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Consistent meson-field-theoretical description ofpp bremsstrahlung
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A parameter-free and relativistic extension of the RuhrPot meson-baryon model is used to define the d
nant isoscalar meson-exchange currents. We computepp-bremsstrahlung observables below the
p-production threshold using a relativistic hadronic current density that includes impulse, wave funct
reorthonormalization, meson-recoil,N̄N creation and annihilation,rpg 1 vpg 1 rhg 1 vhg vector-meson
decay, andNDg(p,r) exchange currents. We obtain a good description of the available data. TheNDg(p)
current is shown to dominate the large two-body contributions and closed-form expressions for various n
relativistic approximations are analyzed. An experimental sensitivity to the admixture of pseudoscalar
pseudovector admixture of theNNp interaction is demonstrated. We examine the Lorentz invariance of th
NN
NN t matrices and show a dominantly pseudovectorNNp coupling renders impulse approximation
calculations without boost operators to be essentially exact. Conversely, a similar analysis of theDN
NN
transitions shows that boost operators and the two-bodyNDg wave function reorthonormalization meson-
recoil currents are required inNN, DN, andDD coupled channelt-matrix applications. The need for additional
data is stressed.

PACS number~s!: 13.75.Cs, 25.20.Lj
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I. INTRODUCTION

The realization that meson-exchange currents play a v
role in the description of the low-energypp-bremsstrahlung
observables has consequences which are only now comin
be understood. For example, the traditional objective ofpp-
bremsstrahlung investigations, as indicated in Fig. 1, cent
on the capacity of experiment to differentiate the accuracy
the off-shell t matrices that are predicted by a range o
model-dependentNN interactions. This is now recognized
@1,2# as an exceedingly difficult task and, at best, is conti
gent on a completely reliable and consistent description
the associated meson-exchange currents. As such, a m
ingful calculation of thepp-bremsstrahlung observables re
quires knowledge of the meson-baryon form factors, meso
exchange currents, and theNN interaction within a fully
consistent and microscopic effective theory.

Recognizing the importance of exchange currents inpp-
bremsstrahlung implies a complete departure form the co
ventional approach to the problem and considerably chan
the nature of such investigation. For many yearspp-
bremsstrahlung was regarded as something of a special c
in nuclear physics because both meson-exchange curr
and relativistic effects were expected to be small. The pr
ciple reason for this expectation stems from the fact th
gauge invariance demands the real photon couples only
conserved currents, so that then-body parts of the complete
hadronic currentJ@n# for any givenNN interactionVNN must
satisfy

05¹•JW1 i @H,J0#,

⇒05H ¹•JW @1#1 i @H0 ,J@1#
0 # ~one body!,

¹•JW @2#1 i @VNN ,J@1#
0 #

1 i @H01VNN ,J@2#
0 # ~two body!

. ~1.1!
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To isolate the dominant contributions to the observables, it
useful to consider only the static limit, where the two-bod
charge densityJ@2#

0 can be ignored. The isospin structure o
the exchange currentsJW @2# for isovector mesons (p,r,. . .!
then reduces to (tW13tW2)

z, which vanishes in isospin con-
serving processes likepp-bremsstrahlung. Relativistic pro-
cesses can also be expected to be small since the domin
p-exchange contributions to theNN̄-pair creation and anni-
hilation amplitudes share this isospin structure. Finally, a
NNg couplings with meson-recoil terms can be neglecte
since they are exactly canceled by the corresponding wa
function reorthonormalization contributions@3#. All of this
information suggests that a static limit description ofpp-
bremsstrahlung involves only the photon coupling to one
the protons either before and/or after~but not during! strong
interaction. The leading-order exchange currents, accord
to this analysis, begin with theh ~549 MeV!, v ~782 MeV!,
and e ~975 MeV! isoscalar mesons, and can therefore b
reasonably neglected.

FIG. 1. Relationship between the on-shellt matrix in pp scat-
tering, (p,p) and the off-shellt matrix in pp bremsstrahlung
(p,pg). The parameters in theNN interactionV defining t5V
1VGt ~shown as a bubble! are fitted to the (N,N) phase shifts.
Bremsstrahlung is usually considered in nucleon-pole dominan
where~a! initial, ~b! final, and~c! rescattering interactions are re-
tained, but all meson-exchange currents are neglected. Within t
assumption, bremsstrahlung has been regarded as the best mea
testing the off-shellt matrix. However, a sensitivity to off-shell
effects requires a large photon energy, so thatG5(E2H0)

21 di-
minishes the dominant nucleon pole contributions and the exchan
currents become important.
1102 © 1996 The American Physical Society
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53 1103CONSISTENT MESON-FIELD-THEORETICAL DESCRIPTION . . .
However, the above analysis is flawed for several reas
Even within the static limit there are purely transverse c
rentsJW t which automatically satisfy¹•JW t 50, so that current
conservation places no constraints on the manifestly ga
invariantrpg, vpg andNDg exchange currents shown i
Fig. 2. None of these two-body currents can be includ
simply by introducing the commutators shown in Eq.~1.1!,
yet they all possess nonvanishing isoscalar contributi
which can be important inpp-bremsstrahlung. In addition, a
new experiments have succeeded in selecting kinematics
escape the consequences of the low-energy theorems@4,5#
and on-shell expansions@6,7#, they necessarily emphasiz
dynamics where the~usually dominant! nucleon-pole contri-
butions of Figs. 1~a!–~c! are heavily suppressed by th
Green’s functions accompanying the highly off-shellt ma-
trix. As such, otherwise less important contributions g
considerable significance in the observables. This shows
the pp-bremsstrahlung dynamics involves much more th
the off-shellt matrix and the impulse current, and appears
share the complexity of other observables likenp-
bremsstrahlung andn1p
d1g.

A very long list of pp-bremsstrahlung calculations hav
been reported over the last 45 years. We will make no
tempt to review them all since more recent works@8–20#
already contain appropriate citation and serve to remov
number of questionable approximations. A notable excep
to this trend is found in the very detailedr -space calculations
reported some 25 years ago by Brown@21,22#, where the
rescattering amplitudes of Fig. 1~c! were retained and Eq
~1.1! was used to constrain the longitudinal meson-excha
currents. Noteworthy calculations since that time have g
erally been less complete, but find their merit in the appli
tion of more reliableNN interactions and the exploration o
Coulomb corrections@17# and relativistic corrections to th
impulse current@8,11,14,16#. Only a few of the most recen
pp-bremsstrahlung calculations@1,15,19,20# attempt a sig-

FIG. 2. Currents included in the present calculations:~a! im-
pulse current,~b! radiative vector-meson decay currentsVPg 5
rpg 1 vpg 1 rhg 1 vhg, ~c! NDg p- andr-exchange cur-
rents, ~d! and ~e! wave function reorthonormalization and~f!
NNg meson-recoil currents, and~g! and ~i! NN̄-pair creation and
annihilation currents. In each of~d!–~f! and ~g!–~i! we show 3 of
the 12 time-ordered diagrams with the energy cuts represente
dotted lines. None of the exchange currents~b!–~i! can be obtained
from Eq ~1.1!.
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nificant improvement on the standard set by Brown, althou
there are important technical differences in these works th
we will need to consider.

In the present work we will subject the RuhrPot descrip
tion of meson-baryon interactions to the test of reproduci
the pp-bremsstrahlung data below thep-production thresh-
old. The reasons for selecting this effective theory are t
following.

~1! A microscopic definition of the strong form factors is
available from nonperturbative and self-consistent calcu
tion @23#. The results are compatible with Skyrme@24#, non-
topological soliton@25#, and bag-model@26# calculations,
and moreover, with an analysis of experiment@27#.

~2! An NN-interaction model using calculated~not fitted!
form factors has been constructed and gives an excellent
scription of the world data for theNN-scattering phase shifts
@28#.

~3! The extension to include meson-exchange currents
the calculation of observables introduces no free paramet
whatsoever@1,15#.

~4! A parameter free extension of the model to define th
three-body interaction has been shown to provide an accur
description of the triton bonding energy@29#.

We indicate the relationships between the form factor
theNN interaction, and the exchange currents in Fig. 3. A
though such consistent calculations can~in principle! be per-
formed for any effective meson field theory, such work ha
so far only been completed for the RuhrPot description and
appears that there are severe difficulties in obtaining simi
consistency in other models. For example, the RuhrPot fo
factor calculations have been modified to adopt the coupli
constants of a conventional boson-exchangeNN interaction
and yield results@23# which can be accurately parametrize
as monopoles with typical regularization scales ofL;0.8
GeV. While consistency demands the use of such form fa
tors, conventional boson-exchange models require@30# arti-
ficial scales~‘‘cutoffs’’ ! of Lp>1.3 GeV andLr;1.8 GeV.
Such an artificial description of the meson-nucleon vertic

by

FIG. 3. In the RuhrPot effective meson field theory, meso
baryon form factors are calculated nonperturbatively and the resu
are used without adjustment as input for subsequent calculations
electromagnetic form factors, theNN interaction and the meson-
exchange currents. Such consistency is necessary, for example
satisfy gauge invariance~which relates the meson-exchange cu
rents to theNN interaction! and ensure orthonormality of the wave
functions~through inclusion of wave function reorthonormalization
exchange currents!.



g

tic
m-
il-
nt
ta
he
re

s-
c-

c-
n,

li-

n
te,
e

1104 53J. A. EDEN AND M. F. GARI
necessarily frustrates any attempt to obtain a realistic d
scription of the meson-exchange currents and the 3N inter-
action.

Coupled channelt matrices providing a nonperturbative
description of all possible transitions betweenNN, DN, and
DD states have been available for more than 25 years@31–
33# and have already been used to calculate theD-isobar
contributions topp-bremsstrahlung observables@19,20#. Un-
der these circumstances it may appear curious that we cho
to develop a perturbative description of theNDg p- and
r-exchange currents. However, the coupled channelt matri-
ces used in recentpp-bremsstrahlung calculations are ob
tained by the inconsistent combination of the Paris@34#
NN
NN and a static limit version of the Ried-parametrize
Bochum @32# NN
DN interaction. It is therefore impos-
sible to accurately remove the double-counted two-pion e
change amplitudes with intermediateND states, so a free
parameter is introduced to permit an approximate subtracti
procedure. As such, this approach discards from the out
any hope of obtaining a microscopic description and th
quality of the results must be interpreted in terms of a mea
ingless parameter. We will later show that, even if these i
consistencies were to be resolved by fully consistent calc
lation, such an approach is contingent upon a reliab
description of boost operators, as well as~a subset of! the
relativistic meson-exchange currents that will be develope
in this work.

In the present work we develop our earlier descriptio
@1,14,15# of the RuhrPot meson-baryon interactions in th
pp-bremsstrahlung data below thep-production threshold.
In @14# we included the relativistic single and rescatterin
impulse-current amplitudes, and in@1,15# we introduced the
fully relativistic description of the radiative vector-meson de
cay currents and the nonrelativistic description of th
NDgp- andr-meson-exchange currents without recourse
the soft-photon approximation. In the present work we inve
tigate a number of important extensions. In particular, aft
describing our model-independent formalism in Sec. II, w
provide in Sec. III the first bremsstrahlung calculations in
cluding a fully relativistic description of the wave function
reorthonormalization and meson-recoil currents that are r
quired to ensure the orthonormality of the wave functions
preserved. We also investigate the Lorentz structure of t
NNp vertex by providing the first calculations for the purely
relativistic NN̄ pair creation and annihilation currents. We
further present relativistic expressions for theNDg p- and
r-exchange currents and identify the source of error in va
ous approximations. Supporting calculation details are su
and fornp-bremsstrahlung we require
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plied in the three appendices. In Sec. IV, after establishin
the sensitivity of the selectedpp-bremsstrahlung observables
to each of these currents and concluding that a relativis
calculation of the isobar amplitudes is necessary, we co
pare our relativistic results with the complete data set ava
able from the 1990 TRIUMF pp-bremsstrahlung experime
@35#. We obtain a good description of the experimental da
and conclude that a large pseudoscalar admixture in t
NNp Lagrangian is ruled out. Further conclusions and futu
objectives are given in Sec. V.

