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Green’s function method with energy-independent vertex functions
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In conventional Green'’s function methods the vertex funclios generally energy dependent. However, a
model-space Green’s function method where the vertex function is manifestly energy independent can be
formulated using energy-independent effective interaction theories based on folded diagrams and/or similarity
transformations. This is discussed in general and then illustrated ferlla thodel-space Green’s function
applied to a solvable Lipkin many-fermion model. The poles of the conventional Green’s function are obtained
by solving a self-consistent Dyson equation and model space calculations may lead to unphysical poles. For the
energy-independent model-space Green’s function only the physical poles of the model problem are repro-
duced and are in satisfactory agreement with the exact excitation energies.

PACS numbds): 21.60—n, 24.10.Cn

In nuclear, atomic, and other many-body calculations, one In this work we consider the construction of the Green’s
usually has to resort to some approximation methods, and thenction from an effective vertex functidi.4 which is mani-
Green'’s function formalism allows some of the most power-festly energy independenthat is, the above Dyson equation
ful of these methods to be implemented. The particle-holés reduced to an equation of the form
(ph) Green’s function, for example, gives one immediate
access to important physical quantities such as excitation en- é(w) =F(w)+ F(w)l“eﬁé(w). ®)
ergies A,=E,(A)—Ey(A) and transition matrix elements
(nIX]0)=(W(A)|X|¥o(A)), with the E's and ¥’s denot-  This form is pursued in the spirit of effective interaction
ing, respectively, the energies and wave functions of th@heories[7—9] from which it is well known that there are
many-body system, whil& represents any physical transi- pasically two types of effective interactions—one energy de-
tion operator. pendent and the other energy independent. In analogy, one

A related quantity of central importance in this context iswould then expect that Green’s function methods may be
the response functioRy associated with the operat¥rand  similarly formulated in two ways, with the vertex function

defined by being either energy dependent or energy independent. The
N analogy is even more pronounced when the vertex function
R (w)zE (Wo X[ Wa) (Wl XT[Wo) I'(w) is viewed as a generalized energy-dependent effective
X o—(E,—Eg)+i0™" interaction[5]. We note that the Green’s functidB(w) of
N Eq.(3) is not entirely equivalent t& of Eq. (2). The poles
—E (Wo| X[W ) (W XT[Wo) (1) of G are also poles 06, but the former are just a subset of

n w+(E,—Ep)+i0* the latter. Which poles o6 will be reproduced byG de-
pends on the model space choice and also on the particular
It plays an important role in, e.g., nuclear structure theoryconstruction of the effective vertex functidiys as discussed
[1-4] and its construction is intimately linked to Green’s in detail below.
function methods. A few preliminary remarks are in order here. In practice,
We now turn to the question of how one actually performsGreen'’s function calculations are almost always performed in
Green'’s function calculations in order to obtain, for example,a restricted model spacE, consisting of several single-
excitation energies and transition amplitudes. Denoting thearticle (sp orbits near the Fermi surface. In fact, the inte-
Green's function under consideration & and the corre- gral equations given above are all viewed as such model
sponding unperturbed Green’s function Iy it is well space equations here. We first consider the conventional
known [5,6] that G obeys an integral equation, the Dyson energy-dependent vertex functidi{w). Starting from this
equation vertex function, we then discuss how to obtain an energy-
independenP-space vertex functioh; using the similarity
G(w)=F(w)+F(o)'(0)G(w). (2) transformation methods of Suzuki and LEKD,11] and of
Navratil etal. [12], and also using the folded-diagram
Herew is the energy variable, ardis the irreducible vertex method of Krenciglowa and Kufpl3]. An important differ-
function, generally dependent on the energy variahle ence betweel'(w) and I'; is that the former would have
poles which, in the case of approximations, will depend on
the particular construction, while the latter is independent of
*Permanent address. o and obviously does not contain any poles. To investigate
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these and other aspects of the present Green’s function
method, we have analyzed a solvable Lipkin many-fermion
model problem[14], using a particle-hole gh) Green’s
function analysis.

