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Uniform a-nucleus potential in a wide range of masses and energies
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We have reanalyzed elasticscattering data on many target nuclei fréfta up t0?°%b over a wide range
of energies. Using double-folded potentials we have obtained excellent agreement between the experimental
scattering data and our optical model calculations. In addition, bound state properties have been calculated
successfully. A systematic behavior of the energy and mass dependence of the strengths of the real and
imaginary potentials has been found.

PACS numbd(s): 24.10.Ht, 25.55.Ci

I. INTRODUCTION cosh parametrization was uséi3], which shape is very
similar to the one used in théNe case. In a further work
Elastic a-nucleus scattering processes are generally deBuck et al. [14] have analyzedu-cluster states in’*Ne,
scribed by the optical model employing complexnucleus  *4Ti, ®*Mo, and ?*?Po using a special Saxon-Woods potential
potentials whose parameters are adjusted to reproduce thdth the shaper- WS+ (1—a)-WS'. Good agreement with
scattering data. The knowledge of these potentials also playhe observables like the energy spectra of the rotational
an important role in the description of many other nuclearbands, rms radiiB(E2) values, anda-decay widths has
reactions, e.g., inelastic scattering processes, transfer or othiegen obtained. In these cases the resulting potentials have
direct reactions, the calculation of transmission coefficientsnot been tested versus the elastic scattering data; in two very
and nuclear structure studies. Recently many nuclear praecent papers Buokt al. have shown that their potentials can
cesses in astrophysical scenarios have been described algo be used to calculate elastic scattering cross sections on
a-nucleus potentialEl—4]. Such processes are radiative cap- 0 and “°Ca[15] and 2°%Pb[16].
ture, transfer reactions, and alpha decay occurring in primor- Recently, Abele and Staufit7] have presented a unified
dial nucleosynthesis and in stellar hydrostatic and explosivelescription of scattering cross sections as well as bound and
burning modes. quasibound states for the systems %0 anda+ '°N. The
In many investigations complex Woods-Saxon potentialgeal part of the potential was calculated using a double fold-
are used. In other analyses the simple Woods-Saxon shajey procedure taken from Ref.18]. Effective nucleon-
was generalized by introducing terms of higher order of thenucleon interactions with different density dependencies as
Woods-Saxon functiorfe.g., [5,6]). Furthermore, analyses well as zero-range and finite-range knock-on exchange terms
of elastic a-scattering data in terms of model-independentwere investigated. The dispersive part of the real potential
parametrizations of the optical potential have been made usvas calculated using the dispersion relation of the optical
ing either spline functionge.g., [5,7]), or a series of potential. Together with the dominating channel potential it
Fourier-Bessel functions added to a Woods-Saxon form facreproduces the observed energy dependence of the volume
tor [8,9]. Gubleret al. [6] performed a model-independent integral of the real part of the potential. Finally, Abele and
analysis, expressing the real part of the potential in terms oStaudt[17] calculated the energies and properties of the
a sum of Gaussians. Recently, a global optical potential fobound and resonance-cluster states if°Ne and °F and
a particles with energies above 80 MeV using Woods-found good agreement with the experimental data.
Saxon-type form factors has been obtained by Nettal. Furthermore, our group has measured differential cross
[10]. It has been extended to lower energies by Avrigeansections for elastic and inelastic scattering on some light
et al. [11] and proved appropriate to describe,&) reac- nuclei with the mass numbers A< 36 at incident ener-
tions. gies near 50 Me\[{19,20. The analysis of the data using
For the real part of the optical potential in the !0  double-folded potentials results in a soft mass dependence of
system Michelet al. [5] found a new parametrization. The the volume integrals per nucleon pair of the real part of the
extracted real potential, which has only two smoothly vary-potential near 50 MeV.
ing energy-dependent parameters, together with a squared In the present paper we extend our systematic investiga-
Woods-Saxon form factor for the imaginary potential, givestion of a-nucleus potentials to intermediate and heavy nuclei
an exact description of both the %0 elastic scattering data with magic proton or neutron numbers. We give the results of
in the energy range between 30 and 150 MeV anddhe potential model calculations using double-folded potentials
cluster spectroscopy oNe. which describe in a unified way the elastic scatteringxof
A folding approach fora-cluster states irf°Ne andF  particles on many target nuclei over a wide range of masses
has been presented by Buekal.[12,13. Thea-1%0 poten- and energies, as well as the properties of bound and quasi-
tial was obtained12] by folding the « cluster and the'®0  bound a-cluster states for nuclei witw ® core structure
core using a zero range nucleon-nucleon interaction; for thevhere the core is a magic or half-magic nucleus.
description of thew cluster states in'% a potential with a Together with the results from lighter nuclgl7,19,2Q
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we present a global and uniforaxnucleus potential over the The nucleon densities in Eq2.2) are derived from ex-
complete mass region in the energy range from 0 to 15@erimental charge distributiori21] by unfolding the finite
MeV. Using the double-folded procedure the ambiguity ofcharge distributions of neutron and pro{@b]. The assump-
the phenomenological potentials can be strongly reduced fdion ppotor= (Z/N) preuronWas used except fot°%Pb, where
the description of elastic scattering data. The uniqueness aradtheoretical neutron distributid26] was added to the pro-
the energy dependence of the potentials are an importatdn mass distribution derived from the experimental charge