II. FORMALISM

A. Observables

We begin by presenting the model-independent expre
sions we require for the calculation observables for the rea
tion N1N→N1N1g. TheSmatrix from covariant pertur-
bation theory

Sf i5d f i2 i E d4x^ f uJm~x!Am~x!u i &1••• ~2.1!

gives the probability amplitude for a transitionu i &→u f & as a
series involving 0,1, . . . interactions where the photon field
Am(x) couples to the hadronic current densityJ

m(x). Since
only terms with an odd number of electromagnetic intera
tions can contribute to the production of a single real photo
and each of these diminishes bya;1/137, we retain only
the lowest-order contribution and define the transition amp
tude as

~2p!4T f id
~4!~Pf2Pi !52 i E d4x^ f uJm~x!Am~x!u i &.

~2.2!

Following a well-trodden path, we integrate the transitio
amplitude over the phase space available to the final sta
and divide by the incident flux, so that with plane wav
normalized to ad function, we obtain the lab-frame differ-
ential cross section as

d3s

dV3dV4dug
5

~2p!25 1
2 m

3

upW 1u
uM̃ f i u2Jps , ~2.3!

where, for thepp- and nn-bremsstrahlung reactions, we
have
uM̃ f i u2 5H uM f i
2 u if MSi

, MSf
, l measured,

1

4 (
SiMSi

(
SfMSf

(
l51

2

uM f i u2 if MSi
, MSf

, l not measured,
~2.4!
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uM̃ f i u2 55
1

2 (
Ti ,Tf

uM f i u2 if MSi
, MSf

, l measured,

1

8 (
Ti ,Tf

(
SiMSi

(
SfMSf

(
l51

2

uM f i u2 if MSi
, MSf

, l not measured,

~2.5!
d in

t

-

-

lab
with the invariant amplitude given by

M f i5 i ~2p!15/2m22@2vE1E2E3E4#
1/2T f i . ~2.6!

We retain only the transverse polarization vectors for the re
photon since, within the Gupta-Bleuler quantization forma
ism, the longitudinal and scalar components can be made
cancel with a gauge transformation, and therefore cannot
fect the observables. The ‘‘phase-space factor’’Jps appearing
in Eq. ~2.3! is defined for arbitrary noncoplanarity
F5(p1f32f4)/2 as

Jps5
p3
2p4

2

E3E4ucosuguU N

ksinugcosug
U21

~2.7!

with

N5~p4sinu42p3sinu3!@sin~u31u4!2~b3sinu4

1b4sinu3!cosug#2ksin2ug~b3cosu42b4cosu3!

12sinu3sinu4sin
2F@~p3cosu32p4cosu4!

2~p3b32p4b4!cosug#, ~2.8!

where we useb i5pi /Ei for laboratory-frame reaction kine-
matics p11p2→p31p41k. We realize that in the limit
-

al
l-
to
af-

ug→0, whereF→0 is guaranteed,N21 possesses singulari-
ties butksinug /N remains well defined. Our description of
kinematics and phase space is the same as that reporte
the detailed discussion of@36#. As such, it is sufficient to
note that in@36# it was shown thatJps possess a square roo
singularity at the kinematic limit of noncoplanarity, although
in the present work we avoid the nonrelativistic simplifica
tions discussed therein.

For the calculation of polarized observables it is conve
nient to denoteds(6 î ) as the cross section of Eq.~2.3!
measured with the beam polarized in the6 î direction. We
choose the quantization axis as the beam direction in the
frame, and define the vector analyzing powers as

Ai5
ds~1 î !2ds~2 î !

ds~1 î !1ds~2 î !
5

(TiTfl
Tr$M f i~sW • î !@1#M f i

† %

(TiTfl
Tr$M f iM f i

† %
,

~2.9!

where i5 x̂,ŷ, or ẑ in the lab frame. Similarly, the tensor
analyzing powers~sometimes called ‘‘spin-correlation coef-
ficients’’! are given by
Ai j5
ds~1 î ,1 ĵ !1ds~2 î ,2 ĵ !2ds~1 î ,2 ĵ !2ds~2 î ,1 ĵ !

ds~1 î ,1 ĵ !1ds~2 î ,2 ĵ !1ds~1 î ,2 ĵ !1ds~2 î ,1 ĵ !
5

(TiTfl
Tr$M f i~sW . î !@1#~sW . ĵ !@2#M f i

† %

(TiTfl
Tr$M f iM f i

† %
~2.10!
l-

re-
ee-
-

where, for example,ds(1 î ,2 ĵ ) is the cross section mea
sured with the beam polarized in the1 î direction and the
target polarized in the2 ĵ direction.

B. The Hadronic current

To obtain a microscopic definition of the invariant ampl
tude we compute the Fock-space matrix elements of the p
ton field and hadronic current densities appearing in E
~2.2!, so that after making use of translational invariance a
selecting the Lorentz-Heaviside system with natural uni
Eq. ~2.6! can be recast as

M f i5~2p!6m22AE1E2E3E4em~kW ,l!^C f
~2 !uJm~0!uC i

~1 !&,
~2.11!

where the field-theoretic hadronic current is given by
i-
ho-
q.
nd
ts,

Jm~x!5]n

]L

]~]nAm!
2

]L

]Am
~2.12!

for the LagrangianL describing electromagnetic interac-
tions with the interacting meson-baryon system. Direct ca
culation of Eq. ~2.11! is impossible sinceuC i

(1)& and
uC f

(2)& represent complete meson-baryon states and the
fore involve nucleon, resonance and meson degrees of fr
dom to infinite order. The problem can, however, be ap
proached with a Hamilton formalism@3# where the total
Hilbert space is partioned into meson1resonance
1antinucleon vacuum and existing subspaces,

Hh5$uNN&%, Hl5$uthe rest&%. ~2.13!

We will refer to these subspaces as theh space, andl space,
respectively. Definingh and l as operators satisfying the
conventional algebrah25h, l25l and hl5lh50 and
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1106 53J. A. EDEN AND M. F. GARI
which project out the components ofHh andHl , respec-
tively, we apply a unitary transformation to decouple th
meson-resonance vacuum and existing components of w
functions. Although this formalism makes provision for ap
plications involving~for example! explicit meson and/orD
~see Appendix A! degrees of freedom in the initial and fina
states, we confine our present application to energies be
thep-production threshold, so that the complete interactin
meson-baryon wave function can be written as

uC&5~11A!
1

A11A†A
uX &, ~2.14!

where uX & is the two-nucleon state vector andA5lAh is
required to satisfyl(H1@H,A#2AHA)h50. In particular,
we can expand bothA and the HamiltonianH in powersn of
the coupling constant, so that with the free-particle ener
denoted asH0 , we have

H5H01 (
n51

`

Hn , A5 (
n51

`

An ~2.15!

and note thathHIh5hH0l5lH0h50, to obtain

05 (
n51

`

lFHn1@H0 ,An#1 (
i51

n21

HiAn2 i

2 (
i51

n22

(
j51

n2 i21

AiH jAn2 i2 j Gh. ~2.16!

We are free to further constrainA by demanding Eq.~2.16! is
satisfied at each order ofn, as would be required for any
perturbative application. SinceH0huC&5E ihuC&, where
E i is the asymptotic energy of the free two-nucleon state, w
obtain

~E i2H0!An5lFHn1 (
i51

n21

HiAn2 i

2 (
i51

n22

(
j51

n2 i21

AiH jAn2 i2 j Gh. ~2.17!

SinceA050, we have

A15
l

E i2H0
H1h, ~2.18a!

A25
l

E i2H0
H2h1

l

E i2H0
H1

l

E i2H0
H1h.

~2.18b!

Finally, with

HI52E Ld3x ~2.19!

we observe thatA is completely determined by the strong
interaction Lagrangian density defining any model of inte
est. Combining Eqs.~2.11! and ~2.14!, we then obtain
e
ave
-

l
low
g

gy

e

r-

M f i5~2p!6m22AE1E2E3E4^X f uem~kW ,l!Jeff
m ~0!uX i&,

~2.20!

where

Jeff
m ~0!5h

1

A11A†A
~11A†!Jm~0!~11A!

1

A11A†A
h

5hFJm~0!1Jm~0!A1A†Jm~0!1A†Jm~0!A

2
1

2
Jm~0!A†A2

1

2
A†AJm~0!1••• Gh ~2.21!

is the effective meson-baryon current density. Equatio
~2.21! provides a time-ordered relativistic description of the
impulse- and meson-exchange currents implied by the stro
interaction Lagrangian density defining any model of inter
est. This provides, without approximation, a noncovarian
three-vector representation where all particles are confined
their mass shells and energy need not be conserved at in
vidual vertices. An intuitive understanding of the processe
embedded in the effective current density can be obtained
noting that the operatorA is always associated with transi-
tions from theh space into thel space, so that with our
present definitions,A serves to create meson1resonance
1antinucleon existing states andA† serves to restore purely
two-nucleon states. In the second-order expansion of th
current we observe direct termsJ, initial- and final-state in-
teraction termsJA 1 A†J, meson-recoil termsA†JA, and
wave function reorthonormalization termsJA†A andA†AJ.
The wave function reorthonormalization terms result directl
from the requirement that the transformation used to obta
Eq. ~2.14! is unitary — or equivalently, from the fact that we
insist upon working with orthonormal wave functions. This
point has been discussed in considerable detail elsewhere@3#.

We select a momentum-space representation and perfo
a t-matrix expansion of the two-nucleon wave functions ac
cording to the standard procedure. With the photon fie
quantized in the Gupta-Bleuler formalism, we require onl
the transverse polarization vectors. Since these have a v
ishing time component, we require only the spacial parts
the effective current density, so that

M f i5NeW~kW ,l!^pW 3pW 4 ;ã f uJW eff~0!upW 1pW 2 ;ã i& ~2.22a!

1NeW~kW ,l!^pW 3pW 4 ;ã f uJWeff~0!Git
~1 !upW 1pW 2 ;ã i& ~2.22b!

1NeW~kW ,l!^pW 3pW 4 ;ã f ut ~2 !†GfJWeff~0!upW 1pW 2 ;ã i& ~2.22c!

1NeW~kW ,l!^pW 3pW 4 ;ã f ut ~2 !†GfJWeff~0!Git
~1 !upW 1pW 2 ;ã i&%,

~2.22d!

whereGi andGf areh-space Green’s functions describing
the propagation of two-nucleon states and

N52~2p!6m22AE1E2E3E4. ~2.23!
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TABLE I. RuhrPot parameters adopted in the present calculation. AllNN-meson form factors are taken
from direct calculation. For thee meson this requires a meson scale ofL150.6 GeV, whereas all other
mesons requireL150.8 GeV.~Further details can be found in@23,28#.! We adopt the experimental results
grpg50.53,gvpg52.58,grhg51.39,gvhg50.15, andk is520.12,k iv53.706. SU~6! and vector dominance
indicatemND53.993.

b mb ~MeV! gNNb kb ~GeV!22 Sb
kSb gDNb

p 136.5 12.922 ••• 49.516 ••• 28.85
h 548.8 6.015 ••• ••• ••• •••

r 776.9 1.651 6.400 0.0124 28.105 20.73
v 782.4 4.945 1.088 12.379 0.4334 •••

d 983.0 6.043 ••• ••• ••• •••

e 975.0 10.567 ••• 5.6911 ••• •••
e

i

e

ss

n
a-
s
r-
The four terms shown in Eq.~2.22! will be referred to as
direct, initial-state, final-state, and rescattering amplitud
respectively.

