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Dynamic realization of statistical state in finite systems
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Evolution of the large-amplitude dissipative collective motion in a simple soluble model is studied within the
time-dependent Hartree-Fock theory, by using a general microscopic transport theory, which optimally divides
the total system into the collective and intrinsic subsystems. Even though the total system reaches some
statistical stationary state, it is shown that the subsystem cannot alone remain stationary by being separated
from the other subsystem, when they are strongly correlated with each other. Dynamic response functions are
used in exploring an instantaneous structure of each subsystem. When the total system reaches a statistical
stationary state, it is shown by using the dynamical response function that the influence of the intrinsic
subsystem on the collective one can be effectively taken into account by replacing the intrinsic system by the
heat bath.

PACS numbe(s): 24.60.Ky, 03.65.Sq, 21.10.Re, 21.60.Jz

[. INTRODUCTION time are supposed to have a different structure for the intrin-
sic component, whereas they have almost the same structure
One of the basic problems in the nuclear physics is tdor the collective component. To investigate the dynamical
microscopically understand phenomena such as dampingyolution process of the bundle of trajectories, one has to
dissipation, fluctuation, and diffusion processes, which apanswer the following important questions) a relation be-
pear in the giant resonance of hot nuclei, fission, fusiontween the dynamics of individual trajectories and that of the
heavy-ion deep-inelastic collisions, etc. They involve a com-bundle of trajectoriegb) how and why the system described
plex interplay between the collective and intrinsic degrees oby the bundle of trajectories reaches its stationary state, and
freedom, the latter one usually expressed by a statistical olwhat the final state looks like(c) the dynamical relation
ject like the thermal heat bath or the Gaussian orthogonabetween two subsystems which are composed of the collec-
ensemblgGOE). In such a finite many-body system as thetive and the intrinsic degrees of freedom, respectively,
nucleus, however, the Born-Oppenheimer approximation tmamely, how the collective subsystem is affected by its part-
divide the total system into the collective and intrinsic sub-ner during the evolution process in a strongly interacting
systems is by no means trivial, nor is the statistical assumpfinite system, andd) how to macroscopically describe the
tion. evolutional process of the bundle of trajectory. In other
Since we are interested in the large-amplitude dissipativevords, how to microscopically derive a Fokker-Planck- or
collective motion whose energy is much smaller than the_angevin-type transport equation for the collective degrees
Fermi energy of the single-particle motion, its microscopicof freedom.
dynamics ought to be studied within the time-dependent These investigations involve a vast number of theoretical
Hartree-Fock(TDHF) theory. As is well known, the TDHF subjects. In the realistic case, an initial wave packet is com-
equation is formally equivalent to the Hamilton canonicalposed of many different intrinsic excitations with almost the
equations of motion within the TDHF symplectic manifold. same collective component. Even in this specific problem, a
Therefore, the study of nuclear dissipative dynamics has ater-on time evolution may show quite a different develop-
large overlap with the celebrated ergodic problem which proment depending on its initial condition. In this paper, we will
vides us with the dynamical foundation of classical statisticatoncentrate our discussion on how a statistical state in the
mechanics[1,2]. In the case of the ergodic problem, one finite system is realized dynamically.
treats a long time evolution of the single trajectory and dis- The general microscopic transport the¢8¢6] has been
cusses a relation between the phase-space average and pheposed to describe the collective motion displayed by the
time average. In the case of nuclear physics, one may debundle of trajectories. In this theory, the total system is op-
with a time development of a bundle of TDHF trajectories. Ittimally divided into the collective and intrinsic subsystems,
approximately represents a wave packet consisting of mangnd the dynamic response and correlation functions have
eigenfunctions which are expressed by the direct product dbeen introducef5] for studying the evolution process of the
intrinsic and collective components. When one treats a disbundle of trajectories. By applying the theory to a simple
sipative collective motion, these eigenfunctions at the initialmodel Hamiltonian in the previous papgs], it was illus-
trated that thedynamic response functiogives important
information in understanding the dynamical process of the
“Permanent address: Institute of Nuclear Science and Techniqutotal system as well as the subsystems. In the present paper,
Vietnam Atomic Energy Commission, 67 Nguyen Du, Hanoi, Viet- we further analyze the later-on time evolution of the bundle
nam. of trajectories by using this general theory.
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Using a simple model Hamiltonian, in Sec. I, we discusstion of the collective motion near the level-crossing region
the importance of analyzing the structure of the TDHF mani{9-11]. Since the adiabatic assumption is strongly violated
fold, which gives full information of the individual trajecto- near the level-crossing point, the dynamical evolution of the
ries. In Sec. Ill, we explore the evolution process of thesystem cannot be expressed by the adiabatic collective vari-
bundle of trajectories. By performing numerical calculations,aples alone or the diabatic path. In this case one faces a
we found an important condition where the total system regynamical problem as to how many additional degrees of

sists being divided into two subsystems. Namely, we found geedom are necessary in describing the collective motion
condition for characterizing the specific situation where the,agides the collective variables.