We first illustrate the derivation of an energy-independent
vertex function for the model-space Green'’s function. As is
well known [5], one defines the two-timph Green’s func-
tion as

Gphprh (ta—tp) = <\PO|T{Aph(ta)A;/hf(tb)}|\I,0>
_(‘P0|Aph|‘l’o><‘Po|A;/h/|‘I’o>- 4)

V¥, denotes the ground state of the system andithare the
particle-hole operators

A;rhr(tb) — ethbA;’h,e—thb'

A;’h’:a;’ah/ )
Apn(ta) =[Agh(ta) 1" 5

HereH is the full Hamiltonian. The Green’s functigd) has
the Lehmann representation

Xa(ph) X3 (p'h’)
Gonpr(@)= 2 — =407

FIG. 1. Diagrams of the particle-hole vertex functions.

fective interaction theories, it is well known thets can be

B Y (Ph)Yn(p"h") derived using a similarity-transformation approaske[11]
70 w+A,—i0" and references quoted thergilhe resulting/ . can be con-
structed to be energy independent and satisfies the decou-
Xn(ph)=(¥o|Apn| V), pling conditionQV,zP=0. (This follows from the require-
mentQHgP =0, whereHy; is the transformed Hamiltonian
Yn(Ph)=(Wo| A ¥y). (6) and the effective interactionV is defined as

Ve=He—Hg.) In an analogous way, one can also obtain an
To calculateA,, X,,, andY,, one solves the model-space energy-independent general effective operator by way of

secular equatiof5, 6] similarity transformationg12], in which case one has the
dual decoupling conditions oV P=PVQ=0. These
e ) S et (MmN e i X (p"h" considerations may now be applied to the above vertex-
E {(ep™€n) dpn i+ (M = M) pigre (@) 1 Xn(P"N) function diagrams, whence diagra®&—-A6 vanish because
of the decoupling condition, while diagralAl becomes
=An(w)Xn(ph), (M) (ph™YVeep'h’ 1. (Note that in the present case we take

as composed offlh basis states, witl restricted to p2h
states. The decoupling conditions do not ensure that dia-
gramsB2-B4 vanish, but by employing a “time-blocking”

with the self-consistent conditiom=A,. The solutions of
the above equation are paired, with bdth and —A,, solu-

tions; wave function¥X,, correspond to positivA, andY, to formalism, these diagrams becomeindependen{6]. For

negativeA,,. . .
When the above equations are solved within a choseﬁxample’ diagranB3 is of the form Vey(1/€)Vey where

g h - — + Ny __ A " ) H _
model spaceP, intermediate states of the vertex function © E.(T) e(n ) e(pf.) €(p"), where thees are single
must be orthogonal td®, in other words, belong to the particle energies c_Je ined ty,. Lo .
complement spac® with’ P+Q=1. To illljstrate this. we Thus, by applying the above effective interaction and ef-
use g restrictegpllh model space a{nd Show some Iov;/-orderfeCtive operator approaches, one obtains a Green'’s function
diagrammatic contributions ?B in ,Fi 1 DiagramsA1 and whose vertex functiol'y; is explicitly energy independent.

9 , . ; 9. 1. biag . Namely, we have a Green'’s function secular equation of the
B1 are first order inV, the interaction part of the Hamil-

tonian, and these two diagrams aséndependent. Diagrams form

A2-A6 are o dependent, and are of the general form _

PVQ[1/(w—Ho)]QVP where H, represents the noninter- > {(€p— €n) Spn pri+ (Np—Np){Ph| el p"h")}X(p"N")

acting part of the Hamiltonian. Her® denotes the space P"™""

spanned by the2h states. = A Xq(ph). (8)
Suppose now we use an effective interactidg, con-

structed from a fa1h model space. Then the above diagrams, It is worthwhile to note that a similar result holds in the