III. MODEL DEFINITION AND CALCULATION DETAILS

A. The RuhrPot Lagrangian

We adopt the strong-interaction Lagrangian densities,

LNNp52 igNNpc̄S lg52~12l!
1

2m
g5gm~ i ]m! DcpW •tW ,

LNNh52
gNNh

2m
c̄g5gm]mch,

LNNr52gNNrc̄gmcrW m•tW ,

LNNv52gNNvc̄gmcvm ,

LNNd52gNNdc̄cdW •tW ,

LNNe52gNNec̄ce,

LNDp52
gNDp

2m
c̄mtWNDc]mpW 1H.c.,

LNDr52 i
gNDr

2m
c̄mg5gntWNDcrW mn1H.c., ~3.1!

where rmn5]mrn2]nrm , and we have denotedgNDr5
mNDgr , gNNr5(1/2)gr , andgNNv5(1/2)gv , wheregr and
gv the strong charges for ther andv gauge fields. For the
electromagnetic-interaction we use the Lorentz-Heavis
system with natural units, where the charge of the proton
defined asep51A4pa with a;1/137.04, and we adopt th
Lagrangians
s,

de
is

LNNg52eNc̄gmcAm1
epkN

2m
c̄smn]nAmc,

LPVg52
epgPVg

2mV
emnstFmnfW s

V
•]tfW

P,

LNDg52 i
ep
2m

mNDc̄mg5gntND
3 cFmn1H.c., ~3.2!

whereFmn5]mAn2]nAm , fW V5rW or v, fW P5pW or h, eN5
ep@(11t3)/2# and mN5(11k is)/21@(11k iv)/2#t3 5 11
kN with k is520.12 andk iv53.706.

These Lagrangians describe the bare coupling of ma
renormalized fields. The form factors describing the coupling
constant renormalization have been calculated@23# as a
coupled set of integral equations yielding results which ca
be accurately parametrized as monopoles with the regulariz
tion scales shown in Table I. These renormalized coupling
are implemented by replacing the Lagrangians with the ve
tex functions describing their dressed counterparts,

GNNp52 igNNpFNNpc̄

3S lg52~12l!
1

2m
g5gm~ i ]m! DcpW •tW ,

GNNh52
gNNhFNNh

2m
c̄g5gm]mch,

GNNr52gNNrc̄S FNNr
~1! gm2

krFNNr
~2!

2m
smn]nDcrW m•tW ,

GNNv52gNNvc̄S FNNv
~1! gm2

kvFNNv
~2!

2m
smn]nDcvm ,

GNNd52gNNdFNNdc̄cdW •tW ,GNNe52gNNeFNNec̄ce,

GNDp52
gNDpFNDp

2m
c̄mtWNDc]mpW 1 H.c.,

GNDr52 i
gNNrG NDr

2m

gNDp

gNNp
c̄mg5gntWNDcrW mn1H.c.,

~3.3!

whereGNDr5FNDr
(1) 1krFNDr

(2) and we normalize all form fac-
tors asF(0)51. As in other exchange-current applications
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@37# the experimentally unknown values ofgNDr520.73 and
mND53.993 are fixed according to SU~6! @38,39# and vector-
meson dominance as

mND5mN
iv gNDp

gNNp
, gNDr5gNNr~11kr!

gNDp

gNNp
, ~3.4!

wheremN
iv5 1

2 GM
V(0)52.353. Note that the tensor coupling

kr andkv are absent from the Lagrangians of Eq.~3.1! but
appear in the dressed vertex functions of Eq.~3.3! since they
are directly computed from the loop integrals appearing
the form factor calculation@23#. A similar consideration for
the electromagnetic form factors is obviously not requir
for the real photon.

TheNNa properties are taken from the fit of the RuhrP
two-nucleon interaction@28# to theNN-scattering data. The
form factor scales adopted in@28# were actually calculated
within a nonrelativistic framework@40,41#, but the recent
relativistic calculation@23# has confirmed the parameteriz
tions. We acknowledge some ambiguity in the signs of
PVg coupling constants@42,43# but adopt grpg50.53,
gvpg52.58,grhg51.39, andgvhg50.15, as reported in@44#.
We use the experimental resultgNDp 5 28.85, which is con-
sistent with the Chew-Low@45# and strong-coupling@46–
48# models and, moreover, with the form factor calculatio
@23#. We will not fiddle with these values in order to opt
mize selected experimental results since this would spoil
consistency between the calculation of the meson-bar
form factors, theNN interaction and the exchange curren

FIG. 4. NNg wave function reorthonormalization and meso
recoil exchange currents. These currents are necessary to pre
the orthonormality of the initial- and final-state wave functions.
s

in

ed

ot

-
the

ns
i-
the
yon
s.

B. Impulse and exchange currents

We describe here the impulse and meson-exchange c
rentsJeff , as required in Eq.~2.22!. We adopt a partition of
Hilbert spaces into meson1resonance1antinucleon vacuum
and existing parts, as described in Sec. II. In the present wo
we confine our attention to leading-order exchange curren
involving the electromagnetic coupling to theNN, N̄N,
PV5rp, vp, rh, andvh andND currents, so that

Jeff5Jeff
NN1Jeff

N̄N1Jeff
PV1Jeff

ND. ~3.5!

The effective current can therefore be derived unambigu
ously from Eqs.~3.2!, ~3.3!, ~2.12!, ~2.18!, ~2.19!, and~2.21!.
Throughout we describe the momenta of a meson with ma
mb with

qW 15pW 32pW 1 , v15AqW 121mb
2, q1

05E32E1 , Q1
252q1

2,

qW 25pW 42pW 2 , v25AqW 221mb
2, q2

05E42E2 , Q2
252q2

2 ,
~3.6!

and, denoting the nucleon andD-isobar masses asm and
mD , we condense our notation with

pW ik5H pW i2kW for i51,2,

pW i1kW for i53,4,

Eik5ApW ik1m2, E ik5Eik1m,

ED ik5ApW ik1mD
2 , ED ik5ED ik1mD . ~3.7!

1. Impulse and exchange currents
with the relativistic NNg vertex

For the partition of Hilbert spaces defined in Sec. II B, al
contributions involving a vertex where the photon couples t
the nucleon current must satisfylJNNh5hJNNl50, so that
Eq. ~3.5! requires

^pW 3pW 4u@Jeff
NN#mupW 1pW 2&5JNNg

m @1#~pW 1 ,pW 3!d~pW 42pW 2!

1JNNg
m @2#~pW 2 ,pW 4!d~pW 32pW 1!

1^pW 3pW 4uJWFRR
m upW 1pW 2&, ~3.8!

where the first two terms describe the impulse currents fo
nucleons 1 and 2, and the last term denotes the wave fun
tion reorthonormalization and meson-recoil currents

n-
serve
^pW 3pW 4uJWFRR
m upW 1pW 2&52gst

3(
b

@Dabc
NNbJNNg

m @1#~pW 3k ,pW 3!HNNb
s @1#~pW 1 ,pW 3k!HNNb

t @2#~pW 2 ,pW 4!

1Ddef
NNbHNNb

s @1#~pW 1k ,pW 3!HNNb
t @2#~pW 2 ,pW 4!JNNg

m @1#~pW 1k ,pW 1!#1~1,3
2,4!, ~3.9!
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whereb 5 p, h, r, v, d, and e, and the factor2gst
resulting from the contraction of the vector-meson polariz
tions and all references to the Lorentz indicess andt are to
be ignored for the scalar mesons. Explicit expressions for
vertex functionsHNNb and currentJNNg are supplied in Ap-
pendix B. The propagator functions are labeled in corresp
dence to Fig. 4 and are defined as

Dabc
b 5

1

@E42E22v2#@E12E3k2v2#

1
2 1/2

@E32E12v2#@E22E42v2#

1
2 1/2

@E31E42E3k2E22v2#@E12E3k2v2#
,

Ddef
b 5

1

@E32E1k2v2#@E22E42v2#

1
2 1/2

@E42E22v2#@E12E32v2#

1
2 1/2

@E32E1k2v2#@E11E22E1k2E42v2#
.

~3.10!

In the static limit we note thatDabc
b 5Ddef

b 50 so that the
wave function renormalization and meson-recoil exchan
a-

the

on-

ge

currentsJWFRR
m simply vanish. The same conclusion can b

reached within the soft-photon approximation in the baryce
tric frame.

Since we will avoid these approximations, we are force
to accept that a relativistic description of the photon couplin
to the positive-frequency components of the impulse curre
JNNg

m necessarily leads to an effective current densityJeff
comprising both one- and two-body operators. These tw
body contributions have, to date, never been explicitly i
cluded in any of the bremsstrahlung calculations that seek
include the relativistic components of theNNg vertex.

2. Pair currents

The sum of one-body impulse-currentsJNNg
m and the wave

function reorthonormalization and meson-recoil exchan
currentsJWFRR

m do not exhaust the requirements needed
obtain a relativistic description of the photon coupling to th
nucleon current density since the off-shell nucleon compris
a linear superposition of positive and~so far neglected! nega-
tive frequency components. In the Feynman-Stu¨ckelberg ap-
proach, the negative-frequency components of the off-sh
nucleon field are interpreted as antiparticles, so we are led
introduce the photon coupling to theNN̄-pair creation and
annihilation currents.

Within our partition of Hilbert spaces, the
photon coupling to theNN̄-pair creation and annihilation
vertices must satisfyhJN̄Nh50, so that Eq.~3.5! requires
^pW 3pW 4u@Jeff
N̄N#mupW 1pW 2&52gst

3(
b

@Dabc
NN̄bH

NN̄b

s
@1#~pW 1 ,pW 3k!HNNb

t @2#~pW 2 ,pW 4!JN̄Ng

m
@1#~pW 3k ,pW 3!

1Ddef
NN̄bJ

NN̄g

m
@1#~pW 1k ,pW 1!HN̄Nb

s
@1#~pW 1k ,pW 3!HNNb

t @2#~pW 2 ,pW 4!#1~1,3
2,4!, ~3.11!
.
ng
y
q.
whereb 5 p, h, r, v, d, ande, and the factor2gst and
all references to the Lorentz indicess and t are to be ig-
nored for the scalar mesons. Explicit expressions for the p
creation and -annihilation currentsJNN̄g and JN̄Ng and all
required vertex functions are described in Appendix B. T
propagator functions are labeled in correspondence to Fig
and are defined as

Dabc
b 5

1

@2E3k2E12v2#@E42E3k2E12E2#

1
1

@E42E22v2#@E42E3k2E12E2#

1
1

@2E3k2E12v2#@E22v22E4#
,

air-

he
. 5

Ddef
b 5

1

@E22E1k2E32E4#@2E1k2E32v2#

1
1

@E22E1k2E32E4#@E22v22E4#

1
1

@E42v22E2#@2E1k2E32v2#
.

~3.12!

We will adopt these expressions for our numerical work
Nonetheless, it is interesting to consider the correspondi
result under various approximations. If we demand energ
conservation across the current matrix elements, then E
~3.12! reduces to
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Dabc
b 5

22v2

~E31k1E3k!~q2
22mb

2 !
;
nr 2

v2 ~2m1k!
;
spa 1

v2m

Ddef
b 5

22v2

~E12k1E1k!~q2
22mb

2 !
;
nr 2

v2~2m2k!
;
spa 1

v2m
, ~3.13!

where we also provide the static-limit and soft-photon reductions. The correspondingp-exchange contribution under such
approximations are

^pW 3pW 4u@Jeff
N̄N#mupW 1pW 2& ;

nr lep gNN p
2 FNN p

2 ~qW 2!

~2p!6 4m~qW 2
21mp

2 !
sW 1~sW 2•qW 2! H ~1 1 t1

z!tW1•tW2
2m 2 k 2

tW1 • tW2 ~1 1 t1
0!

2m1k J 1~1
2!,

^pW 3pW 4u@Jeff
N̄N#mupW 1pW 2& ;

spa 2lepgNNp
2 FNNp

2 ~qW 2!

~2p!64m2~qW 2
21mp

2 !
sW 1~sW 2•qW 2!~ i tW13tW2!