feature with respect to astrophysical applications. distribution. The experimental charge distribution of the
particle was taken as a sum-of-Gausdiat]. For the imagi-
Il. THE OPTICAL POTENTIAL nary part different parametrizations such as, i.e., Woods-
Saxon functions or Fourier-Bessel series were employed.
The potential used in the calculations is of the form To compare our folding potentials to potentials with dif-

ferent parametrizations we calculated the volume integrals

Uom(r,E)=Vc(r)+Vi(r,E)+iW(r,E), (2.3) and the root-mean-square radjj,s which are given by

where V. is the Coulomb potential; the real andW the A [

imaginary part of the nuclear potential. The Coulomb term is Jr(E)= —f Vi(r,E)radr 2.7
either taken as the potential of a uniform charged sphere with AtAato

a radius ofr = 1.2—-1.3 fm or calculated from double fold-

ing the experimental charge distributiof1] with the Cou- ~ @nd

lomb interactione?®/(r,—r,). The difference in the calcu-
lated cross sections between both methods is negligible in rrmsR:<r2>l/2:(
this work. '

The real partV; is described in the framework of the

double folding(DF) model of Koboset al. [18] by for the retal part and corresponding definitions for the imagi-
nary part.

. R R According to the causality principle there has to be a re-
Vf(f,E)=)\f J drydropr(ri)pa(ra) lation between the real and the imaginary part of the poten-
tial because scattering cannot occur before the interaction.
Xt(E,p7,pas S=T—T1+T,), (2.2  Mahaux, Ngo, and Satchlf27] and Pachecet al.[28] gave
a dispersion relation for the equivalent local potential which
wherer is the separation of the center of mass of the targebas been proved in a recent work of Partisal. [29],
and the projectilept andp,, are the respective nucleon den-

440\ 172
SVi(r,E)r dr) 28

JV¢(r,E)r?dr

sities, t(E,p,,p7,S) is the nucleon-nucleon interaction AV(r,E)= iyﬁfﬂcwdg, 2.9
(NNI), and\ is a potential strength parameter in the range m J-» E'-E
around 1.3.

In coincidence with our results about the influence of dif-with ” denoting the Cauchy principal value. The dispersion
ferent NNI and the effects of zero-range versus finite-rangeelation (2.9) also holds for volume integrals
exchange terms to the quality of the fjts7] we use for the

NNI the numerical convenient form dfi8]. In detail this B 1 (+=J(E") ,
means AIR(E)=—7|  —gdE". (2.10
t(E.p1.p2,5)=0(E,|s])- f(E.p1.pa), (2.3 |n order to avoid difficulties resulting from the normalization
ith of the integral in Eq(2.10 one usually uses the subtracted
wit dispersion relation
) e 40 e 25
9(E,s:=[8]) = 79995 — 21345+ Joo Ecm) 8(9), AJr(E)—AJR(Es)
Ecm Sa’)o (E-E9(E-E) ' ©
Joo= —276( 1—0.005M—">, (2.5

where Es is a reference energy in the region of interest.
- Because the knowledge about the behavior of the imaginary
= B(E)(p1+p2)
f(E.p1.p2) =C(B)[ 1+ a(E)e v (26 part of the potential is small for energies above 200 MeV one

; ; . should use a reference energy between 30 and 150 MeV.
hereE, , is the center-of-mass energy of the experiment in° . . : .
w em.! 9y xpert "™ The volume integral, of the imaginary potential can be

MeV, u is the reduced mass number of thecore system, trized b
andC,a, and B are obtained through fitting the volume in- parametrized by

tegral oft(E,py,p,,S) to the strength of the real part of a E<E, : 0
G-matrix effective interaction obtained from Brueckner- '

- JI(E)= (E—Eg)? (2.12
Hartree-Fock calculationg22,23. C,«, and 8 have been [ E>E, : 0

calculated using the codeywrIT [24]. JO(E— Eg)?+ A%
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FIG. 1. Elastica scattering orf°Ca: Experimental data and OM
calculations using double-folding potentials, at incident energies of

23, 41.95, 61, 81 MeV{36], 104 MeV[38], and 141.7 Me\[37].

following Brown and Rhd30] (BR parametrizationwhere
E, is the threshold energy for inelastic channeélsand J,
are fitting parameters. The integral in E8.9) can be calcu-

lated only under certain assumptions for the high energy b

havior ofJ, . Mahauxet al.[27] and our groug17] showed

that the values ad, for high energies affect only the normal-
ization of Jg. This uncertainty is avoided in using the sub-
tracted dispersion relatiof2.11). Different parametrizations

assuring the convergence of E®.9) for the high energy
behavior of J; have been tested; the difference Mlg

is negligible. Therefore we use a linear decreasel,oin

the range 250 MeV<E<E, with E, =10°° MeV and

J|(EL):0 MeV

e
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FIG. 2. Elastica scattering orPeNi: Experimental data and OM
calculations using double-folding potentials, at incident energies of
25 MeV [39], 38 and 58 MeV[40], 82 MeV [42], 104 MeV[43],

and 140 MeV[44].
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mum in x?/N has been reachedN=Z—ngr—n, being the
number of degrees of freedom addbeing the number of
data points. Then one can calculate error bands following the
formulas given by Friedman and Batt§] and Ermer33].

