kW1!~sW 2•kW2!@4~kW1•kW2!~tW1•tW2!2sW 3•~kW13kW2!~tW13tW2!•tW3#, ~A1!

VDrp52
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gNNpgNDpgNNrgNDr
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FNNp~kW1

2!FNDp~kW1
2!GNNr

M ~kW2
2!GNDr

M ~kW2
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21mp

2 !~kW2
21mr

2!

3$4~sW 1•kW1!tW1•tW2@~sW 2•kW1!~kW2!
22~sW 2•kW2!~kW1•kW2!#

2~sW 1•kW1!~tW13tW2!•tW3@~sW 23sW 3!•kW1~kW2!
22~sW 2•kW2!sW 3•~kW13kW2!#%

2
2

9
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For ther
pp, e
pp, andv
pr contributions we have

Vrpp5
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and for therp terms involving anNNpr vertex on nucleon three we have
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