3 1 ~1
2!. ~3.14!
t
e

a

e
-

ur-
n of
Both of these results scale linearly with the parameterl
controlling the admixture of ps- and pv couplings in th
NNp Lagrangian, but the well-known isovector structure
the nonrelativistic pair currents holds only for soft photon
Since the data with which we will compare our results w
planned to maximize the photon energy, we anticipate a n
negligible contribution fom the isoscalar components of E
~3.11!. This offers the possibility of studyingl without the
complications of describing the many leading-order e
change currents that contribute tonp-bremsstrahlung.

3. PVg currents

The v meson~782.4 MeV! decays asv→p0g with an
8.7% branching ratio and indicates the coupling constan
gvpg52.58. As such, thevpg exchange currents can b
expected to make a nontrivial contribution to both thepp-
and np-bremsstrahlung observables. Analogous argume
indicate that therpg contributions will be large innp-
bremsstrahlung, and perhaps also of some lesser import
in pp-bremsstrahlung.

Our desire to preserve complete consistency between
form factors,NN interaction, and the exchange curren
leads us to introduce all leading-order exchange currents
scribing the photon coupling to the decay of all vector-mes
mesons present in the form factor andNN-interaction calcu-
lations. We therefore include thePVg 5 rpg 1 vpg 1
rhg 1 vhg exchange currents as shown in Fig. 6. Each
these vertices satisfieshJP̄Vh50, so that after making use o
Eqs.~3.2!, ~2.12!, and~2.21!, Eq. ~3.5! requires

^pW 3pW 4u@Jeff
VP#mupW 1pW 2&5

A4vP~qW 1!vV~qW 2!

~2p!3mV@q1
22mP

2 #@q2
22mV

2 #

3HNNP@1#~pW 1 ,pW 3!en~ q̂2 ,lV!HNNV
n @2#(pW 2 ,pW 4)JVPg

m ~q1 ,q2!

1~1,3
2,4!, ~3.15!

where JVPg is given in Appendix B. We require only the
three-vector current, for which the relativistic form is
e
of
s.
as
on-
q.

x-

of

nts

nce

the
ts
de-
on

of
f

^pW 3pW 4uJWeff
VPupW 1pW 2&

52
epgVPgFVPgA4vP~qW 1!vV~qW 2!

~2p!3mV@q1
22mP

2 #@q2
22mV

2 #
HNNP@1#~pW 1 ,pW 3!

3$HNNV
0 @2#~pW 2 ,pW 4!@qW 13qW 2#1HW NNV@2#~pW 2 ,pW 4!

3@~q2!0qW 12~q1!0qW 2#%1~1,3
2,4!. ~3.16!

We will not resort to the nonrelativistic limit, but we realiz
it implies q1

05q2
050, so that we recover the well-known re

sult for the emission of a real photon of momentumkW ,

^pW 3pW 4uJWeff
VPupW 1pW 2& ;

nr iepgVPggNNVgNNP
~2p!62mVm@qW 1

21mP
2 #@qW 2

21mV
2 #

3~sW 1•qW 1!~qW 13qW 2!~tW1!P~tW2!V1~1,3
2,4!, ~3.17!

where (tW1)P(tW2)V 5 tW1•tW2 , tW1
0 , tW2

0 and 1 for the rpg,
vpg, rhg andvhg, currents, respectively.

FIG. 5. NN̄ pair creation and annihilation meson-exchange c
rents. These currents are necessary for a relativistic descriptio
theNNg vertex.
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4. NDg exchange currents

All contributions involving a vertex where the photon couples to theND current must satisfyhJDNh5hJNDh50, so that
Eq. ~3.5! requires

^pW 3pW 4uJWeff
NDupW 1pW 2&52gst

3(
b

@Dabc
b JWNDg@1#~pW 3k ,pW 3!HDNb

s @1#~pW 1 ,pW 3k!HNNb
t @2#~pW 2 ,pW 4!

1Ddef
b HNDb

s @1#~pW 1k ,pW 3!JWDNg@1#~pW 1 ,pW 1k!HNNb
t @2#~pW 2 ,pW 4!#1~1,3
2,4!, ~3.18!
e

c

g

e

m

st

ed
ex-
whereb5pW or rW and the factor2gst resulting from the
contraction of ther-meson polarizations and all references
the Lorentz indicess and t are to be ignored forb5p.
Explicit expressions for the vertex functions and curre
shown in Eq.~3.18! are supplied in Appendix B. We ignor
all negative-frequency resonance contributions. The propa
tor functions are labeled in correspondence to Fig. 7 and
defined in analogy to the previous sections. Using ene
conservation for the current matrix elements and introduc
the D decay widthGD via @47,48# EDk→EDk2 iGD/2, the
propagators reduce to

Dabc
b 5

2v2

~q2
22mb

2 !~E31k2ED3k1 iGD/2!
,

Ddef
b 5

2v2

~q2
22mb

2 !~E12k2ED1k1 iGD/2!
. ~3.19!

An exact calculation of Eq.~3.18! can be achieved with the
use of the vertex functions and currents given in Appendix
However, at present there exists some uncertainty in the
pling constantsgNDr andmND , so that such a rigorous pro
cedure is of limited interest. We simplify matters by dro
ping terms of orderp2/(E1m)2 beyond leading order, an
approximation which does not involve anyp/m expansion
and should be accurate to within a few percent at ener

FIG. 6. VPg 5 rpg 1 vpg 1 rhg 1 vhg exchange cur-
rents. When energy is conserved across these current matrix
ments, the time-ordered graphs exactly sum to form the corresp
ing Feynman diagrams.
to

nts

ga-
are
rgy
ing

B.
ou-
-
p-

ies

below thep-production threshold. This is surely adequat
for the first-orderSfi matrix described in Sec. II A.

We introduce the condensed notation

PW i5
pW i
E i
, PW Dki5

pW ik
ED ik

, QW i j5pW ikS Ej

mD
D2pW j ,

KW i5pW ikS 2ED ik2Ei

mD
D2pW i ,

LW i5S pW ik
ED ik

2
pW i
E i

D ~m1mD!, i51,2,3,4, ~3.20!

and proceed to calculate separately the contributions fro
p andr exchange,

JWeff
ND5JWeff

ND~p!1JWeff
ND~r!. ~3.21!

ele-
ond-

FIG. 7. NDg p- and r-meson exchange currents. In the
RuhrPot model thep-exchange contributions represent the large
of the two-body currents in pp-bremsstrahlung but the
r-exchange contributions are very small. When energy is conserv
across these current matrix elements, the time-ordered graphs
actly sum to form the corresponding Feynman diagrams.
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5. NDg p-exchange currents

The effective current describing the excitation of intermediateD isobars throughp exchange can now be obtained from
Eqs.~3.18! and Appendix B. For the real photon, we require only the spacial current, which takes the form

^pW 3pW 4uJWeff
ND~p!upW 1pW 2&5N1sW 2•~PW 42PW 2!@2t2

32~ i t13t2!
3#@~KW 11LW 1!3QW 131~ isW 13QW 13!LW 11 isW 13@~KW 12LW 1!3QW 13#

22isW 1@~KW 12LW 1!•QW 13##1N3sW 2•~PW 42PW 2!@2t2
31~ i t13t2!

3#@~KW 31LW 3!3QW 312~ isW 13QW 31!

3LW 32 isW 13@~KW 32LW 3!3QW 31#12isW 1@~KW 32LW 3!•QW 31##1~1,3
2,4!, ~3.22!

where

N05
2 iepmNDgNDpgNNp

~2p!672m2 F E1E2E3E4

16E1E2E3E4
G1/2FNNp~Q2

2!FNDp~Q2
2!

vp~qW 2
2!

, N15
N0ED1kDde f

p

2ED1k
, N35

N0ED3kDabc
p

2ED3k
. ~3.23!

We will adopt Eq.~3.22! for our numerical applications and use it to consider the merit of various approximations tha
conventionally adopted to recover a simplified operator structure.

The first level of approximation involves taking the static limit and ignoring theN-D mass difference in Eq.~3.20!. We call
this thevertex static limitapproximation and note that it is equivalent to casting Eq.~3.22! as

^pW 3pW 4uJWeff
ND~p!upW 1pW 2&5~N11N3!

~sW 2•qW 2!

2m
@4t2

3qW 22~ i tW13tW2!
3~ isW 13qW 2!#3kW

22~N12N3!
~sW 2•qW 2!

2m
@t2

3~ isW 13qW 2!2~ i tW13tW2!
3qW 2#3kW1~1,3
2,4!. ~3.24!
s

g

y
t

f

The substantial simplification results primarily becau
the vertex static limit approximation indicatesK 15L15

2kW , andK 35L35kW , so that all operator structures involv
ing K i2L i immediately vanish. However, if we conside
the static limit with the more reasonable approximatio
mD;(4/3)m, then we find

K 11L1;2
17

8
kW2

1

24
pW 1 , K 12L1;2

3

8
kW1

13

24
pW 1 ,

K 31L3;
17

8
kW2

1

24
pW 3 , K 32L3;

3

8
kW1

13

24
pW 3 ,

~3.25!

so that theK i1L i terms surviving in the vertex static limit
are rather well approximated, but the neglectedK i2L i
terms are poorly represented.

The second level of approximation involves casting th
complete expression in the static limit. This is the approx
mation we adopted in earlier work@1,15#. At the small mo-
mentum transfers relevant to the present numerical appli
e

-
r
n

e
i-

ca-

tion, thiscomplete static limitapproximation will differ little
from the vertex static limit and, if we further setGD50 and
drop the form factor dependence, it is equivalent to castin
Eq. ~3.22! in the simpler form

^pW 3pW 4uJWeff
ND~p!upW 1pW 2&5

2 iepmNDgNDpgNNp

~2p!636m3

3~sW 2•qW 2!H 4~mD2m!qW 212ukW u~ isW 13qW 2!

@~mD2m!22ukW u2#~qW 2
21mp

2 !
t2
3

1
~mD2m!~ isW 13qW 2!12ukW uqW 2
@~mD2m!22ukW u2#~qW 2

21mp
2 !

~ i tW13tW t!
3J 3kW

1~1,3
2,4!. ~3.26!

The third and final approximation we consider is obtained b
neglecting theukW u dependence in the complete static limi
description of the baryon propagators. Thissoft-photon ap-
proximationgives the conventional description@37# of the
NDg(p) exchange current for the radiation of a photon o
momentumkW ,
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^pW 3pW 4uJWeff
ND~p!upW 1pW 2&5

2 iepmNDgNDpgNNp

~2p!636m3~mD2m!

3~sW 2•qW 2!H 4t2
3qW 2

qW 2
21mp

2
1

~ i tW13tW2!
3~ isW 13qW 2!

qW 2
21mp

2 J 3kW

1~1,3
2,4!. ~3.27!

We anticipate that this result will differ from the complet
static limit whenever the photon energy is comparable to t
N-D mass difference.

6. NDg r-exchange currents

Within the soft-photon approximation, it is well known
@37# that theNDg r-exchange currents are small compare
to the correspondingp-exchange currents, although the de
e
he

d
-

structive interference between the two makes it necessary
include both. In the present work, we anticipate the
r-exchange contributions to be less important than in othe
works because the RuhrPot model suggests a very we
NNr coupling constant.@In particular, RuhrPot@28# uses
gNNr
2 /4p50.2169 andkr56.4, whereas~for example! Bonn
B @49# adoptsgNNr

2 /4p50.92 andkr56.1.#
Since theNDg r-exchange currents are expected to be

small, we proceed by taking thevertex static limitapproxi-
mation from the outset. In complete analogy to the derivatio
of Eq. ~3.22!, we obtain

JWeff
ND~r!5JWeff

ND~r;E!1JWeff
ND~r;M !, ~3.28!

where
^pW 3pW 4uJWeff
ND~r;E!upW 1pW 2&5$@4NE

~1 !~pW 21pW 4!3qW 212NE
~2 !is13@~pW 21pW 4!3qW 2##t2

3

1@2NE
~2 !~pW 21pW 4!3qW 21NE

~1 !is1@~pW 21pW 4!3qW 2##~ i tW13tW2!
3%3kW1~1,3
2,4! ~3.29!

and

^pW 3pW 4uJWeff
ND~r;M !upW 1pW 2&5$@4NM

~1 !@~ is23qW 2!3qW 2#22NM
~2 !