The correctiond V5 arising from the Laguerre series in
Eq. (2.13 [respectively Eq(2.14] to the best-fit OM poten-
tial Uy are small.

Ill. DIFFERENTIAL CROSS SECTIONS
A. Analyses with DF potentials

In order to test the radial dependence of the DF potentials We have reanalyzed the elastienucleus scattering over
a model independent analy$MIA ) has been applied to spe- a wide range of energies in the mass region between
cific a-nucleus systems where numerical scattering data o0 <A<208. The calculations were done using the codes
high accuracy and very good statistics covering a large rangeompPrF[34] and Ecis79[35], which have been tested to give
of momentum transfer were available. Following Andresenthe same results.

and Muler [31] and Clementet al. [32] the potential was
expanded in a Laguerre series

Vmia(r)=Uom(r) +AVya r(r) +iAVya (1)
(2.13

with Uy being the best-fit optical modéDM) potential,

NRryi

_y2
AVyia, (1) =2, € €7CLIA2XE), (219

X=r/agy , ag being a scaling parameter, ahfi* being the
generalized Laguerre polynomials. The coefficiemnts and

We consider the scattering dfiCa in the optical model at
14 energies in the energy range from 23 up to 166 MeV
[36—38. In the a-8Ni system we have reanalyzed the data
at 15 energies between 25 and 340 M@&@-47, and in the
a-%Ni system at 10 energies between 15 and 340 VR~
41,43,45,48 For thea-°%Zr system a large number of elas-
tic scattering data has been published. We considered the
experimental results at 12 energies in the range from 15 to
166 MeV[7,49-55. The elastice scattering on nuclei with
82 neutrons has not been covered as extensively as the scat-
tering on other magic nuclei. Most of the data are at rela-
tively small energiesE< 50 MeV) [56,57] with the excep-
tion of the 120 MeV data of Ichiharet al.[58] on *4Sm. In

the parameterag, andng, have been varied until a mini- the a-2%%Pb system we have analyzed data at 13 energies in
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FIG. 3. Elastica scattering on®*Zr: Experimental data, OM
calculations using double-folding potentigsolid lines and La- FIG. 4. Comparison between experimental data and OM calcu-
guerre seriegdotted ling, at incident energies of 15 MeM9], 40, |4tions for elastiar scattering for nuclei with=82: 14%Ce (19 and
59.1,79.5, and 99.5 MeV7], and 141.7 MeV[54]. 23.8 MeV) [56], 2%Pr (32 and 37.7 MeY [56] and 45 MeV[57],
and *4sm (120 MeV) [58].
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the range between 23.5 and 340 MBA6,47,59—66&
The charge distributions used for calculating the real part
of the nuclear potential by a double folding procedure were As can be seen from the figures, in all cases a good agree-
taken from de Vrieset al. [21] (sum-of-Gaussian fof°Ca,  ment between the experimental data and the results of the
8Ni, and 2°%Pb, Fourier-Bessel for®Ni and '*Sm, calculations is obtained.
3-parameter-Gaussian fof°Zr, and 2-parameter-Fermi- For a-%%Ca the integral values of the potential agree well
distributions f0r140Ce, and141Pr)_ with the results of Delbaet al. [37], who have analyzed
The Coulomb part of thee-nucleus potential was calcu- their data usingWs)? potentials, and with the results of
lated either by double folding the experimental charge distriGubleret al. [6] where a sum-of-Gaussian was used to cal-
butions with the Coulomb interactiorfCa and 2°8Pp) or  culate the potentials.

from the field of a uniform charged sphere with radius pa- For the target nucle§8Ni_ and G?Ni the quality of the
rameters of ¢ = 1.2 fm (Ni), re = 1.25 fm(Zr), andr¢ = description of the angular distributions is more or less iden-

1.3 fm (N=82). tical; therefore no figures are shown f8PNi. Also the
differences in the volume integrals are negligible. The values

obtained agree with the results given by Budzanovesial.

