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Does the 3 force have a hard core?

J. A. Edert and M. F. Gari
Institut fir Theoretische Physik, Ruhr UnivergitBochum, D-44780 Bochum, Germany
(Received 17 October 1995

The meson-nucleon dynamics that generates the hard core of the RuhrPot two-nucleon interaction is shown
to vanish in the irreducible force. This result indicates a smalNJorce dominated by conventional light
meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian. The resulting RuhrPot 3
force is defined in the Appendix. A completely different result is expected when the Tamm-Dancoff—Bloch-
Horowitz procedure is used to define tNéN and 3\ potentials. In that approadie.g., full Bonn potential
both theNN and3N potentials contain nonvanishing contributions from the coherent sum of meson-recoil
dynamics and the possibility of a large hard core requiring explicit calculation cannot be ruled out.

PACS numbds): 21.30—x, 13.75.Cs, 21.45.v

I. INTRODUCTION no longer necessary to adopt the artifidiiN-meson cutoffs
that are requiredl16] in conventional boson-exchange mod-
Existing descriptions of the three-nucleon fofé¢ essen- els. Instead, the RuhrPtN interaction and associated ex-
tially fall into two categories. The first is the semiphenom-change currentl7,18 use self-consistently calculated form
enological approach adopted for the calculation of thefactors[19,20 that possess an asymptof@® dependence
Tucson-Melbourne forcé2—-8], where thewa, mp, and  which is consistenf21] with perturbative QCO22]. In ad-
pp contributions to the N interaction are fixed by subtract- dition, the vector-meson couplings satisfy the SUY(ye-
ing the forward-propagating Born amplitudes from diction of giy,,/gRn,~ 9. Which can be compared to values
wN-scattering, photopion production, and photon-scatteringhear 27 that are typicf23] of conventional boson-exchange
data and the off-shell extrapolation that is necessary fopotentials.
three-body applications is obtained from PCAC and current So how do the contact interactions effect the irreducible
algebra. There is little doubt that @*=0, this force can be 3N force? What happens to the three-body force when two or
regarded as essentially exact. The second approach, whighree of the nucleons begin to overlap? Our answers to these
has been adopted for the calculation of the Brazil13  questions are organized as follows. In Sec. Il, we summarize
and RuhrPot R forces is to make use of a particular meson-the Tamm-Dancoff—Bloch-Horowitz and unitary transforma-
theoretic model and directly calculate the leading-order contion projection formalisms that define the one- and two-
tributions. We illustrate the two schemes in Fig. 1. boson-exchange interactions in tAebody system. In Sec.
One important question that remains to be addressed i$l we use these results to recall how the hard core of the
this: “Does the 3N interaction have a hard core like that NN interaction arises naturally when the exchange dynamics
found in the NN interaction?To address this question, we is no longer arbitrarily truncated to include only the first few
will first recall the dynamical origins of the hard core in the light mesons. In Sec. IV we carry these ideas into the 3
NN interaction, and then ask if such dynamics can produce a
corresponding hard core in the three-body system.
About 5 years ago it was show4] that the hard core of
the NN-nucleon interaction arises naturally in a boson- mp
exchange model when the dynamics is no longer truncated toysy -
include the exchange of only a few light mesons. In particu- ™ 4520 e
lar, the RuhrPotNN interaction[14,15 introduces a closure
approximation to incorporate the additionald™(T)-
exchange dynamics that is required by completeness. Con- T
ventional light-meson-exchange dynamics still contributes to vi¥ = A + T+ S
theNN interaction at long distances, but the hard core region g .
is now completely dominated by the additiomaintactcon- (©) (@ (0)
tributions. We illustrate this two-phase approach in Fig. 2.
i This _natural separatlon of the Io.n.g— a_nd short.-rahUé FIG. 1. The w&, mp, and pp contributions to the Tucson-
Interaction dynam|c§ has.pr_oven critical in resolving a nu_m'Merourne interaction\/%’h\‘,I are fixed by subtracting the forward-
ber of problems in existing boson-exchange potential$,oyagating Born amplitudes fromN-scattering, photopion pro-
(BEP’s). For example, when the contact interactions are inyction, and photon-scattering data. The RuhrPot interautidris
cluded to describe the hard core of thé\ interaction, it is  calculated from an effective meson-baryon model, as is the Brazil-
ian force. All of these approaches involve only light-meson-
exchange dynamics, so that it remains to be seen if a hard core
*Electronic address: jamie@deuteron.tp2.ruhr-uni-bochum.de  exists in the 8l force.
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N