total system converges to sonf&atistical stationary state, In order to understand the microscopic dynamics respon-

ble for the dissipation process by going beyond the adia-
Glé)atic assumption, therefore, it is indispensable to explore the
subsystems show quite different behavior from that of th tructure of the TDHF manifold, which determines what

usual linear response functidid,8]. When the total system inds of d_ynamics can occur in Fhe ﬁf“te system. U”t_" quite
reaches a statistical stationary state, it is shown in Sec. IV b cent]y, It was pot wgll recogmzed.ln nuclear physm; that
using the dynamical response function that the intrinsic subt"€re is exceedingly rich structure in the TDHF manifold,
system is effectively expressed by a heat bath. Since th&hich is not simply expected from the shape of the potential
response function is directly related to experimental observ€N€rgy surface. In order to find various modes of motions
ables, all of these findings will certainly provide us with @Ppearing in the TDHF manifold, one has to numerically
further insight into the statistical description of large- solve the TDHF equation with different initial conditions.

state without its partner.
We also found that the dynamic response functions for th

amplitude dissipative collective motion in finite systems. To get a fully microscopic understanding of the complex
structure of the classical phase space, there has been devel-
Il. MODEL HAMILTONIAN AND STRUCTURE gﬁedbthe. g%”era' tfher?ryGo_Ilil\r:gn::nearbdynarT(G_é'll\lDd) [2]i g
OF THE TDHE MANIFOLD e basic ideas of the ave been mainly develope

by using the classical system with 2 degrees of freedom or
In understanding the large-amplitude dissipative colleceven 1.5 degrees of freedom like the kicked rotor model.
tive motion, the importance of mutual dependence betweefince our main concern is to explore the justification of an
the collective and the single-particle motion has been pointethtroduction of some statistical treatment in the finite system
out repeatedly. One of the main issues in this respect hatrough what is happening during the time evolution of a
been to make clear whether the single-particle motion develbundle of trajectories, we study the relation between the
ops along the adiabatic basis or the diabatic one, which areharacteristic features of the individual trajectories and those
defined by referring to the time-dependent variation of theof the bundle of trajectories in the TDHF manifold. For this
mean field induced by the collective motion. This problemaim, we take the following system with two degrees of free-
has been usually discussed to describe the dynamical evoldem:

H(d1,P1;02,P2) =Hi+Hy+Heupn

1 1 N—1V, _
Hi=5ei(ai+p))+ 5 VitN=1)(af —pf) - =g~ 7 (ai=p{), i=12,
HcoupI:Ei AiBi,
. Vi(1—N) . . Vi(1—N) .
A== lai+ (= 1)'pil, B'= /=g —Ta3+(~1)'p3l. 2.1

The above Hamiltonian is a classical realization of the In Fig. 1, the Poincaresection map constructed on the
guantum mechanical §8) Hamiltonian for the many- (q¢,p;) plane with conditiong),=0 andp,>0 is shown.
fermion system by applying the TDHF formalisfthe con- The parameters used in our calculation ag=0, ¢,=1,
vention7 =1 is applied. The structure of the TDHF mani- &,=2, andN=230, and the total energy is fixed &t=40.
fold (which is formally equivalent to the classical phaseFrom Fig. 1, one may learn how many rich structures are
space is numerically obtained by solving the canonical there in the TDHF manifold depending on the interaction

equations of motion given by strengthV; . In Fig. 1, the essential phenomena discussed in
the GTND are clearly displayed. The objective of the GTND
IH JH has been to gnderstand h.oyv the adiak_aa_tic invar_i(acma—.
ai= pi= (2.2  stants of motion characterizing the individual trajectories

_19_pi’ - 19_Qi' undergo a change depending on their amplitudes at the origin
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P1
=

Q1
FIG. 1. Poincaresection map on thegf,p,) plane.(a), (b), and(c) are forV=—0.01,—0.03, and—0.07, respectively.

