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In conventional Green’s function methods the vertex functionG is generally energy dependent. However, a
model-space Green’s function method where the vertex function is manifestly energy independent ca
formulated using energy-independent effective interaction theories based on folded diagrams and/or sim
transformations. This is discussed in general and then illustrated for a 1p1h model-space Green’s function
applied to a solvable Lipkin many-fermion model. The poles of the conventional Green’s function are obta
by solving a self-consistent Dyson equation and model space calculations may lead to unphysical poles. F
energy-independent model-space Green’s function only the physical poles of the model problem are r
duced and are in satisfactory agreement with the exact excitation energies.

PACS number~s!: 21.60.2n, 24.10.Cn
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In nuclear, atomic, and other many-body calculations, o
usually has to resort to some approximation methods, and
Green’s function formalism allows some of the most pow
ful of these methods to be implemented. The particle-h
(ph) Green’s function, for example, gives one immedia
access to important physical quantities such as excitation
ergiesDn5En(A)2E0(A) and transition matrix element
^nuXu0&5^Cn(A)uXuC0(A)&, with the E’s andC’s denot-
ing, respectively, the energies and wave functions of
many-body system, whileX represents any physical trans
tion operator.

A related quantity of central importance in this context
the response functionRX associated with the operatorX and
defined by

RX~v!5(
n

^C0uXuCn&^CnuX1uC0&
v2~En2E0!1 i01

2(
n

^C0uXuCn&^CnuX1uC0&
v1~En2E0!1 i01 . ~1!

It plays an important role in, e.g., nuclear structure theo
@1–4# and its construction is intimately linked to Green
function methods.

We now turn to the question of how one actually perform
Green’s function calculations in order to obtain, for examp
excitation energies and transition amplitudes. Denoting
Green’s function under consideration byG and the corre-
sponding unperturbed Green’s function byF, it is well
known @5,6# that G obeys an integral equation, the Dyso
equation

G~v!5F~v!1F~v!G~v!G~v!. ~2!

Herev is the energy variable, andG is the irreducible vertex
function, generally dependent on the energy variablev.

*Permanent address.
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In this work we consider the construction of the Green
function from an effective vertex functionGeff which is mani-
festly energy independent, that is, the above Dyson equation
is reduced to an equation of the form

G̃~v!5F~v!1F~v!GeffG̃~v!. ~3!

This form is pursued in the spirit of effective interaction
theories@7–9# from which it is well known that there are
basically two types of effective interactions—one energy d
pendent and the other energy independent. In analogy,
would then expect that Green’s function methods may
similarly formulated in two ways, with the vertex function
being either energy dependent or energy independent. T
analogy is even more pronounced when the vertex functi
G~v! is viewed as a generalized energy-dependent effect
interaction@5#. We note that the Green’s functionG̃~v! of
Eq. ~3! is not entirely equivalent toG of Eq. ~2!. The poles
of G̃ are also poles ofG, but the former are just a subset o
the latter. Which poles ofG will be reproduced byG̃ de-
pends on the model space choice and also on the partic
construction of the effective vertex functionGeff as discussed
in detail below.

A few preliminary remarks are in order here. In practice
Green’s function calculations are almost always performed
a restricted model spaceP, consisting of several single-
particle ~sp! orbits near the Fermi surface. In fact, the inte
gral equations given above are all viewed as such mo
space equations here. We first consider the conventio
energy-dependent vertex functionG~v!. Starting from this
vertex function, we then discuss how to obtain an energ
independentP-space vertex functionGeff using the similarity
transformation methods of Suzuki and Lee@10,11# and of
Navratil et al. @12#, and also using the folded-diagram
method of Krenciglowa and Kuo@13#. An important differ-
ence betweenG~v! and Geff is that the former would have
poles which, in the case of approximations, will depend o
the particular construction, while the latter is independent
v and obviously does not contain any poles. To investiga
1249 © 1996 The American Physical Society
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these and other aspects of the present Green’s func
method, we have analyzed a solvable Lipkin many-fermi
model problem@14#, using a particle-hole (ph) Green’s
function analysis.

We first illustrate the derivation of an energy-independe
vertex function for the model-space Green’s function. As
well known @5#, one defines the two-timeph Green’s func-
tion as

Gphp8h8~ ta2tb!5^C0uT$Aph~ ta!Ap8h8
1

~ tb!%uC0&

2^C0uAphuC0&^C0uAp8h8
1 uC0&. ~4!