[40] who used potentials witwS)? form factors in their

For the imaginary part of the potential different parametri-
zations were chosen. In the case*8Ca it is described by a

Fourler-BgsseI seriesW(r) =3{_;ay jo(kmT/Rey). The analysis. Friedmaet al.[67] reportJz=287 MeV fm® and
cutoff_radlus parameter was chosen Rg,, = 10 _fm for J=93 MeVfm?, extracted from a model independent
energies below 100 MeV anlle,; = 12 fm otherwise. For  gpajysis at 140 MeV, compared with 278 MeVirand 98
the Ni isotopes a sum of a squared Woods-Sa¥i) vol- ey fm 3, respectively, found in this work. Good agreement
ume term and a surface term was applied. P&r and s also found with the results of Khaet al. [68] who ana-
N=282 nuclei a volume WS was added to a surface WS potyzed data at 139 and 172.5 MeV in the frame of a double-
tential. In the case of®Pb a squared WS potential proved to folding model with full finite-range effective NN interaction.
be sufficient. For a-%Zr we find good agreement with the results of
In order to minimize the number of figures and tables weKobos et al. [18] who have analyzed the data for the first
show only some results for the differential cross sections irime with a double-folded potential using the density depen-
Figs. 2—7. The complete results of our analysis are availabldent form of the M3Y effective NNI. The analyses of Put and
from the authors. The integral values of the potentials use®aans[7] by fitting the °°Zr data using six-parameter WS
for the calculations are listed in Table | for some of thepotentials result in values for the volume integrals for the
energies analyzed. real part of the nuclear potential which are about 10-20 %
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FIG. 5. Elastica scattering on*Pb: Experimental data and  F|G. 6. Comparison between experimental data and OM calcu-
OM calculations Using dOUble-fOlding pOtentia'S, at incident ener-|ations for elastica scattering for energies above 160 Me‘WCa
gies of 27.0 MeV[59], 40.4 MeV[61], 58 MeV [63], 81.4 MeV (166 MeV) [37], %%Zr (166 MeV) [55], 58Ni (288 and 340 Mey
[64], 104 MeV[65], and 139 MeV[66]. The dashed lin€l04 MeV  [47], and 2°%Pb (288 and 340 MeY[47].
datg is the result of a model independent analysis.

higher than our values whereas those for the imaginary part For theN=82 isotopes analyzed in the present WOH.(’ the
are similar. Friedmaret al. [67] reportJs = 289 MeV fm? volume integrals of the real part of the nuclear potenijal

andJ, =84 MeV fm3 at E,=140 MeV compared with 273 lie around 335 MeV fri for low energies and around 285
MeV fm? and 82 MeV fi?, respectively, found in our MeV fm? for 120 MeV. This is in good agreement with the
analyses. In contradiction to their earlier results on dhe 2 and the ?*Pb values. Ichiharet al. [58] have per-
58Ni scattering and to our results an %0 scattering Khoa formed a detailed OM analysis of their-***Sm scattering

et al. [68] find a notable difference in the analysis of the data at 120 MeV, looking for potential differences resulting
a-%Zr data if the potential is calculated in finite-ranger) ~ from different mass distributions. They give a squared WS
or zero-range exchang@R). Their integral values calcu- form factor which lies well within the error band resulting
lated in ZR are considerably higher than those calculated ifrom their model independent analyses using a Fourier-
FR approximation. A further consideration of NN correla- Bessel series. The DF potential obtained in the present work
tions leads to values falg that are consistent with our re- is in very good agreement with the Wootential of Ref.
sults. Recently, Ohkub®69] has calculated the elastie  [58] as well in the volume integralJg=286.8 MeV f®
scattering on®Zr in the energy range from 23 to 80 MeV. versusJz=291.3 MeV fn?) as in the radial dependence,
For his calculations he applied the same double-foldingvhere the two potentials show almost no difference for radii
model as has been used in this work. He found an increasingreater than 3 fm and only small differences for smaller ra-
potential strength parametar with increasing energy. The dii.

same behavior has been found in this work over a wider In the case of the:-2°%Pb scattering our volume integrals
range of energies. But together with the decreasing strengtly are comparable to those of Peeyal.[64] and those of

of the NNI one obtains the energy dependence of the volum&oldberget al.[66]. The comparison with papers devoted to
integrals of the real potential which is shown in Fig. 10.the “family problem” reveals that the DF potentials obtained
(Small differences in the parameterbetween Ref[69] and  correspond with those potential families used in the analyses
this work may come from the use of different Coulomb radii of Refs.[64,6€ which result in the smallest volume inte-
and/or different parametrizations of the densitiescofor  grals. Our values fodg at E, = 104 MeV are in good
%zr.) The volume integralslgy which are more important agreement with the results of Corcialcietal.[65] and with
than the strength parametexsshould agree quite well in the ones obtained by fitting the differential cross sections at
both analyses. Unfortunately, these numbers are not given ik, = 23.5, 79.1, 104, and 139 MeV under consideration of
Ref.[69]. the coupling to the B (2.615 Me\} state[70].
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TABLE I. Normalization parameters, volume integrals, and rms radii of the OM potentials for energies
around 30, 60, 100, and 140 MeV for the elasticcattering or*Ca, %Ni, Ni, °°zr, N=82 nuclei, and
20%p, In addition the references of the experimental data are given.