of the coordinate system, how there appears a new type aircle structure centered at the origin, whereas those sticking
motion forming a resonant island structure which surroundso the subspack; form an outermost concentric circle struc-
the main island, how and why the local adiabatic invariantture. Trajectories starting far away from both the subspaces
characterizing the motion belonging to the resonant island&; andX, show a crescent structure in Figal In this case,
disappeargappearance of local chaoticjityand how there the coordinate systedt;,p;;d.,p»} has no advantage, be-
finally appears the global chaoticity. To get an analytical un-cause their adiabatic invariants cannot be simply expressed
derstanding of these phenomena, it turns out to be decisive toy either one of these two. As is seen from Fig. 1, in the
introduce themost natural coordinate systefor each trajec- cases withv; = —0.01 and— 0.03, these trajectories still rep-
tory. It may not be an exaggeration to say that the history ofesentregular motion, forming an island structure surround-
the nonlinear dynamics has been the struggle to develop iag the main island. For these trajectories, one may introduce
proper classical perturbation theory capable of defining th@nother most natural coordinate system calledrédsmnant
most optimum coordinate system, where an approximateoordinatescharacterized by the nonlinear resonafizd 3].
adiabatic invariant of a given trajectory is expressed in the Trajectories having different adiabatic invariants are sepa-
simplest way. In the nuclear physics, this problem is equivarated by the separatrix. As the nonlinear interaction becomes
lent to developing a method which optimally divides the totallarge, it is well known that the chaotic motion starts to occur
system into the collective and intrinsic degrees of freedom.near the separatrix. In the case with=—0.07, the trajecto-
Here it should be noticed that the Hamiltonian in E211)  ries starting far from the subspa®s mainly represent the

satisfies the relations chaotic motion. Since there are no constants of motion for

the chaotic trajectory, there does not exist any optimal coor-
ﬁ _ ﬁ -0 dinate system.

a9, D, =y=0 P, p,=0,=0 ' As is stated in the Introduction, large-amplitude di§sipa—

2.3 tive collective motion can be explored by a time evolution of

' a bundle of trajectories within the TDHF theory. The time

dH dH evolution of a bundle initially distributed near the subspace

= =0, 3., was studied extensively in Reff12]. In this paper, we

91 |y g -0 P1lp g - ;
P1=01=0 P1=a,=0 restrict ourselves to the case where a bundle is initially lo-

cated far away from the subspaces and ., with a sharp

which are called thenaximal decoupling conditiong&qua- distribution.

tions (2.3) simply mean that the trajectory starting with
the initial condition q(t=0)=d19, P1(t=0)=p1o,
q,(t=0)=0, p,(t=0)=0 is always running on the sub- IIl. COUPLED-MASTER EQUATION
spaceX; {q;,p;;d,=0,p,=0}, whereas the trajectory with A. Evolution of bundle

the initial  condition q4(t=0)=0, p,(t=0)=0,
02(t=0)=0qyg, pP2(t=0)=p, is always on the subspace
35, {q:=0,p1=0;0,,p>}. In this sense, the coordinate sys-

The time evolution of a bundle of trajectories is described
by the Liouville equation given by

tem{qy,p1;q,,P,} satisfying the condition$2.3) gives the 2 o g oH 9
most optimal coordinate system for the trajectories which are, (1) — —j (1), ¥=> |— ——- ——]|. (3.
sticking to either the subspadg or toX,. In other words, i=114d9; dp;  Ip; Iq;

the division of the total system into thielevant coordinates

{01,p1} and theirrelevant coordinateqq,,p,} has a sense The dynamical relation between the two degrees of freedom
in a region near these subspaces. In Fig. 1, the trajectoriés studied by introducing a pair of partial distribution func-
sticking to the subspac®, form an innermost concentric tions
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pa(0= | [ dadpap(t)=Tro(v, pa(v= [ dasdpiptt=Trip(o. (3.2

With the aid of the partial distribution functions defined in E812), one may introduce the time-dependent projection operator
[14]

P(t)=p1(t) Try+pa(t) Tro—p1(t) pa(t) TryTry. (3.3
Then the total distribution functiop(t) is divided into a separable past(t) and a correlation pay.(t) defined through
ps()=P(t)p()=p1(t)pa(t),  pc()={1=P(t)}p(t)=p(t)—p1(t)pa(t). (3.9

By means of the distribution functions defined in E¢&2) and(3.4), the coupling Hamiltonian in E¢2.1) is expressed
as

HcoupI:Havev(t)"_HA(t)_EO(t)' (3.9

Have()=H1(t) +Hx(1),
2
HA(t)EHcoupI_Havey(t)+E0(t):i21 (Ai_<Ai>t)(Bi_<Bi>t)a
2 . .