„s13@~s23qW 2!qW 2##…t2
3

1„2NM
~2 !@~ is23qW 2!qW 2#2NM

~1 !@s13@~s23qW 2!3qW 2##…~ i tW13tW2!
3%3kW1~1,3
2,4! ~3.30!

with

N0 5
SU~6! ep gNN r

2 GM
V ~0!GM

NDr~Q2
2!

100m3~2p!6vr~qW 2!

NE
~1 ! 5 N0 FNN r

~1! ~Q2
2! @Ddef

r 1Dabc
r #, NM

~1 ! 5 N0 @FNN r
~1! ~Q2

2!1kr FNNr
~2! ~Q2

2!#@Ddef
r 1Dabc

r # ,

NE
~2 ! 5 N0 FNN r

~1! ~Q2
2! @Ddef

r 2Dabc
r #, NM

~2 ! 5 N0 @FNNr
~1! ~Q2

2!1kr F NNr
~2! ~Q2

2!# @Ddef
r 2Dabc

r # ,
~3.31!

where we normalizeGM
NDr(0)5 11 kr and adopt the propagatorsD

r of Eq. ~3.19!. Thecomplete static limitandsoft-photon
approximations follow in analogy to the procedures used to develop Eqs.~3.26! and ~3.27!, the latter resulting in

^pW 3pW 4uJWeff
ND~r;E!upW 1pW 2&5

4N0~11kr!

mD2m H 4t2
3~pW 41pW 2!3qW 2

qW 2
21mr

2
2

~tW13tW2!
3sW 13@~pW 41pW 2!3qW 2#

qW 2
21mr

2 J 3kW

1~1
2!, ~3.32a!

^pW 3pW 4uJWeff
ND~r;M !upW 1pW 2&5

4N0~11kr!2

mD2m H 4t2
3@~ isW 23qW 2!3qW 2#

qW 2
21mr

2
2

~tW13tW2!
3@sW 13@~ isW 23qW 2!3qW 2##

qW 2
21mr

2 J 3kW

1~1
2!, ~3.32b!

whereJWeff
ND(r;M ) is the conventional result, andJWeff

ND(r;E) is an additional piece~resulting from the convection current part of

the NNr vertex! which is usually ignored on the basis that it is smaller thanJWeff
ND(r;M ) by a factor of about 11kr; 7.
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C. Direct, single and rescattering amplitudes

A model-independent expression for the complete inva
ant amplitude was given in Eq.~2.22!, where we developed a
decomposition into the four terms describing direct, sing
~i.e., initial and final state!, and rescattering amplitudes
shown in Fig. 1. The left-hand side of Eq.~2.22! is defined
by the model-independent expressions of Eqs.~2.2! and
~2.6!, and is Lorentz invariant by construction. Howeve
since the right-hand side of Eq.~2.22! is determined by a
model-dependent calculation, there can be noa priori guar-
antee that each of the direct, single, and rescattering am
tudes are individually Lorentz invariant unless the wav
functions are calculated in a manifestly covariant formalis
@61#.

Since the wave functions are usually constructed from
NN-interactiont matrix that is defined only in the barycen-
tric frame, and two distinct barycentric frames appear in E
~2.22!, we cast the entire expression into the~maximally
symmetric! average barycentric frame, so that the momen
satisfy

A frame: pW 11pW 22
1

2
kW505pW 31pW 41

1

2
kW ~3.33!

and we acknowledge that a formal solution of the initia
final, and rescattering amplitudes requires the application
boost operators@50–53#.

In the following we will make use of the fact that the
effective current operator of Eq.~3.5! is totally symmetric
under interchange of particles 1 and 2. As such, we obtain
an arbitrary frame,

^pW 3pW 4 ;~s1s2!Sf ;~ t1t2!Tf uJeffupW 1pW 2 ;~s1s2!Si ;~ t1t2!Ti&

5^pW 4pW 3 ;~s2s1!Sf ;~ t2t1!Tf uJeffupW 2pW 1 ;~s2s1!Si ;~ t2t1!Ti&

5^pW 4pW 3 ;~s1s2!Sf ;~ t1t2!Tf uJeffupW 2pW 1 ;~s1s2!Si ;~ t1t2!Ti&

3(21)~Si1Sf1Ti1Tf !. ~3.34!

Denotingua&5u(s1s2)S;(t1t2)T&, we define the antisymme-
terized states as

upW 1pW 2 ;ã&5
1

A2
$upW 1pW 2 ;a&2~21!~S1T!upW 2pW 1 ;a&%.

~3.35!

It is easy to see that parity conservation is consistent with t
Fermi statistics requirementL1S1T5odd in the barycen-
tric frame.

1. Direct amplitudes

The direct amplitudes appearing in Eq.~2.22a! can be
simplified with use of Eqs.~3.34! and ~3.35! to give
ri-

le
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pli-
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q.
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M f i
D 5NeW~kW ,l!•@^pW 3pW 4 ;a f uJW effupW 1pW 2 ;a i&

2~21!~Si1Ti !^pW 3pW 4 ;a f uJW effupW 2pW 1 ;a i&#,

~3.36!

whereN is defined in Eq.~2.23! and JWeff is given by Eq.
~3.5!. However, momentum conservation demands that
direct terms cannot involve the one-body part of the effect
current density, so in the present numerical results we
clude the photon coupling toNN currents with recoil and
wave function renormalization currents,NN̄ creation and an-
nihilation currents,rpg, vpg, rhg, andvhg exchange
currents,DN currents withp andr exchange, as describe
by Eqs.~3.9!, ~3.11!, ~3.16!, ~3.22!, ~3.29!, and~3.30!.

2. Single-scattering amplitudes

The initial-state interaction amplitudes appearing in E
~2.22b! are given by

M f i
I 5NeW~kW ,l!•^pW 3pW 4̃;a f uJWeff~0!Git

~1 !upW 1pW 2̃;a i&

5NeW~kW ,l!•(
a
E E dpW 18dpW 28^pW 3pW 4 ;a f uJWeff~0!upW 18pW 28 ;a&

3^pW 18pW 28̃;auGit
~1 !upW 1pW 2̃;a i&. ~3.37!

A formal specification of this amplitude follows by insertin
the full effective current density of Eq.~3.5! and defining
boost the operators needed to cast thet matrix in the initial-
state barycentric frame. None of the bremsstrahlung calc
tions known to us has attempted either of these tasks.
stead, the current has been truncated to include only o
body contributions and boost operators are ignored under
assumption that the part of the invariant amplitude result
from initial-state correlations alone is itself individually Lor
entz invariant.

The first approximation could be removed with a straigh
forward application of the expressions provided in earl
sections, but since we anticipate the impulse current to
significantly larger than the summed exchange currents,
present numerical applications share the conventional
proximation of retaining only the impulse current in th
single-scattering amplitudes. The second approximation w
be justified in Sec. IV A, where we provide a perturbativ
analysis that indicates theNNg impulse-current contribu-
tions to the single-scattering terms are close to invariant
der Lorentz transformation into the barycentric frames.

We therefore cast the initial-state correlation amplitud
into the initial-state barycentric frame, where

I frame: pW 11pW 2505pW 31pW 41kW , ~3.38!

so that Eq.~2.22b! becomes, with the kinematical notation o
Eq. ~3.7!,
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M f i
I 5NeW~kW ,l!•(

a
^a f uJWNNg@1#~pW 3k ,pW 3!ua&

3
^pW 3k;ãut ~1 !upW 1;a ĩ&
2E122E3k1 ih

1NeW~kW ,l!•(
a

^a f uJWNNg@2#~pW 4k ,pW 4!ua&

3
^pW 3;ãut ~1 !upW 1;a ĩ&
2E122E31 ih

, ~3.39!

where we have denoted̂pW 8,2pW 8;a f ut (1)upW ,2pW ;a i& 5

^pW 8;a f ut (1)upW ;a i&. In complete analogy, we cast the fina
state correlation amplitudes into the final-state barycen
frame, where

F frame: pW 11pW 22kW505pW 31pW 4 ~3.40!

so that Eq.~2.22c! becomes
l-
tric

M f i
F 5NeW~kW ,l!•(

a

^pW 3;a f̃ ut ~2 !†upW 1k;ã&
2E322E1k1 ih

3^auJWNNg@1#~pW 1 ,pW 1k!ua i&

1NeW~kW ,l!•(
a

^pW 3;a f̃ ut ~2 !†upW 1;ã&
2E322E11 ih

3^auJWNNg@2#~pW 2 ,pW 2k!ua i&. ~3.41!

Simple kinematics establishes that the radiation of a re
photon implies an off-shellt matrix, so that we are free to
immediately take the limitsh→ 0 in Eqs.~3.39! and~3.41!.

3. Rescattering amplitudes

From the results of impulse approximation calculation
@9,10,14# we already know that the impulse contributions t
the rescattering amplitudes constitute a correction of< 15%
to the corresponding single-scattering amplitudes, so for s
plicity we neglect from the outset all two-body currents i
the rescattering amplitudes of Eq.~2.22d!. Hence, in theA
frame of Eq.~3.33! we obtain
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both

roves
M f i
R 5NeW(

aa8
E E dpW 18dpW 28d

~3!~pW 181pW 282pW 12pW 2!

3$^pW 3,pW 4;a f̃ ut ~2 !†Gf upW 1k8 ,pW 28;ab&^a8uJWNNg@1#~pW 18,pW 1k8 !ua&^pW 18,pW 28;aauGit
~1 !upW 1,pW 2;a ĩ&

1^pW 3,pW 4;a f̃ ut ~2 !†Gf upW 18,pW 2k8 ;ab&^a8uJWNNg@2#~pW 28,pW 2k8 !ua&^pW 18,pW 28;aauGit
~1 !upW 1,pW 2;a ĩ&%. ~3.42!

The initial- and final-state barycentric frames differ by the photon momentum, so that no frame can be found wheret
matrices are expressed in their barycentric frame. We therefore introduce a boost operatorx satisfying@50–53#

upW a ,pW b&5$12 ix~PW !%u1pW &uPW &1O ~1/m4!,

pW 5
1

2
~pW a2pW b!, PW 5~pW a1pW b!. ~3.43!

Equation~3.42! is manifestly symmetric under interchange of particles 1 and 2. However, for computation purposes, it p
convenient to make use of Eqs.~3.34!, ~3.35!, and~3.43! to formally reexpress Eq.~3.42! in terms of the photon coupling only
to nucleon 1,

M f i
R 52N~21!~Sf1Si1Tf1Ti ! (

a,a8
eW•E dpW ^pW 31

1
4̃kW ;a f u@11 ix~2 kW /2!#t ~2 !†Gf@12 ix~2 kW /2!#upW 1 1

4kW ;a8&

3^a8uJWNNg@1#~2pW 2 kW /2 ,2pW 1 kW /2!ua&^1pW 2 1
4kW ;au@11 ix~1 kW /2!#Git

~1 !@12 ix~1 kW /2!#upW 12
1
4̃kW ;a i&, ~3.44!
t

where, since thet matrix conserves spin and isospin, th
sums over the intermediate-state quantum numbers (a5
S,MS ,T,MT) are restricted such thatS5Si , S85Sf , T5
Ti , T85Tf with conserved isospin projectionMT . For rea-
sons already indicated in the discussion of the sing
scattering amplitudes, the boost operators can be neglecte
the present work. A recipe for performing the numerical i
tegration over the pole structures of Eq.~3.44! is given in
Appendix C.
e

le-
d in
n-

IV. RESULTS AND DISCUSSION

A. Impulse contributions

In the present work we are primarily interested to inves-
tigate a consistent calculation of the dominant isoscalar
meson-exchange currents inpp-bremsstrahlung. An impor-
tant precursor to this lies in establishing that the well-known
discrepancy between impulse approximation calculations and
experimental data cannot be resolved by selecting a differen
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1116 53J. A. EDEN AND M. F. GARI
~phase-equivalent! NN interaction. Although a qualitative
similarity exists between the results of recent impulse
proximation calculations forpp-bremsstrahlung observable
@8–14,16,18# the calculation differences are generally n
confined to the differingNN potentials. Some of these ca
culations describe the photon coupling to the one-body c
rent via a Foldy-Wouthuysen transformations@8,12,13,16,18#
or direct Pauli reduction@10,11,14#, whereas others adopt
static limit description@9#. Some include the rescattering am
plitudes of Fig. 1~c! @9–11,14,18# whereas others do no
@8,12,13,16#. Further differences are found in the use of re
tivistic or nonrelativistic two-nucleon propagators and/or t
application of~guessed! off-shell minimal relativity factors
@10,11#.