EIab A J R MNmsR JI Mms) Ref.
MeV MeV fm? fm MeV fm?3 fm
“0Ca 29.1 1.326 362.81 4.272 33.40 3.991 [36]
61.0 1.300 341.84 4.277 85.10 4.898 [37]
104.0 1.239 302.50 4.288 101.91 4.908 [38]
141.7 1.241 281.15 4.303 110.59 4,994 [37]
58N 29.0 1.310 350.17 4.531 89.11 4.269 [40]
59.6 1.308 331.66 4,537 84.57 5.204 [41]
104.0 1.294 300.82 4,551 93.63 5.288 [43]
140.0 1.300 278.14 4.570 98.17 5.106 [44]
60N 29.0 1.320 350.08 4.542 90.06 4.329 [40]
60.0 1.266 319.32 4.547 93.97 5.089 [41]
104.0 1.298 298.02 4.562 92.99 5.359 [43]
907Zr 31.0 1.286 334.54 4.974 77.37 5.294 [51]
59.1 1.297 314.79 4.979 80.22 5796 [7]
104.0 1.279 290.01 4.993 82.50 5913 [53]
141.7 1.318 273.29 5.014 81.53 5911 [54]
l4oce 32.0 1.340 338.55 5.492 83.13 7.825 [56]
lpr 45.0 1.328 334.51 5.585 61.35 6.728 [57]
1445m 120.0 1.333 286.89 5.600 79.02 6.80 [58]
208pp 27.0 1.308 341.81 6.268 40.43 7.520 [60]
61.5 1.303 322.42 6.272 66.81 7.225 [64]
104.0 1.310 298.26 6.282 71.30 7.383 [65]
139.0 1.375 289.48 6.298 75.62 7.262 [66]
B. Model independent analysis imaginary potentials obtained in the calculations with real

In order to test the radial form of the double-folding po- doublg-folding potentials are in the vicinity of the best fit
tentials used in our analyses we have performed some modeptentials of the MIA. ) _
independent analys¢MlIA ). We have applied this methodto ~ The 104 MeV data fora->*Pb scatterind65] have al-
the %Zr data of Put and Paalig] and the 104 MeV data on ready been analyzed by a MIA by Friedmanal. [67] and
208ph of Corcialciucet al. [65]. by Ermeret al.[73]. In both calculations Fourier-Bessel se-
The data of Put and Paans have been chosen for two reies were used. We performed an analysis using Laguerre
sons: first of all, the data cover a large range of momentunpolynomials. The results are shown in Fig. 6 for the differ-
transfer and are of high accuracy; and second, the data weemtial cross sectiofdashed lingand in Fig. 1 for the radial
available in numerical tables. This is important because thbehavior of the MIA potential compared with the result of
experimental uncertainties dominate the shape of the errahe MIA analysis of Ermeet al. [73] and with the DF po-
band. A Laguerre series was applied for the potential. Theential used in our analysis. Again it can be stated that the
MIA calculations have been performed using a modified verexperimental data can be fitted as well by the DF potential as
sion of the code Ecis9o [71], the error bands have been py the potential resulting from the MIA. In Fig. 1 one can
calculated using the codeEADECIS[72]. see that the potentials exhibit the same behavior asxthe
For two energies the radial behavior of the potentials ex-90zy potentials: for radii> 5 fm the potential is well deter-
tracted by the MIA is shown in Fig. 1. The differential cross mined by the scattering data while for smaller radii the error
sections, calculated with the MIA potential, are drawn in Fig.pand is larger. The DF potential lies well within the: &rror
4 as dotted lines. The differences in the description of théygnd of the Laguerre potential, while the FB potential shows

experimental data between the DF and the MIA potential arg deviation around 4 fm, but the volume integrals agree
small. For all energies analyzed the DF potentials lie withinyithin the calculated errors.

the 1o error band of the MIA. The potentials are well deter-

mmed for rad||_> 4 f_m, wher_eas t_he error ban_ds tend to grow |\, soUND AND QUASIBOUND STATES, B(E2) VALUES

in the nuclear interior. The imaginary potentials are well de-

termined for large radiir> 8 fm), but for smaller radii the As a second step we use the double-foldeducleus po-
error bands exhibit a large uncertainty. Nevertheless théential as a suitable cluster-core potential and calculate bound
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90 The transition probabilityd(E %) can be computed using
7r E = 40 MGV the wave functions of the two states involviel8,74. In the
T I T T - case of the clusters with SpB=0 one gets

i e’B’ 0 2
i B(E:%,Li—”_f):m'<LfHY%“Li>
I

oo 2
.fo U, (D “uy (Ndr | (4.2)

-V(r) (MeV)

. with

A{Zp+(—1)"AFZ;