Eo()= | [ dprdasdpadaHeappa(Dost) = 3, (A) (B,

Hl(t)Ef fdpdeZHcouppz(t):Ei Ai<Bi>t1

Hz(t)Ef Jdpldqucouppl(t)ZEi (A')B,

<Ai>t5f do,dp;A'py(t), (Bi>tEf dopdp,B'p,(t), (3.9

whereH,(t) [H,(t)] denotes a time-dependent Hamiltonian for the fissicond degree of freedom obtained frob,, by
averaging over the secofifirst] distribution function. The total Hamiltonian is then represented as

H:Hl,mear(t)+H2,mea|(t)+HA(t)_EO(t)y (3.7

Hl,meal(t):Hl+H1(t)a H2,mear(t):H2+H2(t): (3.9

where Hjneaft) [Homeakt)] represents the so-called sen to be 10 000. The initial condition of the distribution
“mean-field” Hamiltonian for the first{second degree of function is given by a uniform distribution in a region
freedom, which is obtained by only taking account of an
average effect of th_e secowﬁﬂr_st] degree of freedom. Here —0.05q;—0.4<0.05, —0.02<q,—gy=<0.02,
H(t) is the dynamic fluctuation part.
In performing the numerical calculation, the time evolu-
tion of the distribution functiorp(t) organized by Eq(3.1) —0.05<p;=<0.05, —0.02<p,<0.02, (3.10
is evaluated by using the pseudoparticle method,
whereqy is fixed from the Hamiltonian in Eq2.2) by using
1 No 2 q.:=0.4, p;=p,=0, andE=40. By comparing the above
p(H)= N E H (g —q; n(1))8(p;— pi n(1)), (3.9 initial condition with the Poincarenap in Fig. 1, it is easily
pn=li=1 seen that the initial distribution function(t=0) is set in a
tiny region near the unstable fixed point, i.e., an intersection
where N, means the total number of pseudoparticles angoint of the separatrix for the first two cases. This choice of
gi n(t) and p; ,(t) denote a phase space point of thih initial condition is very interesting because the chaotic fea-
pseudoparticle at timg which is determined by integrating ture is known to be first generated near this hyperbolic fixed
Eq. (2.2). We use the fourth order Runge-Kutta method forpoint. The initial distribution is indicated in Fig. 1 by a solid
integrating the canonical equation of motion axgis cho-  square.
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In Fig. 2@, the time dependence of the variance 10 ¢
(92)—(q1)? is shown for the cases with/;=—0.01, @
—0.03, —0.04, and—0.07. A unit of time is given by - '
Teol= Wconl27, Where wey is the eigenfrequency of low-
lying normal mode obtained by applying the random phase
approximation(RPA) to Eq.(2.2).

As is seen from Fig. 1, every part of the phase space in
the cases withlvV;=—0.01 and—0.03 is dominated by regu-
lar motion, but by the chaotic sea in the case with
V;=—0.07. In the case witV,= —0.01, the variance is os-
cillating and even increasing. Since the variance has no ten-
dency to reach some time-independent value, the system is
not expected to converge to some statistical object in this i
case. In the case with a much stronger interaction, i.e., 00001 o L e
V;=—0.03 and—0.04, the variance increases exponentially
and seems to oscillate around some saturation value. Never- TIME (_)
theless, the amplitude of oscillation is not small, indicating
the nonestablishment of a stationary state for a very long ! ()
time. Note that the above result is obtained by choosing an 08 7,
initial distribution around the unstable fixed point where ;
many trajectories with different characters come across each
other. If one puts many pseudoparticles around the hyper-
bolic point where various types of trajectories are involved,
the existence of the invariaflkAM ) torus prevents the sys-
tem from reaching some statistical object. Consequently, one
cannot expect a realization of the statistical state for the non-
linear dynamical system where the KAM torus is dominat-
ing.

In the case withvV;= —0.07, where the chaotic sea domi-
nates the phase space, a quite different situation is realized. 0 10 20 30 40 50
In the beginning, the variance increases abruptly, steeper TIME (r_)
than exponential curve which is realized\p= —0.03 and
—0.04. In this case, moreover, the time dependence almost
dies ouft around=25r.,,, indicating the establlshmgnt of' with V= —0.01—0.03, —0.04, and—0.07. (b) Averaged value
the stationary state. Thus the appearance of chaotic mot|0<r|1o ) and variance (p2—(p,)3), as a function of time for
for the individual trajectory is strongly related to the realiza-, 2" ' - 2 Rt
tion of a stationary state for the bundle of trajectories. A