@ = X:cx=p—li17

7/, contains everything else, e.gAA), [N7), [NAmp), etc.
The total wave function can now be expressed as,

(W)= 5[ V) +N¥)=[4)+]|d), 2.3

N

+ Ea#p

/

where we have introduced projection operators satisfying the
conventional algebraz?=7, A=\, pA=A7p=0, and
n+\=1 to obtain|y)=75|¥)e 7, as a purely nucleonic
state and ¢)=\|¥) .7, as a state whose description re-
quires explicit meson- and/or resonance- and/or negative-

Closure =

A ath Boson + @ frequency degrees of freedom. We have not given explicit
PPEOXIMANOR. /" Exchange /Contact expressions for and \, nor will we need to sincey)=

n|¥) and|)=N\| ). The point is that the energy eigenvalue
problem can now be written as
FIG. 2. The RuhrPotNN interaction introduces a closure ap-

proximation to incorporate the additional{; T)-exchange dynam- Eil )= nH 7] P+ 7HA| ®), (2.49
ics that is required by completeness. Conventional light-meson-
exchange dynamics still contributes to tNéN interaction at long Eil¢)=NHn|¢) +NHN| ). (2.4b

distances, but the hard core region is now completely dominated b . .
contactinteractions. Yhere are a number of differertbut equivalent[24,25)

ways in which Eq.(2.4) can be reduced wheg) vanishes

system to investigate the existence of a possible hard core {f} the observable states. One seeks to derivesféective
the irreducible 8l interaction. Within the unitary transforma- HamiltonianHe (or an effective interactioVy;) which sat-
tion approach, we find thahe class of(J™;T)-exchange ISfies,

processes generating the hard core repulsion in the RuhrPot H —[HA+V —E 2
NN interaction vanish in the nonrelativistic limit of the irre- efl ) =[Hot Verl| ) = Bil ) @3

ducible 3N interaction.This result is not confined to any so that the matrix elements of the Hamiltonian between in-
particular meson-theoretic model and it eliminates the mosferacting meson-baryon wave functionk), as required in
likely source of a hard core in the\Sinteraction. However, Eq. (2.1), can be computed as an effective Hamiltonian be-
a completely different result is expected when the Tammyyeen conventional nucleonic wave functidng .
Dancoff—Bloch-Horowitz procedure is used to define the perhaps the most commonly adopted reduction scheme is
NNand 3 potentials. In that approadte.g., full Bonn po-  found in the Tamm-Dancoff approximati$@6], or in one of
tentia) both theNN and3N potentials contain nonvanishing the many equivalent schemes like that due to Bloch and
contributions from the coherent sum of meson-recoil dynamyorowitz [27]. Here one begins by noting that the free-
ics and the possibility of a large hard core requiring explicitenergy Hamiltonian cannot cause transitions between the
calculation cannot be ruled out. Our conclusions are pregjlpert subspaces, sbHy7=0 can be used to reduce Eq.

sented in Sec. V. (2.4b to
Il. FORMALISM (Ei—Ho)A[#)=NH[7[4)+\|H)]. (2.6
The energy eigenvalue problem for an arbitrary interact-Collecting the\|¢) terms together givef25] Sawada’s re-
ing meson-baryon system is given by sult,
H|W)=(Ho+H))|V)=E|V), (2.2

A
o | M= T NiE HoH) E-H, - 20
where the total HamiltoniaH is separated into free and
interacting part, andH,, and|¥) denotes the complete After inserting this into Eq.(2.43 and noting that
meson-baryon state with energy. This provides a relativ- #nH;»=0, a comparison with Eq2.5) shows that
istic time-ordered framework, rather than a manifestly covar-
iant one. A rigorous solution of E@2.1) in it present form is Vo—H 1
impossible because the wave functions contain not only et " [1—[N/(E;—Hg)]H,] Ei—Hy
nucleon degrees of freedom, but explicit meson, resonance,
and antinucleonic degrees of freedom as well. However, as igquivalently, we can recognize E.6) as a recursive defi-
well known, the problem can be reduced to a tractable fornfition of [¢), so that

by partitioning the total Hilbert space into two parts,

H. (2.8

A A
)\|¢>:Ei_HOR|¢I>! R:Hl_i_HlmR (29)