C0 denotes the ground state of the system and theA’s are the
particle-hole operators

Ap8h8
1

~ tb!5eiHtbAp8h8
1 e2 iHt b,

Ap8h8
1

5ap8
1 ah8 ,

Aph~ ta!5@Aph
1 ~ ta!#

1. ~5!

HereH is the full Hamiltonian. The Green’s function~4! has
the Lehmann representation

Gphp8h8~v!5 (
nÞ0

Xn~ph!Xn* ~p8h8!

v2Dn1 i01

2 (
nÞ0

Yn* ~ph!Yn~p8h8!

v1Dn2 i01 ,

Xn~ph!5^C0uAphuCn&,

Yn~ph!5^C0uAph
1 uCn&. ~6!

To calculateDn , Xn , andYn , one solves the model-spac
secular equation@5,6#

(
p9h9

$~ep2eh!dph,p9h91~np2nh!Gphp9h9~v!%Xn~p9h9!

5Dn~v!Xn~ph!, ~7!

with the self-consistent conditionv5Dn . The solutions of
the above equation are paired, with bothDn and2Dn solu-
tions; wave functionsXn correspond to positiveDn andYn to
negativeDn .

When the above equations are solved within a chos
model spaceP, intermediate states of the vertex functio
must be orthogonal toP, in other words, belong to the
complement spaceQ with P1Q51. To illustrate this, we
use a restricted 1p1h model space, and show some low-ord
diagrammatic contributions toG in Fig. 1. DiagramsA1 and
B1 are first order inV, the interaction part of the Hamil-
tonian, and these two diagrams arev independent. Diagrams
A2–A6 are v dependent, and are of the general for
PVQ[1/(v2H0)]QVP whereH0 represents the noninter-
acting part of the Hamiltonian. HereQ denotes the space
spanned by the 2p2h states.

Suppose now we use an effective interactionVeff , con-
structed from a 1p1h model space. Then the above diagram
A2–A6, are of the formPVeffQ[1/(v2H0)]/QVeffP. In ef-
tion
n
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fective interaction theories, it is well known thatVeff can be
derived using a similarity-transformation approach~see@11#
and references quoted therein!. The resultingVeff can be con-
structed to be energy independent and satisfies the dec
pling conditionQVeffP50. ~This follows from the require-
mentQHeffP50, whereHeff is the transformed Hamiltonian
and the effective interaction Veff is defined as
Veff5Heff2H0.! In an analogous way, one can also obtain a
energy-independent general effective operator by way
similarity transformations@12#, in which case one has the
dual decoupling conditions ofQVeffP5PVeffQ50. These
considerations may now be applied to the above verte
function diagrams, whence diagramsA2–A6 vanish because
of the decoupling condition, while diagramA1 becomes
^ph21uVeffup8h821&. ~Note that in the present case we takeP
as composed of 1p1h basis states, withQ restricted to 2p2h
states.! The decoupling conditions do not ensure that di
gramsB2–B4 vanish, but by employing a ‘‘time-blocking’’
formalism, these diagrams becomev independent@6#. For
example, diagramB3 is of the formVeff(1/e)Veff where
e5e(h)1e(h8)2e(p9)2e(p-), where thee’s are single-
particle energies defined byH0.

Thus, by applying the above effective interaction and e
fective operator approaches, one obtains a Green’s func
whose vertex functionGeff is explicitly energy independent.
Namely, we have a Green’s function secular equation of t
form

(
p9h9

$~ep2eh!dph,p9h91~np2nh!^phuGeffup9h9&%X̄n~p9h9!

5D̄nX̄n~ph!. ~8!

It is worthwhile to note that a similar result holds in th
case of the one-body Green’s function where the mass

FIG. 1. Diagrams of the particle-hole vertex functions.
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53 1251GREEN’S FUNCTION METHOD WITH ENERGY-INDEPENDENT . . .
eratorM replaces the vertex function, e.g., in derivations
the optical-model potential. In most formalisms,M is energy
dependent and hence so is the optical-model potential. Ho
ever, by way of a folded-diagram factorization, Kuo, Le
and Osterfeld@15# have obtained an energy-independe
mass operator for the one-body Green’s function, based
which an energy-independent optical-model potential may
constructed. The present work is an extension of their wo
to the case of two-body Green’s functions.