B‘/_ (AT_’_AP)% (43)
—~ 250 ¢ The integral in Eq(4.2) can be solved easily if the states
> 200 considered are bound stateB<0); in the case of quasi-
é) bound statesE>0) the wave functions are normalized in a
- 150 @ spherical box with a cutoff radiuR.,~=20 fm.
=100 For #Ti=a®%°Ca we expect seven-cluster states for
5’ the ground stateK™=0;,, Q=12) band. Furthermore, the
t 50 first few members of the theoretically predicted negative par-
ity band K™ = 07, Q=13) have been located recently
0 [75-78. In a first calculation we fixed the depth of the po-
tentials so that the computed excitation energies of the states
considered coincide with the experimental values. The re-
200 sults are listed in Table 1. The potentials obtained are very
close to each other and to those deduced from optical model
§ 150 analysis of thex + “%Ca cross section data. In a second step
O the excitation energies of the bound and resonance states of
E the two rotational bands were calculated, applying for both
: 100 bands the potential deduced for the band head. The resulting
= level schemes are shown in Fig. 8 together with the experi-
> 50 mental values and the results of a microscopic calculation
: [79]. In contrast to?’Ne [13] a rotational energy spacing
between the levels if*Ti is found only for the low spin

states. The high spin states 810", and 12" are tightly
compressed. Therefore the agreement between the experi-
r (fm) mental and the calculated level scheme is not satisfying. Re-
cently, Bucket al. [14] have shown that a better agreement
FIG. 7. Comparison of the real potentials for the elastiscat-  can be obtained in the frame of a cluster model by using a
tering on °Zr at 40 and 118 MeV and of’®Pb at 104 MeV. For  phenomological potential with a specific geometric shape.
9zr the DF potential is showtsolid line) together with the best-fit For the calculation of th&(E2) values potentials which
potential of the MIA(dash-dotted lineand the error bantshadedl  reproduce the experimental level scheme have been used.
For Pb the DF potentialsolid line), the result of the MIA using  The resultingB(E2) values are listed in Table Ill together
Laguerre polynomials(dash-dotted line with error band light \uith the experimental data, values resulting from shell model
shaded and the result of Ermeet al. [73] using Fourier-Bessel  c5|cylations, and values obtained in the potential model of
series(dashed line, dark shadets shown. Michel et al. [75]. The general agreement between experi-
ment and this work is satisfying except the two transitions
and quasibound states properties. The wave functioa™ — 2% and 10" — 87, indicating possible difficulties
uy () which describes the relative motion of the with the simple modef*Ti = a®4°Ca.
a-nucleus system is characterized by the node nurNbemd B(E %) values of*Mo = « ® 9%Zr have been calculated
the orbital angular momentum number TheseN andL by Ohkubo[69] using the same model as in this work. Of
values are related to the corresponding quantum numbegpurse, we agree with the numerical results of Ohkubo, but
n; andl; of the four nucleons forming the cluster outside to obtain a good agreement with the experimental data one
the respective core: has to introduce an effective charge &=0.2e. The same
discrepancy between experimental and calcul&¢g ¥)
4 values of ®Mo has been found by Buckt al.[14] using a
Q=2N+L=2 (2n,+l)). (4.1) potentia! with a special shape which has almost the same
i=1 volume integral as the folding potential of Ohkubo.
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TABLE II. Energy eigenvalues, quantum numbers, and integral potential parameteré’6f states in

1343

4475,

Ecm(MeV) 2 K™ Jm L, Q AR Jr (MeVfmd)
-5.120 0; o+ 0 12 1.233 351.3
—4.036 2" 2 1.220 347.6
—2.666 4t 4 1.212 345.3
—1.105 6" 6 1.211 344.9

1.388 8 8 1.204 343.0
2.551 10 10 1.236 351.9
2.919 12 12 1.276 363.3
1.100 o 1- 1 13 1.245 354.6
2.220 3 3 1.236 352.1
4.310 5 5 1.220 347.4

dEnergies are given relative to theseparation energy if*Ti [77].

B(E.%) values for the nucleué'®o= a ® 2%%Pp have is A = (30 = 5) MeV. The values found in thex->°%Pb
been calculated by Buckt al. [14] using again the special System are slightly smalled, = 77 MeV fm® andA = 24
shaped Saxon-Woods potential and a wave function wittMeV. For the other nuclei’°*Ni, %Zr, and theN=82 iso-
Q=18 orQ=20. But it has been shown that the propertiestopes the values forA are considerably smaller, giving a
of 2'%Po can be described as well using our folding potentiafaster rise of the depth of the volume integdal This is an
model using &Q=22 wave functior{74,69. indication of the large number of open channels at relatively
small energies. The saturation vallg, which is reached at
energies abovg. , > 100 MeV, is decreasing with increas-
ing mass for all nuclei considered. This has already been

The energy dependence for the volume integrals of botlstated by Friedmaat al.[67], Shridharet al.[80], and Nolte
the real and the imaginary part of the potential is plotted in

V. THE ENERGY AND MASS DEPENDENCE

Figs. 9 and 10. The integral potential values clearly indicate T ¥ T T T .
a systematic energy and mass dependence. ~00 L g ]