As stated in the previous section, the choice of the coor-
dinate system does not have any sense in the present cha
case. Namely, if the relations

001 ¢

0.001 H}A

VARIANCE OF < P %< P >2>

2
£

o

<P,> OR <P2.<P >

<

FIG. 2. (a) Time-dependent variand@?—(p,)?); for the cases

hoice of representation, and since the time-independent sta-
"(9nary state realized afte= 257, does not depend on the
choice of the coordinate system either, we may draw the
conclusion that the bundle of trajectories reaches a statistical

(@)= V(G (s, object aftert=25r,,.
(3.19)
(Pi)e= \/(D?)t—(pi)f B. Energy distribution

From the saturation property of the variance depicted in
hold, the coordinate systefq,,p1;d.,p,} has no particular Fig. 2, it is expected that the stationary statistical state is
advantage in describing the system under consideration. lestablished dynamically for the chaotic case with
Fig. 2(b), the average value ofp,); and the variance =—0.07. It is the aim of the present subsection to investi-
(p3)i—(p,)? are shown for the case wit,=—0.07. Since gate what kind of final distribution is established for the case
the square root of the variance is much larger than the avewith V;=—0.07 and how two subsystems described by
age, the choice of a paticular coordinate system does ngt;(t) and p,(t) are correlated with each other. Since the
have any profit for the present case. As is well known, theenergy of each pseudoparticle is chosen tdle40 in the
nearest-neighbor level-spacing statistics of the quantum sysnitial condition, there are no fluctuations in the total Hamil-
tem is well described by the GOE, when the phase space abnianH; i.e., (H?),—(H)?=0 at any time.
its classical correspondent is covered by the chaoti¢ Kgja Now, let us consider the distribution of the partial Hamil-
Here, it should be noticed that the chaotic phase space strutenian. In Figs. 8) and 3b), the time-dependent averages
ture is generated by a single trajectory, whereas the nearesiefined through
neighbor level spacing expresses a statistical property of
many eigenstates. Since the GOE is derived under the as- _ .
sumption that the final result should not depend on the <Hi>t_f qu‘dpiHip‘(t)’ i=1 and 2,
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AVERAGE VALUE OF H_H ()H_+H,(t)
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FIG. 3. (@ Time dependence of averaged valugs,);, (Hx(t));, and (H,+H,(t));, (b) time dependence of averaged values
(Ha(t)); and(Hcoupp: » (c) energy distribution oH, (dashed lingandH; +H,(t) (solid line) for different timest, , (d) energy distribution
of H, (dashed lingandH,+ H,(t) (solid line) for different timest, , (€) energy distribution oH ., (dashed lingandH 4 (solid line) for
different timest, , (f) time-dependent variand@i3 — (H,)?), and(H2—(H,)2),, for the case withV=—0.07.

<Hi+Hi(t)>t:f f dgdpi{Hi+H;(t)}pi(t),

i=1 and 2,

<Hcoupbt:f f dpldqldpquZHcoupp(t):EO(t),

(HA(t)>t:j fdpldQ1dP2dQ2HA(t)P(t)=0
(3.12

are shown.(H);, (H(t));, and (H;+H(t)); are not
shown in Fig. 3, but have similar behavior witt,),,
(H,(t))y, and(H,+H,(t));. These averages reach their sta-
tionary values at=(25—30)r.,, after a violent exchange
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of energy in the region of<57.,. Note that(H(t)), (HZ = (Hooupdt = ((H1+H2) 2 = (Hy +H,)E=TY,
(Hz(t))¢, and(H o pp: are equivalent tdy(t) by definition. (3.19
This convergence property is consistent with the saturation

property of the variance in Figs(@ and 2b) discussed in Where Hpeaft)=H +H,+H (t) +Hy(t). From Egs.

the previous subsection. (3.13, (3.14, and(3.15, one gets the relation
A convergence of these average values does not necessar- 5 5 ) )
ily indicate the establishment of the statistical state for each (H)t—(Ha)r=(Houptt— (Hcouppt - (3.1