A2-AB6, are of the formPV4Q[1/(w—H)]/ QVxP. In ef-  case of the one-body Green’s function where the mass op-
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eratorM replaces the vertex function, e.g., in derivations of
the optical-model potential. In most formalisnd,is energy
dependent and hence so is the optical-model potential. How-
ever, by way of a folded-diagram factorization, Kuo, Lee,
and Osterfeld[15] have obtained an energy-independent 0.0
mass operator for the one-body Green'’s function, based on
which an energy-independent optical-model potential may be
constructed. The present work is an extension of their work <1 _s g
to the case of two-body Green'’s functions. \
To calculate the energy-independent vertex function, we Cﬂ
first derive an energy-independent effective interaction for a
1p1h model space, using a folded-diagram metii8H We
use diagram#\1—-A6 to calculate th&) box and the effec-
tive interaction is then given by the folded-diagram series
Veﬁ=(§—(§f@+(§f@fé—---. In this way the contribu- -15.0
tions of diagram#\2—-A6 are excluded fronk'; as they are
already absorbed into diagrafl. Only diagramsAl and
B1-B4 may now contribute td’w. The resultingl'yx is -20.0 T T T
clearly w independent. To sum the folded diagrams contained 0.4 0.8 1.2
in Vg we have employed two iteration methods, the Lee-
Suzuki (LS) [10] method and the Krenciglowa-KutKK)
[13] method.

Denoting the dimension of theplh space byd, it fol- We consider the “closed-shell” situation wittN=p,
lows that Eq(8) can have only solutions for the excitation whereN denotes the number of particles, and focus on those
energies,,. In contrast, in Eq(7) An(w) is energy depen- states with maximuml. Consider for exampleN=p=38:
dent and from the self-consistent conditian=A,(w) more  each particle has spin 1/2, and thijs,,=4. The lowest un-
thand solutions may result, even though tRespace is of perturbed)=4 state is a closed-shell state with all eight par-
the same dimensiod. The model-space Green’s function ticles in theo=—1 orbit.
defined byl'es has onlyd poles, while the original Green's  Exact matrix diagonalization for the above model prob-
function may in general have more poles. The transitionem can be readily performed. An interaction strength param-
ampli- eter x is introduced, namely the Hamiltonian is written as
tudes derived froml'oy are now obtained as thB-space H=H,+xH,, and in Fig. 2 we display an exact energy
transition  amplitudes X,(ph)=(PW|A,,|P¥,) and  spectrum for the)=4, N=p=8 states mentioned above.
Yo(ph)=(PWo|A | PY,). The lowest level in the figure is the ground state with

To illustrate and compare the two Green’s function meth-energyE,, and the Green’s function method is now alterna-
ods, one with energy-dependent and the other with energyively used to calculate the excitation energies. First we em-
independent vertex function, we have carried out somgjloy the conventional energy-dependent Green’s function
model calculations. The model considered is an extendeghethod, Eq(8). For the vertex function, we include all the

-10.0

pevee v by r e b by pey ey fegprgpryagrt

o
=)

X

FIG. 2. A typical exact energy spectrum of our model problem.

[16] Lipkin model, with the Hamiltonian diagrams listed in Fig. 1. As usual, we first perform a
Hartree-Fock(HF) calculation, and the resulting HF basis
H=Ho+Hiy, and single-particle energies are then employed to calculate
these diagrams and in setting up E8). The eigenvaluea,,
A + are calculated as a function ef and are plotted in Fig. 3.

HO:E% T8poApo s The slanted line in the figure i®»=A,, and the self-

consistent solutions of Eq8) are given by the intersection
pointsa, b, c1, andc2. These four points are associated with

Hint= E a'pa- ;Uapr_gap_g the excitation energieB,— Ey, n=1, ... 4.
PP o Next we turn to the energy-independent Green'’s function
w method of Eq(9). We first calculate the model-spaip1h)
+ > 2 ap(,ap ' yAp'e@p— o energy-independent effective interaction using both the Lee-
pp'c Suzuki(LS) [10] and the Krenciglowa-KudKK) [13] itera-
U tion methods. For th€ box, we include diagram81—-A6
+ > > (apg iy gap,,,,apg+ apaap »Bp’ e@pa) - of Fig. 1. Again we first carry out a HF calculation and use
pp' o the HF basis for subsequent calculations. The effective inter-

(9) action is derived in two steps. First we include all these six
diagrams in theQ box and sum the entir€ box folded
It is a two-level model, with its single-particle levels la- diagram series, denoting the resulting effective interaction as
beled byo=+,—. The degeneracy of each levelgsand the U (1+2). We then repeat the calculation, including only the
single-particle energies are(1/2)A. The interaction part has one-body diagram#1—A3 in the Q box. The resulting ef-
three terms with strengthg, W, andU, respectively(The fective interaction is denoted a$.4(1). The final effective
original Lipkin model[14] has theV term only) interactionV¢, which is energy independent and two-body
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FIG. 3. Graphical solution of E(8). The self-consistent solu- FIG. 4. Solutions of Eq(9) with the energy-independent vertex
tions are given by the intersection poimtsb, c1, andc2. function ' given by the LS method+) and by the KK method

(O). The exact resultssolid line) are also shown.

valence linked, is given by the differentle(1+2)—U (1).