We avoid all of these uncertainties by presenting the
sults of calculations that are identical apart from the defi
tion of the potential used to generate thet-matrix elements.
We also extend the list of commonly compared potentials
include the Bonn@49#, Paris@34#, Nijmegen@54#, and Ruhr-
Pot @28#. For the present comparisons we adopt the impu
approximation, so that the effective current density dev
oped in Sec. III B reduces to the sum of~one-body! impulse
currents,JWeff;JWNNg@1#1JWNNg@2#, as defined in Appendix
B, and is therefore common to all potentials. As such,
retain initial-state, final-state, and rescattering amplitu
with the two-nucleon Green’s functions described by
relativistic Lippmann-Schwinger propagators. Partial wav
are summed toJmax58 and no form of soft-photon approx
mation is adopted at any stage.

In Fig. 8 we compare such calculations with the TRIUM
coplanar pp-bremsstrahlung data atElab5280 MeV @35#.
The cross section geometries are selected to sample
small and large proton emission angles. The analyzing po
geometry is selected on the basis that it is the result m
different from zero, and therefore presumably the most r
ably measured. Some differences exist between our ana
ing power results and those reported elsewhere@11#, prima-
rily due to differences in the rescattering calculation,
discussed in Appendix C. The essential conclusion her
that impulse approximation calculations using Bonn
Nijmegen, Paris, and RuhrPot wave functions are almost
distinguishable, but exhibit a collective discrepancy with e
periment. Given that the purpose of this experiment was
distinguish the predictions of such potentials, the differen
between theory and experiment are large.

The final task remaining here is to establish that the
pulse current contributions to the single-scattering am
tudes given in Eqs.~3.39! and ~3.41! can be accurately de
scribed without boost operators. This approximation
common to all momentum-space bremsstrahlung calculat
known to us, yet it appears to have never been verified. S
authors@10,11,20# have sought a solution to the problem b
arguing that the nonrelativistict-matrix can be made Lorent
invariant simply by attaching ‘‘minimal relativity’’ factors
@62#, so that the Lippmann-Schwinger~LS! equation can be
cast in a form that is apparently identical to th
Blankenbecler-Sugar~BbS! equation. However, althoug
both of these integral equations describe theNN interaction
in ladder approximation, they are not formally identical b
cause the LS kernel is constructed in a time-ordered~nonco-
variant! relativistic framework, whereas the BbS kernel re
ap-
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resents one of an infinite number of arbitrary thre
dimensional reductions of the covariant Bethe-Salpeter~BS!
equation. As such, the Lippmann-Schwingert matrix with
minimal relativity factors should not be confused with a c
variant definition of theNN interaction@61#. The most seri-
ous flaw in the use of minimal relativity factors is, howeve
that the off-shell factors are completely unknown and m
be simply guessed@62#. We regard this procedure as unre
sonably arbitrary, particularly since the guessed minim
relativity factors contradict the well-known form of the two
nucleon boost operators@50–53#.

Since thet matrix is defined in the conventional way a
t5V1VGt but is available only in the barycentric frame, w
consider the arbitrary-frame perturbative reduction of the
amplitudes by constructing a toy-model one-boson excha
NN interaction as

^pW 18 ,pW 28uVupW 1 ,pW 2&

5
1

2(b hHNNb@1#~pW 1 ,pW 18!lF 1

E i2H0
1

1

E f2H0
G

3lHNNb@2#~pW 2 ,pW 28!h1~1
2!, ~4.1!

whereb5p, h, r and v, andHNNb@ i # is the interaction
energy for a meson coupling to nucleoni , as defined in
Appendix B. In Fig. 9 we present the results including on

FIG. 8. Comparison of impulse approximation calculations u
ing Ruhr, Nijmegen, Paris, and Bonn potentials and coplanarpp-
bremsstrahlung data atElab5280 MeV. The differences between th
model results are smaller than their collective discrepancy with
periment.
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53 1117CONSISTENT MESON-FIELD-THEORETICAL DESCRIPTION . . .
the initial- and final-state interaction amplitudes when th
RuhrPott matrix is replaced with our toyNN interaction, the
complete expression being cast into theA, I andF frames of
Eqs. ~3.33!, ~3.38!, and ~3.40!. We find that the neglect of
boost operators represents an error of about 3% or less.
conclude that Eqs.~3.39! and ~3.41! are essentially exact
descriptions of the impulse contributions to the singl
scattering amplitudes. As such, the application of minim
relativity factors@10,11,20# may need to be reconsidered.

B. Exchange currents and the relativisticNNg vertex

In Sec. III B we showed that a relativistic description o
the part of the effective current operator involving the phot
coupling to the nucleon current comprises not only the im
pulse current, but also two-body contributions from th
meson-recoil, wave function reorthonormalization, and p
currents. Although relativistic corrections to one-bodyNNg
currents have received considerable attention in recentpp-
bremsstrahlung works@8,11–13#, the two-body contributions
remain to be investigated.

The wave function reorthonormalization and meson-rec
contributions are not expected to be individually small, b
in Sec. III B we recalled@3# that their nonrelativistic limits
cancel exactly, leaving only purely relativistic effects in th
pp-bremsstrahlung observables. In the present numerical
plications we retain these contributions in the spirit of e
ploring the relativistic aspects of theNNg currents.

By far the most interesting aspect of the relativist
NNg currents is found in the different manifestations of th
NN̄ creation and annihilation pair currents given by variou
Dyson-equivalent chiral Lagrangians. In particular, the sim
plest meson-theoretic Lagrangian satisfying partially co
served axial-vector currents~PCAC! and the chiral commu-
tation relations is the renormalizables model, for which the
nucleon-meson interactions are of the form

FIG. 9. Initial- and final-state interaction amplitudes in impuls
approximation when thet matrix is replaced with a toy-model bo-
son exchange potential and evaluated in theA, I , andF frames.
This justifies the neglect of boost operators in the present work
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L52gc̄@s1 ig5tW•pW 8#c. ~4.2!

With a chiral transformation c→(1
1jW2)2 1/2exp@ig5tW•pW 8)]c, Weinberg@55# showed that, for a
suitably constrained jW and redefined pion fields
pW 5(2m/g)jW , the Lagrangian tranforms to giveNNp and
NNpp interactions with

Lpv52
g

2m
c̄F11

g2pW 2

4m2 G
3Fg5gmtW•]mpW 1

g

2m
tW•~pW 3]mpW !Gc. ~4.3!

Similarly, the chiral transformation c→(1
1jW2)2 1/2exp@ i (g/2m)tW•(pW 83jW )#c has been shown by
Wess and Zumino@56# to yield NNp andNNpp interac-
tions with

Lps52
g

2m
c̄F11

g2pW 2

4m2 GF ig5tW•pW 2
g

2m
pW 2Gc. ~4.4!

In an elegent summary of these chiral Lagrangians, Gr
@57# noted that bothLps andLpv give the correctp2N
scattering lengths and that theNNpp interactions haver
ands quantum numbers.

Our immediate interest lies in the pseudovector~pv! and
pseudoscalar~ps! NNp couplings, both of which are in-
cluded via the hybrid form of theNNp Lagrangian we adopt
in Eq. ~3.3! with 0<l<1. It is a trivial exercise to show tha
thep coupling to the positive-frequency components of t
nucleon current described in Eq.~3.3! is independent ofl,
so that nonrelativistic calculations cannot differentiate the
and pv couplings. In relativistic applicationsl50 is com-
monly preferred, presumably because the presence of the
rivative in the pv-coupling provides for the gauge couplin
of a photon to theNNp vertex, so that the purely isovecto
nonrelativistic seagull exchange currents can be includ
even when the microscopic structure of theNNp form factor
is ignored. However, there are no formal arguments to r
out lÞ0 and the subject is still under investigation@58,59#.

In Fig. 10 we examine the relativisticNNg currents in
pp-bremsstrahlung by comparing the results of calculatio
with RuhrPot wave functions which neglect~IA ! or retain
~IA1MEXC! the wave function reorthonormalization
meson-recoil, andNN̄ pair-creation and annihilation current
with purely pv-type (l50! and ps-type (l51! NNp cou-
plings.

The first observation is the most important one:l can be
determined by pp-bremsstrahlung experiments. This
surely the cleanest probe of the Lorentz structure of
NNp vertex yet considered. We reserve our prediction
l until we have included the other exchange currents giv
in Sec. III.

A secondary observation, which we anticipated in@14#, is
that the two-body contributions are small forl50. In par-
ticular, thel50 NNg MEXC contributions to the cross sec

e

.
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1118 53J. A. EDEN AND M. F. GARI
tion at ~LEP! u3528.0° and~HEP! u4527.8° are almost
entirely negligible. However, the effects are visible in t
analyzing powers, as well as in the cross section
u3512.0° andu4512.4°, the latter being reduced atug
50° and 180° by 0.14 and 0.17mb/sr2/rad ~i.e., 5% and
8%!, respectively. While these effects are certainly sm
they are already comparable to the model differences sh
in Fig. 8.

C. Radiative vector-meson decay currents

In Fig. 11 we compare the results of calculations us
RuhrPot wave functions and the relativistic impulse curr
which either neglect~IA ! or retain~IA1VPg) the relativistic
rpg, vpg, rhg, andvhg exchange currents@42,43#. The
RuhrPot contributions are uniformly small, although we o
serve a reduction in the cross section at~LEP! u3512.0° and
~HEP! u4512.4° atug520° by about 0.1mb/sr2/rad ~i.e.,
10%!.

We have used the fully relativistic expressions of E
~3.16! for the numerical applications of Fig. 11, but to ide
tify the dominant behavior of these exchange currents i
sufficient to consider only the static limit, neglect thev- and
r-meson mass difference and neglect theh-meson contribu-
tions altogether. In the nonrelativistic limit, this allows us
write

FIG. 10. RuhrPot results in impulse approximation~IA ! as in
Fig 8 compared to corresponding results when the wave func
reorthonormalization, meson-recoil, andNN̄-pair currents ~IA
1MEXC! are included with pseudovector (l50! or pseudoscalar
(l51! NNp interactions. l can be determined frompp-
bremsstrahlung experiments.
e
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to

^pW 3pW 4uJWeff
rpupW 1pW 2& ;

nr

grpggNNr@ Ĵ~qW 1 ,qW 2!1 Ĵ~qW 2 ,qW 1!#tW1•tW2 ,

^pW 3pW 4uJWeff
vpupW 1pW 2& ;

nr

gvpggNNv@ Ĵ~qW 1 ,qW 2!1 Ĵ~qW 2 ,qW 1!#tW1
z,

~4.5!

where

Ĵ~qW 1 ,qW 2!5
iepgNNp~sW 1•qW 1!~qW 13qW 2!