To calculate the energy-independent vertex function,
first derive an energy-independent effective interaction fo
1p1h model space, using a folded-diagram method@8#. We
use diagramsA1–A6 to calculate theQ̂ box and the effec-
tive interaction is then given by the folded-diagram seri

Veff5Q̂2Q̂*Q̂1Q̂*Q̂*Q̂2••• . In this way the contribu-
tions of diagramsA2–A6 are excluded fromGeff as they are
already absorbed into diagramA1. Only diagramsA1 and
B1–B4 may now contribute toGeff . The resultingGeff is
clearlyv independent. To sum the folded diagrams contain
in Veff we have employed two iteration methods, the Le
Suzuki ~LS! @10# method and the Krenciglowa-Kuo~KK !
@13# method.

Denoting the dimension of the 1p1h space byd, it fol-
lows that Eq.~8! can have onlyd solutions for the excitation
energiesD̄n . In contrast, in Eq.~7! Dn~v! is energy depen-
dent and from the self-consistent conditionv5Dn~v! more
thand solutions may result, even though theP space is of
the same dimensiond. The model-space Green’s functio
defined byGeff has onlyd poles, while the original Green’s
function may in general have more poles. The transiti
ampli-
tudes derived fromGeff are now obtained as theP-space
transition amplitudes X̄n(ph)5^PC0uAphuPCn& and
Ȳn(ph)5^PC0uA ph

1 uPCn&.
To illustrate and compare the two Green’s function met

ods, one with energy-dependent and the other with ener
independent vertex function, we have carried out som
model calculations. The model considered is an extend
@16# Lipkin model, with the Hamiltonian

H5H01H int ,

H05
D

2 (
ps

saps
1 aps ,

H int5
V

2 (
pp8s

aps
1 ap8s

1 ap82sap2s

1
W

2 (
pp8s

aps
1 ap82s

1 ap8sap2s

1
U

2 (
pp8s

~aps
1 ap8s

1 ap82saps1aps
1 ap82s

1 ap8saps!.

~9!

It is a two-level model, with its single-particle levels la
beled bys51,2. The degeneracy of each level isp, and the
single-particle energies are6~1/2!D. The interaction part has
three terms with strengthsV, W, andU, respectively.~The
original Lipkin model@14# has theV term only.!
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We consider the ‘‘closed-shell’’ situation withN5p,
whereN denotes the number of particles, and focus on tho
states with maximumJ. Consider for exampleN5p58:
each particle has spin 1/2, and thusJmax54. The lowest un-
perturbedJ54 state is a closed-shell state with all eight par
ticles in thes521 orbit.

Exact matrix diagonalization for the above model prob
lem can be readily performed. An interaction strength param
eter x is introduced, namely the Hamiltonian is written as
H5H01xHint and in Fig. 2 we display an exact energy
spectrum for theJ54, N5p58 states mentioned above.

The lowest level in the figure is the ground state with
energyE0, and the Green’s function method is now alterna
tively used to calculate the excitation energies. First we em
ploy the conventional energy-dependent Green’s functio
method, Eq.~8!. For the vertex function, we include all the
diagrams listed in Fig. 1. As usual, we first perform a
Hartree-Fock~HF! calculation, and the resulting HF basis
and single-particle energies are then employed to calcula
these diagrams and in setting up Eq.~8!. The eigenvaluesDn
are calculated as a function ofv and are plotted in Fig. 3.
The slanted line in the figure isv5Dn , and the self-
consistent solutions of Eq.~8! are given by the intersection
pointsa, b, c1, andc2. These four points are associated with
the excitation energiesEn2E0 , n51, . . . ,4.

Next we turn to the energy-independent Green’s functio
method of Eq.~9!. We first calculate the model-space~1p1h!
energy-independent effective interaction using both the Le
Suzuki~LS! @10# and the Krenciglowa-Kuo~KK ! @13# itera-
tion methods. For theQ box, we include diagramsA1–A6
of Fig. 1. Again we first carry out a HF calculation and us
the HF basis for subsequent calculations. The effective inte
action is derived in two steps. First we include all these s
diagrams in theQ box and sum the entireQ box folded
diagram series, denoting the resulting effective interaction
Ueff~112!. We then repeat the calculation, including only the
one-body diagramsA1–A3 in theQ box. The resulting ef-
fective interaction is denoted asUeff~1!. The final effective
interactionVeff , which is energy independent and two-body

FIG. 2. A typical exact energy spectrum of our model problem.
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valence linked, is given by the differenceUeff~112!2Ueff~1!.
The energy-independent vertex functionGeff is determined by
diagramsA1 andB1–B4, where each dashed line represen
a Veff vertex.