Tp={INC)INCONGY
9%, ={everything elsg (2 and

so that.7, is the Hilbert subspace consisting only of the Veﬁ:HlﬂR- (2.10
positive-frequency parts of the nucleon state vectors, and i 0
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Expanding the interaction Hamiltonian in powers of the Okubo[25] and which we will refer to as thenitary trans-

strong coupling, formation methodproceeds by rewriting Eq2.4) in matrix
form as
Hi=2, Hi (219 E("”>) (an on)(wA) 215
o)) IAH7 NHAL[4) '

allows for the calculation of the effective interaction to any _ _ _
desired order. In particular, the one-boson-exchange potentiand mtrodu_cmg new statey) and |¢) through a unitary
(OBEP in the A-nucleon system is given by transformation,

RN )
ng'):HlEi—HoHl (2.12 <|¢>)=U(:zi) (2.16

and the corresponding two-boson-exchange potential is

In terms of the new states, the energy eigenvalue problem

N N N reads
Hy

V@7 =H H H
ef 'Ei—Ho 'Ei—Hy 'Ei—Hq IX)

) ~E

|X>)
o) (2.17

Unlike the Tamm-Dancoff reduction, where we found that
A A Egs.(2.7) and(2.9) related| ) and|¢), we can now choose

+ HlE,_ HOHZ E— HOHl U such that it is unitary and ensure§ HU is diagonal, so

' ' that |x) and |¢) are completely decoupled orthonormal

states. In particular, for

t
N U HU(

TR, e,

Hy

A A A
+ +Hy=——H,. (2.
HlEi_HOHlEi_HOHZ H2Ei_H0H2 (2 13

We have labeled the order of the interactions in Egsl2) U=
and (2.13 with question marks since these expressions are
obtained from Eq(2.10 by expanding the numerator to defi-
nite order, but retaining the fu(lnfinite orde) energy depen-
dence in the denominator.

We now appear to have effective interactions for usage in _ _
Eg. (2.5). Indeed, if we seH,=0 in Egs.(2.12 and(2.13, MHFIHAI=AHA)7=0. 219
we obtain the OBEP and TBEP interactions used in the fullwe will derive the operatoré that satisfy Eq.(2.19 in a
Bonn potential. However, it is easy to see that the Hermiticmoment. When| @) vanishes in the observable states, the
ity of these effective interactions is destroyed by an explicitenergy eigenvalue problem reduces to the conventional
dependence on the full initial-state enery. In addition,  Schralinger equation
from Egs.(2.3) and(2.9) we observe that the wave functions

n(1+ATA) 25 — pAT(1+AAT) "2\
MNA(L+ATA) Y25 N(1+AAT) "2\ (2.18

a short calculation shows that the nondiagonal elements of
Eq. (2.17) vanish for anyA which satisfies

are not orthonormal but instead satisfy (PH|W)=(x|Herlx)=(x|Eilx) (2.20
A N with the Hermitian effective interaction,
8= oy 1[+RTE_H = R||%) @19
o =THo Her= 7(1+ATA) " ¥25(1+AHH(1+A) n(1+ATA) "2y,

As such, the orthonormality condition depends on the order (2.23)

at which we truncate the interaction. These are certainly unype complete meson-baryon wave functidiis) are then

wanted complications that will invite dubious approximation. §escribed in terms of the operatdxand the nucleonic wave
The problems associated with the Tamm-Dancoff aPunctions| x)

proach can be removd@4] by expanding the energl in

the same way as we expanded the Hamiltonian in(EqJ). [W)=(1+A)n(1+ATA) 2| x). (2.22
It is then possible to obtain an interaction to a definite order

and to calculate a renormalization condition for the waveAs already anticipated, we fifig) e 77, and| @) € 7, pre-
functions. An equivalent solution, which was developed byserve the orthonormality df¥’),

i =(W e[ W)=(xi|n(1+ATA) " V2p(1+AT)(1+A) n(1+ATA) V29| xi) = (Xl xi), (2.233

Si=(V| V)= (e n(1+AAT) V21— A)(1-AT) p(1+AA") Y20y = (o] @i). (2.23b
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We next derive the operato’s that satisfy Eq.(2.19 by A
expandingA and the Hamiltonian to which we already know Ar=o—g Ham, (2.27a
it is related, in powers of the coupling constant, ! 0
0 © )\
== + - -
H=Ho+ 2 Hn, A= 2 An, (2.24 A= Homt g Ha g Ham
(2.27H
where A=\A7 shows thatA,=0. Similarly, we note that \ A A
gH\n = nHO)\w= AHgn =0, so tha;t_lfq(Z.l@ becomes A3=gi_HOH377+ gi_Hongi_Honn
0= 2, A Hnt+[Ho Anlt 2, HiAq PR S S
n= 1= - ) 12
2ot Ai=Ho 1Z—Ho *Z—Ho M7
_igl Zl AiHjAn—i—j] 7. (225 n )\ H )\ H
J Zi—Ho 2%i—Hg