subsystem. To make this point clear, let us notice that a gen-
eral relation for various variances of partial Hamiltonians The inequality relatio(3.16) is well realized in our calcula-
always holds, tion which is illustrated in Fig. @). In Fig. 3f), the time
A _ dependence of the varian¢eis),—(H,)? is shown. As is
rY=rP=ry(=0), i,j=1 and 2, shown in Eq.(3.14 and is seen from Fig.(8), the variance
(H2 .o{))i— (Hmeadt))Z has the same order of magnitude as
Fo=(H?)—(H), e
) 5 Since the square root of the variangd?),—(H,)? is
(Hi mead 1))~ (Hi, meal 1)), much larger than théH,);, which is understood by com-
()— 42\ 2 paring Figs. 8) and 3f), a large energy exchange goes on
I2'=(HD) = (H)% (313 petween the two subsystems, even tho(ighea(t)): have
r]reached the time-independent object, indicating no energy
transfer in average. Namely, each subsystem cannot remain
stationary alone by being separated from the other sub-
system, when the following condition

ry

which is easily proven. When the mean-field approximatio
gives a reasonable description, the relatltmzl“(l” holds.
When the coupling interaction is sufficiently small, the other
relation is also satisfied, i.e[[{’=T'{). In Figs. 3c) and

3(d), the distributions ofH; and H;+H;(t) with i=1 and \/W =~ (H.). = 1
2 calculated for each trajectory in the bundle are shown as (Hin=(Ha)t > (Ha)=0 .19

functions of energy, which give the same information as th%olds althou o - ;
) . . ; , gh the total system is in a statistical stationary
variances in Eq(3.13. As is seen from Figs.(8) and 3d), state. In other words, the effect p{(t) is so large that the

our numerical result well realizes the general inequalityy s system cannot be divided into two subsystems when the
0<TP=rP<rP=r. Namely, there are two kinds of

) ) relation(3.17) is valid.
width which tell us how two subsystems accommodate each

other. It is also seen that the stationary state is established at

t=25r., because the distribution of the partial energy has C. Dynamic response function

no strong time dependence after 257 . This situation In order to study what is happenning between two sub-
also coincides with the calculation in Fig. 2 and Fig)3 Systems, let us use the dynamic response function which ap-
and 3b). pears in the coupled master equation given below. By switch-

As is easily verified, the following relations also hold:  ing off the fluctuatiorH ,(t) between two subsystems at time

_ t,, and by evaluating its effects perturbatively in a small time

(HZ)— (Ha)2=(H2 . 0f))1— (Hmead 1))2=T"1" increment aftert;, one gets a set of approximate coupled
(3.19 master equations given by

p1()=—i[Z1+ Z1()]pa(1) —iTrP (1) £g(t,t) pe(t))

t—t,
- fo dT% Xim(t,t—= T){AL Gy (t,t—7) (A" (A™,_ ) p1(t—7)}pg

t-t,
_j d7>, dim(t,t—{A,Gy(t,t— N{A™ p1(t— 7)}pelpe, (3.18

0 Im

p2(t)=—i[ Lo+ Zp()]pa(D) =i TrP(1) £g(t, 1) pe(ty)

t—t, 7
_fo dT% Zim(t,t=1){B",G,(t,t=7)(B"—(B™_ ) pa(t—7)} pg

t—1,
- f 4rS Din(tt— B, Galt,t— H{B™ pa(t— )}pelre, (319

0 Im
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where the symbo{,}pg denotes a Poisson bracket with re- As is seen from Fig. 4, the collective and intrinsic dy-
spect to the canonical variableg;(qg;, i=1 and 2. In Egs.  namical response functions seem to reach stationary values
(3.18 and (3.19, the fluctuation effects are retained up to aroundt, = (40-5Q 7, wWhich is much larger tha20—25
the second order i, (t), andg(t,t’) represents a propa- 7.,. The difference between(20-257., and t,
gator =(40-50) 7., is understood as follows: Although the vari-
ances in Fig. 2 seem to reach some stationary values, there
N L o still remains some small time dependence which can only be
g(t.t )_TeXp[ Ift [1 P(T)]'/{dr}' (3.20 detected by their time derivatives. Since the dynamic re-
sponse functions depend directly on the time derivatives of
Approximate expressions in EqR.18 and(3.19 are good  (g?),—(q;)Z with i=1 and 2, the total system is considered
enough, provided the difference between the present timetg be in a stationary state when the dynamic response func-
and the switching-off time, is sufficiently small. tion has not, dependence. Strictly speaking, therefore, the
The functionsy(t,t—7) and.Zj(t,t—7) appearing in  stationary state for the total system is not establish&8Gt
Egs. (3.18 and (3.19 are thedynamic response functions 25)7.,, but around at=(40-507. .
whereaseg,(t,t—7) and ®,(t,t—7) are thedynamic cor- Let us discuss the dynamic response function after
relation functions These are functions of two time argu- t,=(40-50)r,,. Since there is nd, dependence in the
ments. The explicit expression of the dynamical responsgynamical response functions, the total system as well as its
function is given by two subsystems already reached time-independent stationary
objects. Note that each subsystem is only stationary under
Z(tt— T)EJ J' dpdgy{G;(t—7,t)AK Al pgpy(t— 1), the influence of the other subsystem. As is seen from Fig. 4,
these dynamic response functions show a remarkable prop-
erty: They do not come back to their original valuetat

Xa(tt= T)EJ J dp,da{Gy(t— 7,t) B, B pgpa(t—7), unlike the case with the usual linear response function.

