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Restoration of overlap functions and spectroscopic factors in nuclei
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An asymptotic restoration procedure is applied for analyzing bound-state overlap functions, separation
energies, and single-nucleon spectroscopic factors by means of a model one-body density matrix emerging
from the Jastrow correlation method in its lowest order approximatiofn®drand “°Ca nuclei. Comparison is
made with available experimental data and mean-field and natural orbital representation results.

PACS numbds): 21.60—n, 21.10.Pc, 21.10.Jx, 21.60.Jz

Both single-nucleon spectroscopic factors and the overlaf, in order to obtain a good agreement between the experi-
functions have attracted much attention in questions concermentally measured cross sectiondo(d()),, and those
ing the interpretation of recente(e’p), (d,°He), and predicted from appropriate calculations for the reaction pro-
(v,p) experimental datée.g.,[1-15]). The growing interest cess.
is motivated in principle by the possibility to clarify the limi-  The full theoretical description of the experiments men-
tation of the nuclear mean-field picture. For instance, thejoned above has many components. We should like to men-
relatively low values of the spectroscopic factors deducedion among them the proper account of the reaction mecha-
from these experiments show clearly the importance of theism, of the distortion effecténcluding the distortion due to
short-range correlation effects in nuclei and the necessity ke fina| state interactionof the meson exchange currents
detailed investigations of th_e hlghjmomentum CorT]ponem%ontributions, the study of thé dependence, and others
of the nucleon wave function which cannot be mcluded(see, e.9.[22,17). Obviously, however, the theoretical esti-

within the mean-field approximatiofi6 —21. mates of the overlap functior{®) and the spectroscopic fac-

The underlying relationship between the differential €M%5%0rs (3) are of crucial importance for the adequate evaluation
section and the structure of the nuclear wave function is of- P d

’ 3 5
ten empirically analyzed using the plane-wave impulse appf Lelcent_ e'he p)ﬁ (d, He)l,. ar(;d (y,ﬁ)) efxper,ments. The
proximation(PWIA). For instance, in this approximation the ProPlem is that the normalized overlap functiods cannot
(e,e’p)-reaction cross section for a transition to a specificbe identified with a phenomenological shell-model single-

state with quantum numbessin the residual nucleus has the particle wave function especially for energies farther from

following form (see, e.g.[12,27) the Fermi energy, sometimes even within the valence shell
[16]. It is known that generally, the independent-particle

B d°c ) shell model cannot explain the fragmentation or spreading of
Tee'p™ m;%%d balK)[*. 1) the hole strengtti26,22,2Q. This is because, due to the re-

sidual interaction, the hole state of the target nucleus is not
The first term 77" is kinematical factor Tep is the off-shell gn eigenstate of theA(— 1)-nucleon system and its strength
electron-proton scattering cross sectj@8], and the nuclear s distributed over several states of the final system. Possible
structure componerjip,,(k)|? is the squared Fourier trans- modifications going beyond the uncorrelated shell-model ap-
form of the overlap function between the ground state of thesroximation quickly become rather involved.

target nucleusl ™ and the final state of the residual nucleus Recently, it has been showWR7] that the knowledge of

Pp(A~1) [24,25,16: the ground-state one-body density matrix of the target
(A-1) » nucleus is sufficient to determine, at least in principle, the
bo(r) =V la(n)| v, (2 overlap functions, spectroscopic factors, and separation en-

. N ) __ergies of the boundAX—1)-particle eigenstates. The aim of
a(r) b_elng an anmhllatlo_n opgrator for_a nucleon with span_althe present paper is to apply the procedure suggest&¥jn
coordinater (spin and isospin coordinates are not put N ysing the model one-body density matfB8—3q in which
evidence. The overlap functior(2) is not orthonormalized.  he short-range correlation terms of the Jastrow correlation
Its norm defines the spectroscopic factor of the level method are taken into account. The resulting quantitative es-