We choose to further constrafby demanding Eq2.25 is
satisfied at each order af With Hyn=£, 7, where#; is the _
free-particle energy of the initial state, we obtain,

A T S
ZimHo Zg—Ho M@t Z—Hy 7

n—1
(Z£i—Ho)An=\| Hp+ > HiAL_; where #, is the free-particle energy of an intermediate
i=1 n-space state. The OBEP in thebody system is then given
n-2n-i-1 by
-2 2 AHA_ |7 (226 (1/2) (%+ %1 —H
= = (2)_ =i T ef 0 )
! ) Veff ﬁf{Hl)\ (5}_H0)(g|_HO) )\Hl i (22&

This completes the definition 0. To calculate the OBEP
and TBEP interactions in th&-body system, we require and the corresponding TBEP is

v@—,lH A H)\(llz)(gf"'gi)_HO A H 1H A A o M H H A
T2 He N (Z—Ho(Ai—Ho) T Ai—Ho b 20 M —Ho|EgmHg e TR E —Hy

A

(1/2)(#5+ &) —Hg Y H
1787 (E.—Ho) (41— Ho)

A 1 ; o A
X————H{+Hy\ )\H2+§("/pf_(’[i)Hlm

ZimHo 1 TEN(Z—Ho) (£~ Ho)
+ \ HynwH,—H A H A A H > H } » H
(Zi—Ho)(Ea—Hg) 171 M7 TH " % —Hy  Z—Hy *Z—Hy Y% —Hg *
Cit4 Ealy A H,7.H \ Hi4Hye H— ™ H
8 2| M(EaHo(Zi—Ho) M (EaHo(F—Hg) 12 —Hy tE—Ho
FH—H HytHy—H H+1b” FHy
1R, 27—, 1 oy Mo e (A AR
A H H—)\ _r H+1;f V’H—)\ o H H—A M H
O P e R 244 YZi—Ho|4—Hy 2 " 2Z—Hg|&—Hg *
F (O H N —H | H 2:2
|
By contrast to Eqs(2.12 and(2.13), Egs.(2.28 and(2.29 (3) The interaction is well defined to any definite order:
involve no references to the full energy and define OBEP anthe definition of the OBEP interactions does not change
TBEP interactions to definite order. when higher-order interactions are introduced.
The unitary transformation method has some significant From the above discussion we realize that, given any mi-
advantages over the Tamm-Dancoff approximation. croscopic model definition for th8IN interaction, a corre-
(1) The wave functions are orthonormal, and remain sasponding definition of the 8 interaction follows immedi-
whenA is truncated to a definite order. ately. However, we have also seen that the unitary

(2) The effective Hamiltonian is Hermitian and dependstransformation method possesses operators which are en-
only on thefree (not full) energy of the observables states. tirely absent from the Tamm-Dancoff result. Without even



1514 J. A. EDEN AND M. F. GARI 53

writing down a Lagrangian, we will later see that, in appli- ine, Fiine, (Q2)
cations assuming orthogonal wave functions, the Tamm- Vlike= A m-like z T 5
Dancoff approximationas used to define the Bonn model ay=m-like 4T man

guarantees aNB force which possesses a hard core, whereas 2 5 )
the unitary transformation methoths used to define the - Inng Fana(Q)
RuhrPot modélensures the corresponding dynamics vanish rmlke 4 m2+Q2

in the N system.
P s gl%lNaw FﬁNaﬂ_(Qz)
+ i ,
< w-“keaﬂ#’n' A mi +Q2

(3.3

Ill. OBEP AND THE HARD CORE

OF THE NN INTERACTION . L
where we have separated out the lightest meson contribution

The characteristic behavior of theN interaction has from the remaining processes. Note that the additional
been known for a long time. A weak attraction results at long(J™;T)=(0";1) exchange contributions are required by
ranges almost entirely from the exchange of the bound-stateompleteness and necessarily add coherently matipossi-