IV. RESPONSE FUNCTION FOR NONLINEAR COUPLING

In order to understand the remarkable feature of the dy-
namic response function shown in Fig. 4, let us introduce
[t - another simple model. The model consists of a harmonic
Gz(t’t’)ETeXP[_'ft,dT[ (/5'2*%2(7')]]' (32D oscillator with the coordinate, massM, and frequency
wq, interacting with a heat bath. The heat bath consists of
where %1, Zi(t), %,, and %,(t), are the Liouvillian cor- N harmonic oscillators described by coordinatesfrequen-
responding tcH;, Hq(t), H,, andH,(t), respectively. cies w;, and the common mass. The Hamiltonian is ex-
As is clear from Eq(3.21), the dynamical response func- Pressed as
tion has two time arguments as compared to the ordinary
linear response function. The latter has only one time argu-
ment, which measures how the subsystem deviates from t
state of equilibration under the influence of an external force.
The former contains another important information. Namely, 2 4
it gives the instantaneous dynamical structure of the sub- Hszp—+—Mw3 2
systems at the switching-off tintg=t — 7, even though they 2M 2
are not in the statistical stationary state, and also how they
evolve in time aftert,. It reduces to the conventional re-
sponse function with only one time argument, which appears Hg= 2
in the linear response theory applicable to the infinite system
[see Eq.(4.5 and Ref.[7]], when the subsystems described For the interactiorH, , we take two kinds of coupling(a)
by (q;,p1) and @,,p,) reach their thermal equilibrium |inear coupling
states. According to the numerical results discussed in the

Gﬂt,t’)zTeXp[—iftdr[%ﬁxl(f)]],
t/

ere,

2m 2

1
p—'+ —mwfxf) . 4.2

previous subsections, the statistical stationary state is ex- N
pected to be established for the total system, when one takes H,=q2 NiXj, 4.3
tIEZO_ZSTCOII- i=1

The numerical method of calculating the dynamic re-
sponse function is found in our previous papgk In Fig. 4,
the dynamic response functiong,(t, + 7,t;) with I=m=1 N
(called collectiye and with I.=m=2 (called intripsic) are leqz Nix2 (4.4)
shown as functions of for varioust, . These functions show =
how each subsystem responds to an “external” force coming
from the coupling to the other subsystem and acting at thén order to study the behavior of the response function for
switching-off timet,. Since they contain partial derivatives the subsystem of the heat bath, which is coupled to the har-
of H,, small fluctuations irH, give a drastic change in the monic oscillator through the above two kinds of interaction,
dynamic response functions. let us introduce the response function

which is applied in Ref[16], and(b) nonlinear coupling
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anl-zmj
p(w;) o (4.9
> the summation over in Eq. (4.7) is replaced by an integral
8 over frequencyw. Here, the parameter is known to be
Q related with the viscosity16]. The response function is fi-
2 nally expressed as
w
(7] 27 1|sinQ7
5 Xin(M) =1~ —Qcodd |,
4
27 (0 o
Xnor 7) =1 ﬁfo cothz—_l_sm2wrdw, (4.9
205 1 15 2 25 30 05 1 5 2 25 3 where() represents the upper limit of the Debye spectrum of
TlME(rm') (a) TlME(fw.) the heat bath. In Fig. 5, the numerical resultsygf(+) and
Xnor(7) are shown. The parameters used ape=0.5,
005 ] ¢ =407 0 =100, andn=1, andr is expressed in units af.,,. As is
ol LT 140 T el seen from Eq(4.9), x;i(7) goes back to its original value of
110y zero like the usual linear response function irrespective of
% 01 80 the temperaturel, when the timer approaches infinity.
E 03 50 However, xno( 7) describing the' response to the nonlinear
O t =51 0l external force shows a quite similar feature to Fig. 4. By
% 01} I el taking 7 infinite, we get
” W W
v 0.1 110 27 (Q w 27T
§ 03 N Xnor( T— ) =i mf_ﬂw Cothz—_l_5(2w)dw—l ol
QMo t =207 170} (4.10
(=4 100% 1 coll ) ) )
140¢ which obviously shows that the response of the thermal equi-
60 110 librium state to a nonlinear external force does not come
2 80 back to its original value, but converges to a constant value
0 03 }M]l; 225 3 003 TiM;is 2 253 when the time approaches infinity. This remarkable feature is
TIME(T ) () T shown in Fig. Bb) for three cases with different tempera-