For all nuclei considered the volume integrals of the "’E A@ ...... B M. @ Q...
imaginary part of the potential can be described bRR i) | © gp %o |
parametrizatiori2.12). The parameters are listed in Table IV. > i
For the double magic nucléfO and“°Ca similar values are [ 50 - : 0
found: the saturation value is arounlj = (118 = 6) % o 58Ca
MeV fm?3, the “width” of the rise in the BR parametrization — | O e Ni

= 60, -
s Ni
| ; |
44, 40 0F ' i T T ' =
Ti=a® Ca —
107 0" bandQ=12 0"band Q = 13 £ 350 25 -
ST |
O & 4
_ 2 300 - y
& o |
S - i o
E | ' | . | s !
3 250
0 50 100 150
E. ., (MeV)
SEFE —¢f _(2)+ —%: FIG. 9. Volume integrals of the nuclear potentials derived from
- the analysis of the elastie-scattering data 0fi’Ca and®®5Ni. In
EXP. RGM FPM EXP. RGM FPM the upper part the volume integrals of the imaginary part together

FIG. 8. Experimental

rotational band in**Ti together with the results of RGN79] and

level scheme for tig=12 andQ=13

our folding-potential mode{FPM) calculation.

with BR parametrizations of the energy dependence are shown. In
the lower part volume integrals of the real part of the potentials are
shown. The solid line is the result of a dispersion analysisafor
40ca.



1344

ATZROTT, MOHR, ABELE, HILLENMAYER, AND STAUDT

TABLE Ill. B(E2) values ina-*°Ca (all values ine?fm®).

Experiment Ref[75] Refs.[82,83 This work
2t 0" 120+30 107.3 40.0 109.0
4+t 2% 280+ 60 146.4 53.4 148.5
674" 160+ 20 140.2 51.6 141.8
8" —6" >14 118.1 44.0 119.1
10" —8"* 140+ 30 74.9 32.0 73.6
12 —10" 40+8 33.6 17.3 33.7

et al. [10]. The saturation values given in these referencedleV. This result is in good agreement with the results of
are in agreement with our results. Friedmanet al.[67] and a data compilation of Englamed al.

The energy dependence of the real part of the potentidl39] but in contradiction to the recent work of Ohkupgg].
shows a characteristic behavior for all nuclei considered. The volume integrals of the real part of the potendal
Starting from the values that result from the analyses of thexhibit a strong mass dependence: the values for the
bound and quasibound statisis increasing with increasing «-4%Ca system are significantly smaller than those for the
energy until a maximum is reached at arouRg, ~ 25 «-'%0 system[17]. For nuclei with masseA=90 the
MeV. For energies above the maximudp, is decreasing strength of the real part of the potential becomes independent
again. This behavior has already been observed in the analgf the target mas&ee Fig. 1D In the range of the maximum
ses of thea-*°Ca scattering by Gublegt al.[6] and in the at E.,~25 MeV one finds values forJz around
a-1%0 scatterind 17]. Nolte et al. [10] give a global poten- 330—335 MeV fn which are about 25 MeV ff below
tial in which strength is decreasing with increasing energythose for“°Ca. In this energy range the volume integrals for
with a slope around-0.6 MeV fm/MeV for energie€E, >  the Ni isotopes lie between those 8#iCa and *°zr/?°%b,

80 MeV. whereas at higher energids; ,,=50 MeV they coincide

The decrease of the volume integy with increasing with the values of the heavier target nuclei. Volume integrals

energy is approximately linear in the energy range befor very low energies have been calculated by adjusting the
tweenE.,, ~ 25 andE., ~ 120 MeV with a slope of strength parametex of the folding potential to bound state
~—1 MeV fm3MeV in the case of*Ca and~ —0.5 energiegsee Sec. V.
MeV fm3/MeV for all nuclei with A> 90. For the two Ni This observed mass dependence is in agreement with that
isotopes analyzed the slope is somewhere in between. For aiven by Englancet al. [39] for E, = 25 MeV and target
nuclei the slope becomes smaller for enerdigs, > 120 nuclei with 50 <A< 93 and that of Friedman67] for
E,=104 and 140 MeV and target nuclei with 40A< 208.

For the calculation of the subtracted dispersion relation

T Ll T I T
! ! [Eqg. (2.11)] assumptions about the energy behavior of the
m/-\loo I o | volume integrall, for the imaginary part of the potentials at
é e higher energies are necessary. In the calculations presented
> %t' here we used the parametrizati¢2.12 up to an energy
[ ‘ E=220 MeV whereas for higher energies up Ep=10?
é 50 MeV a linear decrease qf, was assumed with,(E )=0
& 1 ' T T T .
0 — 450 I ow ° . K,P(I)e 7
L O
<2 350 E 400 |y, 0
| A
cé % z 0. 000G Tx ]
> 4 2 350 AT
2 300 - % - S L -
s | > 0 300 - oBNe 5 -
& c o I [ | N
b? 250 | ] 250 | 1 1 1
Lo 0 50 100 150
E MeV
0 50 100 150 em. (MeV)
Ec.m. (MﬁV) FIG. 11. Same as Fig. 9, but for elasticscattering orfHe [81],

160 [17], *°Ca, and?%%Ph. The data points are derived from OM
analyses using double-folded potentials; the lines are the result of a
dispersion analysis.