The energy-independent vertex functiby; is determined by do not seem to correspond to any of the exact excitation
diagramsAl andB1-B4, where each dashed line representsenergies and are thus considered unphysical, at least within
a Vg vertex. the present context. In Table | we summarize the above re-

Our results are shown in Fig. 4, where the excitation ensults as obtained from Eq§3) and (9) in comparison with
ergies given by Eq(9) are compared with the exact results. the exact results.

For a wide range of the interaction strength, the excitation Particularly the poles given by pointd andc2 are worth
energies given by the KK and LS energy-independent effecattention; they are closely related to the poles of the vertex
tive interactions are both in very good agreement with thdunction I'(w) as elaborated below. One usually calculates
exact values. Our model space is one dimensional, and hentéw) by a low-order perturbation method, as in the present
Eq. (9) only gives one excitation energy, identified as the firstcalculation of I'(w) from the diagrams of Fig. 1. Conse-
excitation energy\;=(E;— Ey). qguently I'(w) will have a pole atQHyQ, namely at the un-

In contrast, Eq(8) of the conventional energy-dependent perturbed energies of the intermediate states appearing
method has four solutions, although the dimension of thén the low-order diagrams included. For example, dia-
1plh model space is still one. These three solutions are ingram A4 has a pole at its intermediate-state energy
dicated by the intersection poings b, c1, andc2 of Fig. 3.  [e(p)+e(p’)—e(h)—e(h")].

Note that pointl andc2 practically coincide. The energy ~ The position of this pole is dependent on the single-
given by pointa is a physical solution, in very good agree- particle spectrum employed, and is also dependent on the
ment with the exact excitation energlf{— Eg). The excita- range of the intermediate states we choose to include. Be-
tion energies given by the other intersection points, howevegause of the sensitive energy dependence\pfnear the

TABLE |. Comparisons ofA,(w), solutions given by Eq(8), andA; (KK), A; (LS), those given by Eq(9), with the exact results
(A). Listed in the last row are the HF single-particle energy differen@gdbentries of energies are in units df of Eq. (9).]

N=8 N=50

NW/A -0.2 —2.0 —-4.8 -0.2 —-2.0 —6.0

Af 0.827 1.971 4.944 0.806 2.281 7.026
AS 1.704 3.364 8.674 1.620 4.483 13.832
AS 2.632 3.770 9.772 2.443 6.606 20.414
A (KK) 0.827 2.005 4.929 0.809 2.248 6.902
Aq (LS) 0.826 2.095 4.931 0.806 2.299 7.013
A(w)=w 0.827 2.006 4.929 0.806 2.287 7.037
A(w)=w 1.027 2.918 6.916 1.007 3.184 9.460
Az fw)=w 2.058 6.191 14.678 2.020 6.496 19.086

e —ef 1.027 3.086 7.334 1.007 3.208 9.538
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poles ofl'(w), as illustrated by the lines near portt orc2 is usually done in practice, the poles Bfare determined
of Fig. 3, it is quite likely that the Green’s function will from some perturbation method,, and consequently the
always have a pole in close vicinity of the pole of the vertexGreen'’s functiorG, will acquire unphysical poles if one uses
functionI'(w). These type of poles d& seem to be clearly an energy-dependent Green’s function method, as we have
unphysical, as they are determined predominantly by the apHustrated. These type of unphysical poles@fmay, how-
proximation method we choose for calculating the vertexever, be avoided if one employs the energy-independent
function. Green'’s function method discussed in the present work.
From the Dyson equatio) for the energy-dependent ,
Green’s function, it follows thaf =1/F — 1/G. The poles of _ The work of TT.S.K was supported in part by the Na-
the vertex functiol are thus determined by the true Green'stional Science Council of the ROCTaiwan and by U.S.
function G; in fact they correspond to the zeroes@fIf, as ~ DOE Grant No. DE-FG02-88ER0388.
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