S, =(dbalbo) 3) timates allow us to make instructive conclusions for the
@ alran properties of the overlap functions in comparison with the
and the normalized overlap function associated shell-model orbitals and the natural orbfizis
which are of frequent interest in this contg£6,19,20Q.
:ﬁa(r):S; Y24 (). (4) The exact one-body density matrix associated with the

B ground state¥™ of the target nucleus witth nucleons is
Usually, ¢,,(r) is calculated from an empirical Saxon-Woods defined as
potential with a distinct potential radius for each separate
transition«. Quantitative estimates are then deduced by fit-
ting both the potential radius and the spectroscopic factor p(r,r)=(TWal(ra(r )| "), (5)
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Inserting the complete set of eigensta§' ) of the re-  depends on the separation eneegy=E{" " —E{Y . Obvi-
sidual (A—1) nucleus, Eq(5) reads ously, the higher excited states have faster decay. Therefore,
for large values’'=a—«, Egs.(6) and (9) lead to the as-
ymptotic relation

pij(r,8)— ¢ i (1) Cp jjeXp(— Ky ja)/a, (13

where ¢, and ¢, are the overlap function®) and(4), re- where ¢, |;(r) is the radial part of the lowest overlap func-
spectively,S, is the spectroscopic factdB), and the sum- tion in thelj subspace considered. The unknown constant

matlon_lmpllmtly mc_ludes also the continuum states assou-Cn ; can be derived from the asymptotic behavior of the
ated with all scattering channels of tha{ 1) system. 0 .
diagonal parip;(r,r) since

The one-body density matrix has a quite similar form in

p(E) =2 5 (N du(r') =2 Sud*(Na(r'), (6)

its natural orbital representatigB81] P|j(a,a)—>|Cn0|j|2€Xﬁ—2kno|ja)/az- (14)
rr)= N " (r (), 7 By means of Eqs(13) and(14) one can derive the lowest
p(r.r’) ; Va(D)Pall) @ (bound-stateoverlap function with quantum numbdijsand
radial part

where the natural orbitalg, are defined as a complete or-
thonormal set of functions which diagonalize the one-body )= pii(r.a)
. . . . ¢n |J(r) . _ . ' (15)

density matrix(5) with eigenvalues\N,, called natural occu- 0 Chyli €XH knoua)/a

pation numbers. Properties of the overlap functions and the

natural orbitals are considered for various many-body sysas well as the associated separation energy

tems, such as atomic nuclei6,28,29,19,20,32-34nd lig- 9 2

uid drops of*He [35]. €nglj =T Kngj/2m (16
In the case of a spherical ground stdt&) with 0" an-

gular momentum and parity, each eigensmﬁé‘l) is char-

acterized by the “single-particle” quantum numbéisn, So i =(bn | bnii) (17)

i.e., a=nljm, with n being the number of them state. The o] Mol 1ol 7+

overlap functions and the natural orbitals then factorize int

radial and spin-angular parts

and the spectroscopic factor

%ne can repeat the above procedure for the second bound
state with the same multipolaritf it exists) after subtract-

ing the contribution of the lowest eigenstate. The result is
Do) = nij(N)Yjm(Q,0), ®

Bo(1) = i (1) Yijm(Q, 0), P11 = &gl (1) dngj (@)
¢n1|j(r)_ Cn1|jeX[X_knl|ja)/a

; (18)

where Yljm(Q-‘T):[YI(Q)XXUZ(‘T)]]m and o is the spin it expressions similar t616) and (17) for the separation
variable. Using Eq(8), the one-body density matrix reads energye,;; and the spectroscopic factsy,; , respectively.
The restoration procedure can be continued and one is able
p(r,rf)zz p”(r,r’)E YEn(©Q,0)Y|jm(Q,0). (9 to analyze all bound states of t_h@\(- 1)—partjc|e system
1j mo once the one-body density matrix of tiheparticle ground
state is known. In the case of proton bound states some
Because of the spherical symmety;;, Ny, ;, and the radial modifications due to the Coulomb asymptotic behavior of the
contributionsp;(r,r") entering the one-body density matrix overlap functions have to be taken into account.
(9) do not depend on the magnetic quantum nurmbeFrom The present calculations of the bound-state overlap func-
Egs.(6) and(7) it then follows that in eachj subspace the tions, separation energies, and spectroscopic factors have
spectroscopic facto,; is smaller than the largest natural been performed applying the recigp&3)—(18) to a model