7 meson. At intermediate ranges multiple-pion exchange bebility for cancellation

comes important, so that one-boson-exchange potentials From Eq. (3.3 it appears that we have conventional
(OBEP’9 generally need to account for correlated and 3 OBEP and a summation over heavy meson-exchange pro-
7 exchange by including thp and @ mesons. The appar- cesses. If the summatioa over the §™;T)=(0";1) ex-
ently less important uncorrelatedr2exchange requires ex- changes could be truncated at sufficiently low order, this in-
plicit calculation of a two-boson-exchange poten(EBEP).  terpretation might suffice. If not, then E(B.3) introduces a
Moving towards the hard core, heavier mesons gain an otsemiphenomenological description of all™(T)=(0";1)
vious importance as a means of effectively describing highlyexchange dynamics, not just meson exchanges.

correlated and complicated exchange processes. In the RuhrPotNN interaction these additional contribu-

The generic form of theNN interaction is written sym- tions are retained by writing theN interaction as
bolically as

v y gﬁNﬂ- FI%JNW(QZ)
molike™ - o-like g — mrQ?

VOBEP: E Vuﬂ:Vﬂ.‘FVﬂ./"’Vﬂ.//‘i‘ s

a, Zo-like + A ike r-likeF in-tie( Q7). (3.9
here the additional “contact” term introduces an effective
+ V, =V 4V, +V o+ - w UGt
ap;p—like PP P constants e through a closure approximation. The Ruhr-

PotNN interaction also includes analogoBis. jie, = o-like -
+ >V, =V 4V, Vet (3.0) andX e contact terms. . .
a,~o-lke ¢ The contact interactions completely dominate in the re-
gion of the hard core, but are essentially vanishing at the
larger distances where the meson-exchange dynamics take
:, (3.2 over. It is important to note that the meson-exchange contri-
butions in the RuhrPot model are heavily cut down in the
region of the hard core. This results because the meson-
where, for eachJ™;T), an entire spectrum of exchange pro- hucleon vertices are dressed with form factors that obey the
cesses contribute to the interaction. The problem is how t@symptoticQ® dependence predicted by perturbative QCD
include such dynamics without introducing too many param{22]. In particular, the Dirac and Pauli form factors used in

eters. the RuhrPot model are given §h21]
The conventional approach in meson physics is simply to
forget about everything except the mesons with masses under Ai A%
about 1 GeV. This certainly seems reasonable when we con- F= - C -1 (3.53
sider the individual contribution of any given heavy meson. A1+Q7A+Q
After all, a large meson mass causes the meson propagator to
suppress the contribution to tiN interaction at low ener- 5 1 A%
gies, and in any event the coupling constants and form factor FO=F® ———, (3.5b
scales are mostly unknown. A3*Q
But is it reasonable to neglect tkemmedtontribution of
all of the additional exchange processes? For simplicity, leYVhere
us focus on ther-like contributions to OBEP, i.e., the part of 2 - )
the NN interaction characterized byJ{;T)=(0";1) ex- szQzlo 2t loal —2_ 3.6
change with anot necessarily sha)pnassmaﬂ. This does g AéCD g AéCD '

not restrict us to consider only bound-state heavy meson ex-
changes, but it does imply a common operator structur§ he meson scales; have been obtained from direct calcu-
A ke SO that theN N interaction takes the form lation of the meson-baryon form factof49,20, and the



53 DOES THE N FORCE HAVE A HARD CORE? 1515

QCD scalesA, and Agcp are obtained from a fit to the @) A N
nucleon electromagnetic form factors@f ranging to about Vet = 7| Ha Z—Ho Ha “—Hog Ha Z—Hpg
30 Ge\2.

The RuhrPolNN interaction[15] fits the scattering phases A N
with  x?/datum=1.6 and the deuteron observables +Hy———H;—+H; (4.2b
Ep=—222457%9) MeV, Qp=0.286015 fm?2 £=Ho "Z=Hy
As=0.88468) fm'2 D/S=0.02724), and rp=1.956368)
fm (none of which are fittedare all reasonably predicted as H A H A H (4.20
Ep=-2.224 MeV, Qp=0.276 fn?, Ag=0.882 fm'? 1%—Hy 2Z—Hy 't '
D/S=0.025, and 5 =1.932 fm. The SU(3) result ofgﬁ,Nw /
gﬁ,Np = 9 is retained, which can be compared to values of A A
around 27 required in conventional BEPR3]. This clearly tHi N (4.20