FIG. 10. Same as Fig. 9, but for elasticscattering on®Zr,
target nuclei withN=82, and?%¢pb.
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TABLE IV. BR parametrizations for the energy dependence of the imaginary volume intggral

Target nucleus Eo Jo A
MeV MeV fm? MeV
16p a 6.05 114.4 25.8
“Cca 3.35 122.2 36.3
58N 1.45 99.0 17.8
907y 1.78 84.3 11.8
208ppy 2.62 76.6 23.8

*The data for'®O are taken from Ref17].

[17]. In this the integral2.11) can be evaluated directly. fective nucleon-nucleon interaction. One energy dependent
In Fig. 11 the volume integrals for the real part of the parameter is needed to adjust the strength of the potential.
potential resulting from the OM calculations are shown forFor the imaginary part different parametrizations such as i.e.,
the systemsy-*He [81], a-'%0 [17], a-*®Ca, anda-?®Pb  Woods-Saxon functions or Fourier-Bessel series are em-
together with theoretical curves which represent the masgloyed. The elastic scattering cross sections are described
and energy dependence of the volume integral of the real pafiery satisfactorily for incident energies between about 25
of the potential. The real potential in these calculations is theyng 150 MeV, for some target nuclei even up to 340 MeV.
sum of the channel potential derived from the double-folding g and quasibound state propertie5fi have been
procedure and normalized to the reference energyyicyjated in this work using the same folding potential as in
Es=61 MeV, and the calculated dispersive part. the OM calculations. The properties #8e, 2°Ne, *Mo, and

4 16 40,
For the systema-"He, a- ™0, anda-"Ca the observed 2125, aye peen analyzed successfully in this model in sev-
energy dependence can be well described by the interplay %f

the energy dependence of the folding potential and the dis-raégrfglomuosdgﬁﬁ]edt' endent analvses applving Laguerre se-
persive corrections. But this procedure fails to reproduce the b y pplying L-ag

energy dependence of the volume integral of the real part afes for the pot_ennals have begn perforr_ned. The differences
the nuclear potentialg for the a-2%6Pb system. The double- M the description of the experimental differential cross sec-

folding calculation for the channel potential gives a lineartions using either double-folded or model independent poten-
decrease ofix with the energy. In the case of the 2%Pb tials are small, and the d_ouble—folded potent_lals lie within the
the slope is about -0.4 MeV féiMeV. After adding the re- €TOr bars of the modgl mdepen.der'n potentla}l. Consequently,
sult of the dispersion relation a much stronger energy deperib® shape of the folding potential is well suited for the de-
dence is obtained as it results from the analysis of the exscription of elastica scattering.
perimental data. In order to describe the observed The volume integrals of the real potential show a system-
experimental energy dependence one would have to alter ttaic behavior over the whole analyzed mass and energy
slope of the energy dependence of the channel potential fromiange. Applying the subtracted dispersion relation in combi-
—0.4 MeV fm®/MeV to —0.1 MeV fm°. nation with the DDMS3Y interaction used in the calculation of
For the othera-nucleus systems studied, the linear de-the double-folded channel potential, the observed energy de-
crease of the volume integrdly as obtained by the OM pendence of the volume integral of the real part of the po-
analysis coincides with that from the channel potential detential can be reproduced satisfactorily only for the systems
rived from the double-folding procedure. In addition the o-“He, «-%0, and a-%°Ca. For heavier systems, the ob-
steep rise of the strength of the imaginary potential at lowserved energy dependence is weaker than expected from the
energies results in a larger amplitude of the dispersive cordispersion relation.
rection and in an energy dependence much too strong in In conclusion, we are able to reproduce as well angular
comparison with the results of the OM analysis of the ex-distributions of elastic scattering as bound state properties
perimental data. This means that the discrepancy observed ising double-folded potentials with the DDM3Y interaction
the a-2°%b sytem is even higher for the nonmagic nucleiin a wide range of masses and energies. Furthermore, from
analyzed in this work. This result is indicating that the the systematic behavior of the volume integrals it is possible
DDM3Y NNI is reaching the limit of a suitable application if to predict a realistic strength of the real and imaginary part of
one is considering dispersive corrections additionally. the a-nucleus potential for systems that cannot be analyzed
directly using scattering experiments. The importance of the
so-called “family problem” is significantly reduced by this
VI. CONCLUSION work.

Differential cross sections for the elastic scatteringaof
particles on“°Ca, 8®Ni, °zr, 4%Ce, Py, ¥Sm, and
20%pp have been analyzed in the optical model in a wide
range of energies. The real part of the potential was deduced
by a double-folding procedure using a density dependent ef- We would like to thank Prof. H. Clement and Prof. H. J.
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