occupation numbeN{ ™ with the samdj, i.e., one-body matri¥28—3(Q obtained within the Jastrow corre-
lation method in its low-order approximation fdfO and
Spij<Np, (100  “®a nuclei. The model is based on harmonic oscillator

single Slater determinant and Gaussian-like state-
The procedure of27] is based on the generally acceptedindependent correlation factor. Although the resulting density
asymptotic behavior of the neutron overlap functions associMatrix has a simple analytical form, it is physically signifi-

ated with the bound states of tha{ 1) system, cant that the short-range correlations are incorporated in it to
a large extent. In addition, its natural orbital representation is
brij(1)— CrieXp — K1)/, (11) well investigated 28—-30.

Here we should like to mention that the procedure sug-
gested i 27] requires accurate values of the one-body den-
sity matrix at larger. In principle this limits the practical
o T = ap_plication of t_he method. In our opinion,_howevgr, the ana-
Knij=7~*2m(Ef V- EGY) (12 Iytical expressions of the one-body density matrix obtained

where
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TABLE |. Separation energies, and spectroscopic factofs,
calculated on the basis of the one-body density mag8«3Q for
160 and “°Ca. Comparison is made with the Hartree-Fd&ie)
single-particle energigset Skl from[36]), natural occupation num-
bersN, [29], and experimental datéExpt). The energies are in
MeV and only the states with+ 1/2 are displayed.

nl eF e, Expt. S s, N, Expt

60 1s 32.96 35.82 47.6 1 0940 0.95

[ovl? (Ffm™T

1p 20.81 17.48 218 1 0.953 0.965
1d 531 1276 414 0 0.004 0.006
“Ca 1s 41.04 3285 566 1 0.763 0.89 0.78
1p 3217 2954 406 1 0.89 0938 0.7% r (fm) r (fm)
1d 22.16 24.75 22.38 1 0.907 0.946 0.74
2s 15.67 13.07 18.% 1 0.953 0.958 062- FIG. 1. Overlap fUnCtIOﬂiSO'Id ||ne), self-consistent Hartree-
1f 1125 869 8.36 0 001 0013 01§ Fock single-particle wave functionglot-dashed ling and natural
orbitals (dashed ling for the nucleus*°Ca.
3From[37].
®From[38]. the values ofS, emerging from the present restoration pro-
“From[39]. cedure are larger than the experimental ones. This fact is
dFrom [6]. most probably related to the crude approximation for the