Our results are shown in Fig. 4, where the excitation e
ergies given by Eq.~9! are compared with the exact results
For a wide range of the interaction strength, the excitatio
energies given by the KK and LS energy-independent effe
tive interactions are both in very good agreement with th
exact values. Our model space is one dimensional, and he
Eq. ~9! only gives one excitation energy, identified as the fir
excitation energyD15(E12E0).

In contrast, Eq.~8! of the conventional energy-dependen
method has four solutions, although the dimension of th
1p1h model space is still one. These three solutions are
dicated by the intersection pointsa, b, c1, andc2 of Fig. 3.
Note that pointsc1 andc2 practically coincide. The energy
given by pointa is a physical solution, in very good agree
ment with the exact excitation energy (E12E0). The excita-
tion energies given by the other intersection points, howev

FIG. 3. Graphical solution of Eq.~8!. The self-consistent solu-
tions are given by the intersection pointsa, b, c1, andc2.
ts
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do not seem to correspond to any of the exact excitati
energies and are thus considered unphysical, at least wit
the present context. In Table I we summarize the above
sults as obtained from Eqs.~8! and ~9! in comparison with
the exact results.

Particularly the poles given by pointsc1 andc2 are worth
attention; they are closely related to the poles of the vert
function G~v! as elaborated below. One usually calculate
G~v! by a low-order perturbation method, as in the prese
calculation ofG~v! from the diagrams of Fig. 1. Conse-
quentlyG~v! will have a pole atQH0Q, namely at the un-
perturbed energies of the intermediate states appear
in the low-order diagrams included. For example, dia
gram A4 has a pole at its intermediate-state energ
[ e(p)1e(p8)2e(h)2e(h8)].

The position of this pole is dependent on the singl
particle spectrum employed, and is also dependent on
range of the intermediate states we choose to include. B
cause of the sensitive energy dependence ofDn near the

FIG. 4. Solutions of Eq.~9! with the energy-independent vertex
function Geff given by the LS method~1! and by the KK method
~s!. The exact results~solid line! are also shown.
TABLE I. Comparisons ofDn~v!, solutions given by Eq.~8!, andD1 ~KK !, D1 ~LS!, those given by Eq.~9!, with the exact results
(Dn

ex). Listed in the last row are the HF single-particle energy differences.@All entries of energies are in units ofD of Eq. ~9!.#

NW/D

N58 N550

20.2 22.0 24.8 20.2 22.0 26.0

D1
ex 0.827 1.971 4.944 0.806 2.281 7.026

D2
ex 1.704 3.364 8.674 1.620 4.483 13.832

D3
ex 2.632 3.770 9.772 2.443 6.606 20.414

D1 ~KK ! 0.827 2.005 4.929 0.809 2.248 6.902
D1 ~LS! 0.826 2.095 4.931 0.806 2.299 7.013
D1~v!5v 0.827 2.006 4.929 0.806 2.287 7.037
D2~v!5v 1.027 2.918 6.916 1.007 3.184 9.460
D3,4~v!5v 2.058 6.191 14.678 2.020 6.496 19.086
e2
HF2e1

HF 1.027 3.086 7.334 1.007 3.208 9.538
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poles ofG~v!, as illustrated by the lines near pointc1 or c2
of Fig. 3, it is quite likely that the Green’s function will
always have a pole in close vicinity of the pole of the verte
function G~v!. These type of poles ofG seem to be clearly
unphysical, as they are determined predominantly by the a
proximation method we choose for calculating the verte
function.

From the Dyson equation~2! for the energy-dependent
Green’s function, it follows thatG51/F21/G. The poles of
the vertex functionG are thus determined by the true Green
functionG; in fact they correspond to the zeroes ofG. If, as
x

p-
x

’s

is usually done in practice, the poles ofG are determined
from some perturbation method,G, and consequently the
Green’s functionG, will acquire unphysical poles if one use
an energy-dependent Green’s function method, as we h
illustrated. These type of unphysical poles ofG may, how-
ever, be avoided if one employs the energy-independ
Green’s function method discussed in the present work.

The work of T.T.S.K was supported in part by the Na
tional Science Council of the ROC~Taiwan! and by U.S.
DOE Grant No. DE-FG02-88ER0388.
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