~2p!62mVm@qW 1
21mp

2 #@qW 2
21mV

2 #
. ~4.6!

SincegNNp , grpg , andgvpg are essentially fixed by experi-
ment, the freedom in the vector-meson decay exchange c
rents is limited to the model-dependent values adopted
the experimentally unknown coupling constantsgNNr and
gNNv . We have adopted the RuhrPotNN-interaction values
of gNNr51.65 andgNNv54.95, and note that these value
are consistent with the broken SU~3! requirement
gNNv
2 /gNNr

2 59. The matrix elements of both isopin operator
in Eq. ~4.5! reduce to unity inpp bremsstrahlung, so that the
vpg contribution completely dominates the vector-meso
decay current contributions and the correspondingrpg cur-
rents are some 15 times smaller.

tion
FIG. 11. RuhrPot results in impulse approximation~IA ! as in

Fig 8 compared to corresponding results when theVPg5 rpg 1
vpg 1 rhg 1 vhg exchange currents~IA1VPg) are included.
The RuhrPot model has relatively weakNNr andNNv couplings,
so these exchange currents are small, but comparable to the mo
differences shown in Fig. 8.
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The magnitude of eachPVg exchange current is, of
course, dependent on the choice ofNN interaction. For ex-
ample, the Bonn B model requiresgNNr53.36 and
gNNv517.5, so thatgNNv

2 /gNNr
2 527, which severely contra-

dicts the broken SU~3! prediction of 9. Although therpg
and vpg exchange currents have never been included
Bonn model calculations for bremsstrahlung observables
is easy to see that these currents alone would be, resp
tively, more that 4 and 12 times larger than the correspon
ing results of the present calculation.

D. D-isobar currents

In Fig. 12 we compare the results of calculations usin
RuhrPot wave functions and the relativistic impulse curre
which either neglect~IA ! or retain ~IA1D) the relativistic
NDg p- andr-exchange currents, as prescribed by the rel
tivistic ~rel!, vertex-static limit~VSL!, and soft-photon ap-
proximation~SPA! expressions developed in Sec. III B. We
do not show results for the complete static limit since the
results turn out to be almost indistinguishable from the ve
tex static limit. In Fig. 13 we decompose the contributions
the relativisticNDg currents intop- andr-exchange contri-
butions. Collectively, these figures show that the RuhrP
description of theNDg exchange currents are very large an

FIG. 12. RuhrPot results in impulse approximation~IA ! as in
Fig 8 compared to corresponding results with relativistic~rel!,
vertex-static limit ~VSL!, and soft-photon approximation~SPA!
NDg p-and r-exchange currents. A relativistic description of the
NDg exchange currents is necessary.
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require a relativistic description, but that ther-exchange
contribution is comparatively small.

E. Comparison of exchange currents

In Fig. 14 we examine the individual contributions of
each of the one- and two-body currents developed in th
previous sections with the complete effective current of th
present work. We observe that theNDg exchange currents
are substantially larger than all other contributions and w
recall from Fig. 13 that, in the RuhrPot description, these a
completely dominated by thep-exchange contributions. We
observe minor but non-negligible contributions from the
VPg currents, and we recall from Sec. IV C that the magn
tude of these contributions is essentially determined by th
NNv coupling constant in theNN interaction.

F. Comparison with experiment

In Figs. 15–18 we compare results of calculations usin
RuhrPot wave functions and the relativistic impulse curren
which either neglect~IA ! or retain ~IA1MEXC! all of the
relativistic meson-exchange currents developed in th
present work. These include the wave function reorthono
malization and meson-recoil currents, theNN̄ creation and
annihilation pair currents@for both (l50) pv and (l51) ps

FIG. 13. RuhrPot results in impulse approximation~IA ! as in
Fig 8 compared to corresponding results with relativisticNDg ex-
change currents includingp1r exchange (p1r) and (p) ex-
change (p) only. The RuhrPot model has a relatively weakNNr
coupling, so that ther-exchange contribution to theNDg currents
is small.
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NNp-couplings#, therpg, vpg, rhg, andvhg exchange
currents and theNDg currents withp- andr-exchange con-
tributions. We observe that the sensitivity to the admixture
ps (l51) and pv (l50) couplings survives when the cur
rents are consistently combined.

The inclusion of the relativistic exchange currents can
seen to provide a reasonable description of the cross sec
data in Figs. 15 and 16, but Figs. 17 and 18 show tha
persistent discrepancy with experiment remains for sm
u3 and largeu4 . The impulse approximation results for the
cross section data givex ia

2 /datum5 5.8, whereas the com-
plete exchange current calculations with ps and pvNNp
couplings givingxps

2 /datum5 6.1 andxpv
2 /datum5 4.7, re-

spectively. Moreover, Figs. 15 and 16 shows that adopting
psNNp coupling produces structure in the cross section th
is simply absent in the data. As such, the present calculati
indicate that the data favorsl;0, although Figs. 17 and 18
show that some of the most serious discrepancies with

FIG. 14. Contributions from individual currents to the cross se
tion. These are~IA ! 5 impulse current including initial, final, and
rescattering correlations, (NDg) with summedp andr exchange,
(VPg) 5 rpg 1 vpg 1 rhg 1 vhg, ~WFRR1pair! 5 NNg
wave function reorthonormalization and meson recoil an
N̄N-pair creation and annihilation currents withl50. The full line
denotes the sum of all these currents~with interferences!.
of
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be
tion
t a
all
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at
ons

ex-

periment cannot be resolved in terms of theNNp coupling
alone.

The importance of our conclusions on the Lorentz stru
ture of theNNp vertex are contingent on a reliable data se
so we vigorously stress the need for more precise measu
ments of all observables where the ps and pv couplings g
very different results.

G. Some problems with nonperturbative descriptions

Strong interaction transitions betweenNN, DN, andDD
states can be described non-perturbatively with a coup
channelt matrix @31–33# and indeed have already been use
to calculatepp-bremsstrahlung observables@19,20#. Under
these circumstances it may appear curious that we have c
sen to present a perturbative description of such amplitu
as meson-exchange currents. There are, however, a num
of difficulties in applications of these coupled channelt ma-
trices, the most serious of which appears to arise from
inconsistencies that exist between the Paris@34# NN
NN
and the Ried parametrized version of the static-limit Bochu
@31–33# DN
NN interaction. In particular, the conflicting
definitions of theNNp and NDp coupling constants and
form factors makes it impossible to reliably remove th
double-countedNN
NN amplitudes involving intermediate
ND states, so that a free parameter is introduced to simu
the necessary subtraction. Any specification of the two-bo
currents would suffer a similar ambiguity. Finally, the as
sumed Lorentz invariance of theNN
DN transition t ma-
trices remains to be investigated.

This leads us to consider a generalization of our forma
ism to obtain a fully consistent and microscopic descriptio
of the nonperturbative transitions between theNN,DN, and
DD states. More precisely, we will identify two minimum
requirements of such an approach that appear to have b
been neglected to date.

Recalling from Sec. II B the freedom to choose any d
sired partition of the total Hilbert space, we now modify ou
earlier choice so that theD degrees of freedom are included
in theh space.~Details can be found in Appendix A.! Within
this approach, the leading-order contributions involve n
only theNNg impulse, wave function reorthonormalization
and meson-recoil terms, but alsoNDg initial- and final-state
correlation terms andNDg wave function reorthonormaliza-
tion and meson-recoil terms, as shown in Fig. 19. Our earl
specification of theNNg one- and two-body currents re-
mains unchanged and will not be further discussed here. T
additional leading-order contributions involvingD isobars
are given by

c-

d

^pW 3pW 4uJW11
NDupW 1pW 2&52gst

3(
b

@D1
bHNDb

s @1#~pW 1k ,pW 3!JWDNg@1#~pW 1 ,pW 1k!HNNb
t @2#~pW 2 ,pW 4!

1D3
bJWNDg@1#~pW 3k ,pW 3!HDNb

s @1#~pW 1 ,pW 3k!HNNb
t @2#~pW 2 ,pW 4!#1~1,3
2,4!, ~4.7!
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FIG. 15. Coplanar pp-
bremsstrahlung data atElab5280
MeV and u4512.4° compared to
RuhrPot calculations including
~IA1MEXC! or excluding ~IA !
relativistic meson-exchange cur-
rents with pv (l50! or ps (l51!
NNp interactions. The exchange
currents include wave function re-
orthonormalization and meson-
recoil currents,NN̄ pair creation
and annihilation currents,rpg 1
vpg 1 rhg 1 vhg vector-
meson decay currents and
NDg(p,r,GD5115 MeV) ex-
change currents.
e
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el
whereb5pW or rW and the factor2gst and all references to
the Lorentz indicess andt are to be ignored for the scala
mesons. The exact form ofDb is given in Appendix A, but
here it is sufficient to note the nonrelativistic limit,

D1
b ;
nr
D3

b ;
nr 21

2vb~qW 2! ~mD2m1vb!

3F11
~mD2m!2

vb~qW 2!@mD2m1vb~qW 2!#
G ~4.8!

The first term in the brackets of Eq~4.8! represents the
NDg initial- and final-state strong-interaction amplitude
and the second term gives theNDg wave function reor-
thonormalization and meson-recoil currents. Unlike th
analogousNNg terms, where only one-body currents surviv
in the static limit, theNDg wave function reorthonormaliza
tion and meson-recoil currents donot vanish in static limit—
even for soft photons~cf. @20#!. Indeed noting that
mD2m;2mp shows that these contributions make an im
r

s,

ir
e

-

portant contribution to the intermediate-stateDN amplitudes
in the low-energy observables.

Since the coupled channelt matrices have been calculated
only in the barycentric frame, it remains to either calculat
their boost operators, or demonstrate that they are effectiv
Lorentz invariant. In Sec. IV A~see Fig. 9! we demonstrated
such invariance for a toy-model boson-exchange potent
and commented on the reliability of guessing minimal rela
tivity factors. We anticipate that a similar approximate in
variance will probably hold for the coupled channe
NN
NN t matrices involving intermediateDN states.
However, in Fig. 20 we observe that the correspondin
NDg initial- and final-state interaction amplitudes calculate
in the average barycentric frame of Eq.~3.33! are seriously
different from the corresponding results evaluated in theI
andF frames of Eqs.~3.38! and ~3.40!. This shows that the
leading-order contributions to the coupled chann
DN
NN andNN
DN t matrices are poorly approximated
under the assumption that they are Lorentz invariant.

We conclude that a nonperturbative description of theD
isobar amplitudes via coupled channelt-matrix calculations
involves two complications.
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FIG. 16. Same as Fig. 15 ex-
cept thatu4517.3°.
r-
d

t

-

pv

r-
~1! There are nonvanishing contributions from theNDg
wave function reorthonormalization and meson-recoil term
The neglect of these two-body currents contributes serio
errors at low energies.

~2! The initial- and final-stateNDg interactions are poorly
approximated in the absence of boost operators. The neg
of boost operators contributes serious errors at high energ

As such, a meaningful specification of nonperturbati
D contributions requires the calculation of two-body curren
and boost operators. This has not been recognized in the p
Although the first requirement can easily be satisfied by
taining a subset of the exchange currents we have prese
in this work, there are outstanding problems that need to
solved if boost operators are to be defined beyo
O (1/m4). Such developments stand as a challenge for fut
theoretical work but can only be approached within a mod
providing a consistent and microscopic description of a
meson-baryon dynamics.

H. Relativistic effects

In earlier work @1# we presented selectedpp-
bremsstrahlung observables calculated using RuhrPot w
functions and the relativistic impulse current. The rescatt
s.
us

lect
ies.
ve
ts
ast.
re-
nted
be
nd
ure
el
ll

ave
er-

ing contributions of Fig. 1~c! were retained, as were the rela-
tivistic rpg, vpg, rhg, andvhg exchange currents. We
also included theNDg currents withp and r exchange in
the complete static limit, as defined in Sec. III B 5. No form
of soft-photon approximation was adopted at any stage.