. . g . 2 O & O

has consequences for a consistent specification of the-
and w7 y-exchange currenfd 7,18 required in the calcula-

H, (4.29

1 A A

tion of electromagnetic observables. - TH —_—
2H1;5—HJ;5—H0H1”H1
IV. CONTACT INTERACTIONS IN THE 3 N SYSTEM N
In the previous section we recalled how the RuhrPot +H17IH1WL_—HH1]7I (4.2¢
© 0% 0

NN interaction retains contact terms to include the summed

(J™;T) exchange dynamics. This led naturally to a hard COr& here &
{/r:/rtlher?BEPNN |2teraﬁtlo$éggt(\j/vhat a}boutfthforce? Equation(4.29 describes meson-recoil, vector-meson de-
Nhat happens when the ynamics of t |t§rac_- cay, and baryon resonance contributions to theidterac-

tion is extended to include contact interactions? This smpledon whereas Eqs(4.25—(4.2d describe contributions in-
questlcgn heeds to bebar!swgred with sqmlta care. d del volving less than four vertices, at least one of which is of

. dln ((ajc. I q V]Y.e. 0 ta'nf H tvyr%Eegullvasnt anD mo ffe'second order. These operators are already different in the
Indepen er)t € |n!t|ons of the X - In thamm- anco Tamm-Dancoff and unitary transformation schemes because
approximation, as is used to define the full Bonn potential forof the appearance of full and free-particle energies, respec-

example, the wave functions necessarily violate the converyyq\, However, the most obvious cost in achieving Hermi-
tional orthonormality requirement and the explicit energy de'ticity and orthonormality in the unitary transformation

pendence destroys the Hermiticity of the effective interac.hame is found in the explicit appearance of the wave func-

tion. When the energy of th&-particle system is assumed (0 o, reqrthonormalization contributions of E¢#.28. These
be conserved in all intermediate states the need for nonol,, entirely absent in the Tamm-Dancoff scheme

thogonal wave functi_ons_ remains, but the non-Hermiticity of g joes Eq(4.2) imply that the 3 interaction has a hard
Fhe effectn{e Interaction Is no Ionger_app_arent and the resunéore? It is important to realize that the three-body force
ing TBEP in the three-body system is given by should include all J7;T)-exchange dynamics. Nothing in
Eqg. (4.2, or indeed the projection formalisms described in
(4?) _ A A A Sec. I, indicates that we can arbitrarily truncate the dynam-
Ve '=myHy Hq Hi H, (4.1a . . - .
E-Hy "E—Hg "E—Hg ics to include only the lightest exchange processes. As in the
NN interaction, our task is to include these additional con-
N N tributions without introducing too many parameters.
+HzﬁH1ﬁH1 (4.1b Consider the B interactions involving the exchange of
0 0 two arbitrary mesons, say and 8. Equations(4.23 and
(4.2¢ involve a product of coupling constard§y,dns . Of
N if an arbitrary baryon resonanceN* is excited,
+H1E—H0H2E—HOH1 (.19 InnaONN oONNk gOnng - COnversely, Eqs4.2h—(4.2d) in-
volve gynaInnesOnng - AS such, when we sum over all me-
sonsa and/orB, only the contributions from Eq$4.29 and
(4.19  (4.28 without nucleon resonances are certain to form a co-
herent sum with no possibility for cancellation. This identi-
fies the most likely source of a possible hard core in the
whereE is the full (including binding energy of the three- 3N force.
nucleon system. The situation is, however, fundamentally different to the
Alternatively, from Sec. Il we recall that a Hermitian in- NN interaction because E(4.2) involves a linear combina-
teraction requiring orthonormal wave functions can be ob+tion of meson recoil and wave function reorthonormalization
tained from theunitary transformationprocedure, as has processes and these are of opposite sign. In Fig. 3 we illus-
been done to define the RuhrPdN and 3N interactions. trate these contributions for the exchange of arbitrary mesons
Adopting energy conservation for comparison with Eq1), a and 8. The meson-recoil and reorthonormalization graphs
the resulting TBEP contributions to the three-body systemare shown only for the time-ordered topologies
are given by aj(3)al(2)ag(2)a,(1) and aj(3)ag(2)a)(2)a.(1), re-

is the free energy of the three-body system.

A A
+H1E——HOH1E——HOH2 7,
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MeV, when the consistently definedN3interaction is in-

/ ; 7 cluded the result becomés;= —8.34 MeV. This compares

Y o VA 7 favorably with the experimental result &;= —8.48 MeV.