density matrix used. The reason is the same for the larger

within some correlation methods give a basis for an easieYalue 0fSys 2 in comparison with the spectroscopic factor of
numerical application of the procedure. This is the case ifhe lower I state in™Ca. _ _
the present work. Using the model one-body density matrix In Table | we compar&, also with the natural occupation
from [28—30 we have to avoid, however, another difficulty NumbersN,, derived after diagonalyzing the same model
arising from its Gaussian asymptotic behavior. This isone-body density matrix28-3@. The comparison shows
achieved by applying the recif@3)—(18) not for a single that our numerical procedure satisfies the general require-
asymptotic pointa but within an asymptotic region Ment(10). The trend of the calculated spectroscopic factors
(aL ’aU) bracketing the poina and Sustained after the point Sa f0||OWS that Of the na.tural OccupatI.OI.’I numberS. ThIS re-
where the diagonal elemept;(r,r) is less than 10% from sult becomes more transparent realizing that the overlap
its maximal value. We are looking for such a radial contri-functions¢, are rather close to the natural orbitals as is
bution pp 1 (r,1') = ¢ () ¢n, (1) Whose diagonal partis seen from Fig. 1. _
less than or equal tgy(r,r) at each point and which From Fig. 1 it can be also seen tha_tt all three funcfuons, the
minimizes the trace I(Plj_PnOIj)Z]- Thena, , a, anday ovgrlap, mean-fleld, and naturallorbltal wave fqnct!o_ns, are
. quite similar for the hole states in nuclei. This justifies the
as well as the unknowe,; andky,; are uniquely deter- ;5o of shell-model orbitals instead of overlap functions
mined by the requirement that the overlap functiab) sat-  within PWIA calculations(1) for such kind of nuclear states.
isfy Egs. (13) and (14) simultaneously with minimal least- This approximation, however, is no longer valid for the par-
squared deviation within the regioray(,ay). We should ticle nuclear states where the mean-field wave functions sig-
mention that the procedure suggested is not a unique one, bifficantly differ from the overlap functionéee the 1 state
this problem does not exist when a realistic one-body densityh Fig. 1). The latter take some intermediate position be-
matrix with a correct exponential asymptotic behavior istween the natural orbitals and the HF wave functions. It
considered. should be stressed that our model one-body density matrix is
We have performed the above numerical procedure sep@ompletely different from the Hartree-Fock one. It has been
rately for each set of quantum numberks (the model does demonstrated ifi28,29,33 that due to the short-range corre-
not split the states with respect fe=1+1/2). It leads to |ations(SRC'S the correlated particle-state orbitals are much
predictions for the neutron separation energigs spectro- more localized than the particle-state mean-field single-
scopic factorsS,, and the overlap functiong, which are  particle wave functions. This is the reason why the HF orbit-
given in Table | and Fig. 1, respectively. als associated with the particle states go farther out than the
It is seen from Table | that the calculated separation eneverlap functiongor the natural orbitajsassociated with the
ergiese,, are in acceptable agreement with the self-consistentorrelated one-body density matrix. The place of the corre-
Hartree-Fock HF) results[36] and the available experimen- lated particle-state asymptotic region is affected by the
tal data. The calculated spectroscopic fact8gs however, SRC’'s while the HF particle-state orbitals have a larger
differ significantly from their mean-field values. Because ofspread although the orbit is more strongly bound.
the short-range correlations, a depletion of the states below The instructive conclusion is that neither natural orbitals
and a filling of the states above the Fermi level results. At thenor shell-model wave functions can be used as patrticle-state
same time the calculated values 8f are consistent with overlap functions in the theoretical analysis of the experi-
experimentally deduced spectroscopic facféisIn general, mental data. The present restoration procedure gives a pos-
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sible solution of the problem if it is applied to some realistic has simply to apply the present restoring procedure to more
ground-state one-body density matrices. sophisticated one-body density matrices as, for example, the
Concluding, we have demonstrated in this paper the possnes emerging from Brueckner-Hartree-F§dR,41], varia-
sibility for restoring the separation energies, spectroscopigional Monte Carld 35,47, or simplectic model calculations
factors, and overlap functions for bound\{ 1)-particle [43]. The resulting bound-state spectroscopic factors and
eigenstates on the basis of the ground-state one-body densilyerlap functions will have more realistic properties and can
matrix of the targetA-particle system. Although we have pe ysed for reliable description of the characteristics of the

used a quite crude approximation for the one-body densit¥e e'p), (d,3He) , (y,p), and other one-nucleon removal
matrix [28—30, the asymptotic restoring proceduf@7] . cjear processes.

leads to acceptable quantitative results. Thus one obtains a

method for estimating such important quantities as spectro- This work is supported in part by the Contracts Nos.
scopic factors and overlap functions which is supplementa-406 and ®-527 with the Bulgarian National Science
to the more involved approachgk6]. For this purpose, one Foundation.
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