tures. By comparing Figs. 4 and 5, and by compaiftag,
~ FIG. 4. (a) Dynamic response function with different switching andB' in Eq. (2.1), it is recognized that the specific feature
times t; for collective subsystem, antb) for the intrinsic syb-  of the dynamical response functiontat- (40-50 7., is due

system, for the case witlf=—0.07. to the nonlinear coupling to the other degrees of freedom.
From this comparison, one may understand that the dynami-
X(7)=Trg{Gug(7)B,B} peorz - (4.5  cal response functiofm(t;+ 7,t,) att,>(40-507, is ef-

fectively replaced by the response function for the nonlinear
Here,B denotesB;,= =i, \;x; for the linear coupling case, interaction, yno(7), defined for the thermal equilibrium
and Bnoanszl)\jsz for the nonlinear coupling case. state. Since the effects of the rest subsystem appear only
Gug(7) means a propagator of the heat bath and is expresseadrough the dynamical response and correlation functions,
as which is recognized from Eq$3.18 and (3.19, the possi-
bility of the above replacement implies that the effects of the
Gus(m) =exp{—ir%}; “*={Hg,*}pg. (4.6 rest degrees of freedom on the subsystem under consider-
ation are effectively expressed by the heat bath.
For pyg, we take the canonical ensemble with temperature From the above discussion, one may draw the following

T. The response functiog(7) then takes the form conclusion: When the system with finite degrees of freedom
N reaches some statistical stationary state, and when the system
_.2 \2 1 is divided into two subsystems, the coupling to the other
X””(T)_'j:l i mjszm‘”i ™ subsystem is effectively replaced by that to the heat bath.
N V. SUMMARY

) 2 1 (1)]' A
Xnorl T)_Ijgl M mjzcujZCOch_TSIrlzwj T S In order to study how the wave packet develops depend-
ing on its initial condition, the time evolution process of the
for the linear and the nonlinear coupling interactions, respecbundle of trajectories initially located at a tiny unstable re-
tively. By introducing the Debye spectrum for tié har-  gion (i.e., near the hypabolic poinof the TDHF manifold is

monic oscillator system given by studied within the TDHF theory. In this paper, we have stud-
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, system, when the square root of the variange?),
UNEAR —(H,)? is much larger thagH ,);=0.
20 | (@) / With the aid of the dynamic response functions, various
dynamical states realized in the subsystem during the evolu-
15 1 tion process of the total system are discussed. When the total
system reaches some stationary statistical state, as is clarified
10 T in Sec. Il C, the dynamic response function of the sub-
system shows a remarkable property which is different from
the linear response function usually used in characterizing
0 [\ /\ ANNAA A A infinite condensed matter. It is shown that this specific prop-
\/ VAV VvV erty originates from the nonlinear coupling, and does not
depend on the number of degrees of freedom of the sub-
system or on the statistical assumption. Therefore, it is con-
10 , , , , , cluded that the concept of the temperature is justified micro-
0 2 4 6 8 10 12 scopically even in a finite system with a few degrees of
TIME(r ) freedom. Since the response functions as well as the corre-
lation functions are directly related to the experimental ob-
servables, the complex evolution process of finite many-
body systems might be explored by means of these
functions.

In this paper, we confined ourselves only to the simple
two degrees of freedom problem where it is not possible to
assign the collective degree of freedom or to discuss its dis-
sipation. In deriving the Fokker-Planck- or Langevin-type
transport equations microscopically, one needs more than
three degrees of freedom. In this case, one can find a case
where the total system is divided into two weakly coupled
systems: One is composed of more than two degrees of free-
dom and is in a chaotic situation, and the other is near the
regular motion almost sticking to the KAM torus. In such a
case, the former can be effectively replaced by the heat bath
as we learned from the present investigation, and the dissi-

FIG. 5. (a) Response function for the heat bath with a linear pation mechanism of the latter would be treated by the trans-
Coupling.(b) Response function for the heat bath with a nonlinearport equation_ These treatmentS, app“ed to the giant d|p0|e

and 10, respectively.

25

RESPONSE FUNCTION

25 ]
(b)

20

15

RESPONSE FUNCTION

TIME(r_)
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