We stress that the unitary transformation procedure de-

@ ®) (c) @) scribed in Sec. Il is central to our definition of the RuhrPot 3

N interaction. It ensures only Hermitian and energy indepen-

oo e e et dent operators arise and that they are to be taken between

5 A o A orthonormal wave functions. It generates wave function re-

orthonormalization terms that cancel the recoil dynamics,
© ® (&) (B) and we have seen that this is central to eliminating the most

likely source of a hard core in theéN3interaction.

FIG. 3. The RuhrPot model adopts the unitary transformation Had we adopted a procedure like the Tamm-Dancoff ap-
definition of the effective B interaction, so that the recai)—(d) proximation, as has been done to define the full Bonn poten-
and wave function reorthonormalizati¢e)—(h) contributions can- tial, our results would be changed completely. From Sec. Il
cel in the nonrelativistic limit. The dynamics producing the hardwe realize that such operators would be non-Hermitian and
core in the RuhrPaN interaction therefore vanishes in the Ruhr- energy dependent and that they would need to be computed
Pot I force. By contrast, potentials defined within the Tamm- between nonorthogona' wave functions. Moreover, since
Dancoff-Bloch-Horowitz definitior(e.g., the full Bonn potential  there would be no wave function reorthonormalization terms,
do not include wave function reorthonormalization contributions, SOnothing would cancel the recoil dynamics and a hard core in
that the surviving recoil dynamics sums coherently to creatdla 3 1o 3\ interaction would result from the summed recoil dy-
force that is expected to be large when two or three of the nucleonﬁamics_ In other words. for aNBinteraction consistent with
are at small separations. the full Bonn potential, ’

spectively, since all other time orderings can be reached
Lhrough time reversal and permutations of the nucleon num- V3N _#0=hard core exists. (4.6)
ers.
Denoting the common operator structure for these contri-
t_)utions as 7, the nonrelativistic pontribution to thg poten-  Both theNN and 3N Tamm-Dancoff effective interactions
tial energy from the meson-recoil processes of Figa)-3 become consistent with the unitary transformation results

3(d) are only when Hermiticity is restored by removing the spurious
energy dependence and the matrix elements are computed

VA —2 n -1 with reorthonormalized wave functions. Until such rigor is

recoil ap 0wt wg)wg w0, twgo, introduced into three-body applications that use Tamm-

Dancoff effective interactions, it is to be hoped that any dis-

crepancies with théalready rigorousunitary transformation
4.3 ) ) . .

results will not be interpreted in terms of model Lagrangians.

-1
+—
wg(w,twg)og

and the corresponding contribution from the wave function

reorthonormalization processes of Figée)33(h) are V. CONCLUSIONS
aN 1 -2 -2 The dynamics that generates the hard core in the RuhrPot
Vienom= — 5'////;/3 o + AR (4.4 NN interaction has been considered in the irreducible three-
«p «"B body force. After presenting a detailed summary of the for-
core of the NN interaction arises naturally when the
v+ V3 =0=no hard core. (4.5  (J™;T)-exchange dynamics is no longer truncated to include

only the lightest few mesons. We explored the effect of in-
Although this cancellation of wave function reorthonormal-troducing such dynamics into theN3system. We isolated
ization and meson recoil terms doest hold in the NN  those contributions that necessarily add coherently and there-
system, in the R system it holds for all mesons, regardlessfore cannot possibly be expected to cancel. Finally, we
of their mass and quantum numbers. This result is not depershowed that these contributions to the irreducibiié fBrce
dent on the details of any meson-theoretical model and ivanish identically in the static limit. This is a model-
eliminates the most likely source of a hard core in tie 3 independent result. It lends support to the conventional as-
interaction. The result is good news for existing definitionssumption that the I8 force can reasonably be described us-
of the A interaction[2—13] and rigorous application®8— ing only light-meson-exchange dynamics.
33] because it lends support to the notion that thef8rce A completely different result is expected when the Tamm-
can be reasonably described with only light meson-exchang@ancoff-Bloch-Horowitz procedure is used to define the
dynamics. Preliminary applications using a consistent definiNN and 3 potentials. In that approadie.g., full Bonn po-
tion of the RuhrPotNN [15] and 3 (see the Appendix tential), both theNN and3N potentials contain nonvanishing
interactions have reportd@4] a noteworthy agreement with contributions from the coherent sum of meson-recoil dynam-
experiment. In particular, while the triton binding energy cal-ics and the possibility of a large hard core requiring explicit
culated with theNN interaction alone give€g=—7.64 calculation cannot be ruled out.
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The RuhrPot Bl interaction is obtained from the unitary ~ For the excitation of a\-resonance mediated by the ex-
transformation result of Eq(2.29. We present here the change ofm- or p-mesons we have,

APPENDIX: THE RUHRPOT 3 N INTERACTION

Ve - 2 ORN-ORax Frna(K2)Fnan(K2) Funa(K3) Fran(K3)
A9 (2m)B2m)® (K2 ml)(KE+m2)(my—m)

X (0ry-Ky) (03 Ko)[4(Ky-Kp) (71 75) — 073 (Ky X Kp) (71X 7) - T3], (A1)

2 INNZINA 7ONNpINAp Frauna(K) Fa (K2 )GNNp(k )GNAp(k )

Vpr_ 9 (2m)4(27'r)6 (my— m)(k2+m )(k2+m)

X{4(0y-Ky) 71~ 7ol (02-Ky) (Kp)2— (072-Ko) (Ky - Kp) ]
— (01 K (71X 1) - Ta[ (02X 03) - Ky(Kp)2— (072- Kg) 3+ (Ky X ko) I}

2 gNNTINA 7ONND NAp FNNw(k )FNAﬂ-(k )GNNp(kz)GmAp(Ei)
9 (2m*2n)® (my— m) (K2+m?)(k3+m?)

X{4(5'2' lz2) ;1' ;2[(51' IZ2)(k1)2_(0'1' kl)(kl' kz)]
+(0p-Kp) (71X 1) - To[ (01X 03) - Kp(Ky) 2+ (071 - Ky) - (Ky X Ko) 11, (A2)

V. - 2 gNNpgNAp GNNp(k )GNAp(kZ)GNNp(k )GNAp(k)
Aer™ 9 (2m)%(2m)® (my—m)(K2+m?)(k3+m?)

x{471 1o (01 02) (k)2 (K)2 = (a1 Kp) (075 Kq) (Ky)?

_((;1'|22)((;2'EZ)(E1)2+(&1‘Izl)((;2'|22)(|21'IZZ)]

— (11X 7p) T3 (01X 02) - a3(K) A (K)2 = (01 Ky) (05X 073) - Ky (K)?

+ (05 Kp) (01X 03) - Kp(Kp) 2+ (01 Kp) (2 Kp) - (Ky X Kp) T} (A3)
For thep=mm, e=mm, andw=mp contributions we have

gNNTrgNNp Fruna(KD) Fana(KS )GNNp(k )Fp‘n'ﬂ'(k21k21k3) -

V= (01-K) (02 Kp) 03 (Ky X Kp) (71X 75) - 73, (Ad)
p (277)62m3 (k1+m )(k§+m7)(k§+mp) (01K )(02-K2) T3 (Kg XK)(T1 X T2) - T3
9N INNeS err Fana(KD)Fana(K3) Fane(K3 )Fem(kz,kz-kz) - - e
VE‘IT7T (271_)62m (kl+mﬂ,)(k +m )(k3+m ) \0-1 )(UZ'kZ)(Tl'TZ)I (AS)
o2 W o2 02
gNNﬂ'gNNpgNngwpw FNNﬂ'(k )GNNp(k )FNNw(k )Fpﬂ'w(k 1k 1k ) S PNg2_ 2 S - - - >
Vomp= (2m)%2m? m, (k1+mw)(k2+mp)(k§+mw) [(o2-kk;— (02 ko) (Ki-Ka) (01 Kp)(71- 72)

INNTINNPINNGT mpw Fruna(K3 )GNNp(kz)FNNw(Ez) pm(ﬁzyﬁg,ﬁg)
(2m)°2m*m, (K2+m?2)(K2+m?)(K3+m?)

(01 K)KE— (01 Ky) (Ky-Ko) 1(02-Ko) (72 7).
(A6)

and for thepr terms involving anlNN7rp vertex on nucleon three we have
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9na0aN, Fana(KD)GNN,(KFR,(K)

T (2m)%Am?

9in=0an, Fana(K3) G, (KOFR,(KE)

(ki+m2)(k3+m?)

N
w

(01-Ky) (02X a3) Ko 71X 75) -

N

(27m)%4m3

(K2+m2)(K2+ m?)

Ko) (01X 03) - Ky (71X 75) - 75. (A7)
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