In the present work we have extended the exchange cu
rents to include the wave function reorthonormalization an
meson-recoil currents of Eq.~3.9! and theNN̄-pair creation
and annihilation currents@for both (l50) pv and (l51) ps
NNp couplings# of Eq. ~3.11! that are required for a truly
relativistic description of theNNg vertex. We have also re-
placed the complete static limit description of the dominan
NDg(p) exchange current with the relativistic upgrade of
Eq. ~3.22!.

In Fig. 21 we consider the magnitude of these purely rela
tivistic effects by comparing with our earlier descriptions of
the meson-exchange currents. We consider here only the
NNp coupling (l50). From Figs 10, 12, and 13 we already
know that the largest difference between these exchange cu
rent results stems from the relativistic corrections to the
NDg(p) contribution. In addition, from Fig. 12 and Secs.
III B 5 and IV D we note that this difference results from the
neglect of theN2D mass difference in the complete static
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FIG. 17. Same as Fig. 15 ex
cept thatu4521.2°.
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limit exchange current operators used in@1#. Although we
find no need to change the qualitative conclusions reported
@1#, a comparison ofpp-bremsstrahlung calculations with
experimental data near thep-production threshold clearly
requires a relativistic description of the isovector meso
exchange currents.

V. CONCLUSIONS

We have presented a parameter-free and relativistic ext
sion of the RuhrPot meson-baryon model to define the dom
nant isoscalar meson-exchange currents. These include
first relativistic calculations for the wave function reor
thonormalization, meson-recoil, andNN̄-pair creation and
annihilation currents inpp-bremsstrahlung. We also include
the fully relativistic rpg, vpg, rhg, andvhg currents
and a relativistic upgrade to our earlierNDg(p,r) exchange
currents@1,15#.

The results of these calculations show that the mes
exchange contributions to thepp-bremsstrahlung observ-
ables below thep-production threshold are large. As such,
meaningful interpretation of experiment obviously requires
completely consistent description of the meson-baryon d
namics defining theNN interaction, the exchange currents
in

n-

en-
i-
the
-

n-

a
a
y-
,

and the form factors that they contain.
Although the wave function renormalization and meso

recoil contributions are well known to cancel in the stat
limit for soft photons, this cancellation is poorly satisfied i
bremsstrahlung experiments where the kinematics has b
contrived to maximize the photon energy. As such, retaini
these contributions is necessary if the orthonormality of t
wave functions is to be preserved. Although these two-bo
currents have never before been included in bremsstrahl
calculations, they are necessary for a relativistic descript
of theNNg vertex.

The motivation for developing such a relativistic schem
is found in one of the oldest outstanding puzzles in nucle
physics. The Lorentz structure of theNNp Lagrangian
LNNp is universally accepted to comprise an unknown mi
ture of ps (l51) and pv (l50) couplings. This mixture
cannot be distinguished by any nonrelativistic calculatio
and, for quite different reasons, makes almost no impact
relativistic calculations for theNp scattering lengths. How-
ever, within our relativistic framework we have shown tha
the existingpp-bremsstrahlung data indicatel is small. This
is surely the most reliable assessment of theNNp Lagrang-
ian available to date.
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FIG. 18. Same as Fig. 15 ex
cept thatu4527.8°.
ns
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We quantified theVPg exchange current contributions
and noted their obvious relationship to theNN interaction.
While the small vector-meson couplings in the RuhrPotNN
interaction render these effects no larger than theNN-

FIG. 19. NDg wave function reorthonormalization and meson
recoil exchange currents. These currents are necessary to pres
the orthonormality of the initial- and final-state wave functions de
scribed byNN, DN coupled channel transitiont matrices.
interaction model differences in impulse approximation, we
noted the necessity to include these currents in calculatio
for models using largeNNv andNNr couplings~e.g., Bonn
B!. However, the largest isovector exchange current inpp-
bremsstrahlung results from intermediate-state isobar excit
tion viap exchange. We investigated a series of approxima
tions for this current and found that a relativistic description
is necessary. Given the practical importance of this result,
compact closed form expression was provided and th
sources of error in various approximations were identified.

We demonstrated our earlier assertion@1,15# that theN
Dg wave function reorthonormalization and meson-recoi
contributions donot vanish, even in the static limit for soft
photons. Their neglect in recent applications@19,20# indi-
cates that the the orthonormality of the initial- and final-stat
wave functions is not preserved. In a perturbative analys
we showed that the assumed Lorentz invariance of th
NN
NN interactions is accurate to about 3%, but that a
similar assumption@19,20# for theNN
DN interaction im-
plies unacceptable errors of around 20%. We noted that
nonperturbative development of our parameter-free calcul
tions requires inclusion of theNDg wave function reor-

-
erve
-
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thonormalization and meson-recoil exchange currents~for
which exact expressions were provided! and the application
of boost operators. The need for more precise experime
data has been stressed.

FIG. 20. Comparison of perturbativeND initial- and final-state
correlation amplitudes calculated in the~average barycentric! A
frame and compared to corresponding results that are obtaine
the initial- and final-state barycentric frames. The discrepanc
show the need for boost operators and indicate errors of about 2
result when theNN
DN t matrix is assumed to be Lorentz invari
ant.
tal
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APPENDIX A: NONPERTURBATIVE NDg AMPLITUDES

Within the formalism of Sec. II B, a nonperturbative de-
scription of theD-isobar contributions requires our partition
of the Hilbert space to be modified such that

Hh1
5$uNN&%, Hh2

5$uDN&%, Hh3
5$uND&%,

Hh4
5$uDD&%, Hl5$uthe rest&% ~A1!

with projection operators satisfyingh5( i51
4 h i and

h ih j5h id i j . Denoting an arbitrary operator causing transi-
tions from theh i space to theh j space ash jOh i5O j i , we
require @in analogy to Eq.~2.22!# matrix elements of the
form

@Mfi#115NeW~kW ,l! (
i , j51

4

^pW 3pW 4 ;a f̃ uh1@11t1i
~2 !†G1i #@JWeff# i j

3@11Gj1t j1
~1 !#h1upW 1pW 2 ;a ĩ&, ~A2!

where we have denoted the effective one1two-body current
density as

in
ies
0%
FIG. 21. Selected results from
Figs. 15–18 using the psNNp
coupling with ~full ! and without
~IA ! the relativistic exchange cur-
rents, now compared with the
~CSL! results of Ref.@1#. The CSL
results differ from the full ones in
that the wave function reorthonor-
malization, meson-recoil, and
NN̄-pair currents are neglected en-
tirely and theNDg(p) exchange
current is taken in the complete
static limit. The largest numerical
difference in the meson-exchange
current results can be traced to the
neglect of theN2D mass differ-
ence in the CSL operators. See
also Secs. III B 5 and IV D for a
detailed discussion.
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@JWeff# i j5h iFJ1JA1A†J1A†JA2
1

2
JA†A

2
1

2
A†AJ1••• Gh j . ~A3!

First consider the amplitudes involving an effective curre
describingNN→NN transitions, which must therefore be
t

taken between inital- and final-state wave functions con
structed from theNN→NN t matrix. These amplitudes in-
clude the dominantNNg impulse currents, as well as contri-
butions from theNNg wave function reorthonormalization
and meson-recoil currents.@Adopting ~A1! does not alter the
exact expressions for these currents given by Eqs.~3.9! and
~3.10!.# However, we now have additional contributions, a
shown in Fig. 19, which are given by Eq.~4.7! with
il
ave
D1
b5

1

@E32ED1k2vb~qW 2!#@E22E42vb~qW 2!#
2

1

2@E42E22vb~qW 2!#@E12E32vb~qW 2!#

2
1

2@E32ED1k2vb~qW 2!#@E11E22ED1k2E42vb~qW 2!#
,

D3
b5

1

@E42E22vb~qW 2!#@E12ED3k2vb~qW 2!#
2

1

2@E32E12vb~qW 2!#@E22E42vb~qW 2!#

2
1

2@E31E42ED3k2E22vb~qW 2!#@E12ED3k2vb~qW 2!#
, ~A4!

whereb5pW or rW . Unlike their analogousNNg terms, theseNDg wave function reorthonormalization and meson-reco
currents donot vanish in the static limit. Their inclusion is required to preserve the orthonormality of the hadronic w
functions.

Next consider the amplitudes involving an effective current describingDN
NN transitions, which must therefore be taken
between inital- and final-state wave functions constructed fromDN
NN andNN→NN t matrices.

@Mfi#115NeW~kW ,l!^pW 3pW 4 ;a f̃ uh1@11t11
~2 !†G11#@JWeff#12@G21t21

~1 !#h1upW 1pW 2 ;a ĩ&

1NeW~kW ,l!^pW 3pW 4 ;a f̃ uh1@ t12
~2 !†G12#@JWeff#21@11G11t11

~1 !#h1upW 1pW 2 ;a ĩ&1~1,3
2,3!. ~A5!
l

.

n

These are theNDg initial- and final-state interaction ampli-
tudes and should obviously be specified in a consiste
frame. However, thet matrices are available only in the
barycentric frame, yet are required for the initial- and fina
state interactions of Eq.~A5! in barycentric frames which
differ by the photon momentum. The procedure adopted
recent works@19,20# is to attach~guessed! off-shell minimal
relativity factors and assume this renders the initial- an
final-state interaction terms individually Lorentz invariant
Rather than adopt this assumption, we provide an exa
specification of the leading-order contributions to these am
plitudes via Eq.~4.7! with

D1
b5

1

2~E31E42ED1k2E2!

3F 1

E32ED1k2vb
2

1

E42E22vb
G ,

D3
b5

1

2~E11E22ED3k2E4!

3F 1

E12ED3k2vb
2

1

E22E42vb
G . ~A6!
nt

-

in

d

ct
-

APPENDIX B: VERTEX FUNCTIONS

1. Interaction energies for strong vertices

For a meson with momentumqW and massmb we define

Nb5gNNbH E iE f

~2p!38vbEfEi
J 1/2, vb5A~qW !21mb

2.

~B1!

The interaction energieŝ0ub(pW f)2*d3xGNNbb
†(pW i)u0& for

the coupling of mesons to the positive-frequency nucleo
current are

HNNp5NphNNptW , HNNr5NremhNNr
m tW ,

HNNd5NdhNNdtW , ~B2a!

hNNp52 iFNNpsW •F pW f

E f
2
pW i
E i

G , ~B2b!
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hNNr
0 5FFNNr

~1! 1krFNNr
~2! F12

Ef1Ei

2m
G G

1FFNNr
~1! 1krFNNr

~2! F11
Ef1Ei

2m
G G

3FpW f•pW i
E fE i

1
isW •~pW f3pW i !

E fE i
G , ~B2c!

hWNNr5@FNNr
~1! 1krFNNr

~2! #F pW f

E f
1
pW i
E i

1 isW 3F pW f

E f
2
pW i
E i

G G
2

krFNNr
~2!

2m
~pW f1pW i !F12

pW f•pW i
E fE i

2
isW •~pW f3pW i !

E fE i
G ,

~B2d!

hNNd5FNNdF12
pW f•pW i
E fE i

1
isW •~pW f3pW i !

E fE i
G . ~B2e!

The interaction energieŝ0ub~pW f!2*d3xGNNbd~2pW i!u0& for
meson couplings to the pair-creation current are

HN̄Np5NphN̄NptW , HN̄Nr5NremhN̄Nr

m
tW ,

HN̄Nd5NdhN̄NdtW , ~B3a!

hN̄Np51 iFNNpH F12~12l!
Ei

m
G1F11~12l!

Ei

m
G

3FpW f•pW i
E fE i

1 isW •S pW f3pW i
E fE i

D G J , ~B3b!

h
N̄Nr

0
5FFNNr

~1! 1krFNNr
~2! F11

Ef2Ei

2m G GsW •pW f

E f

2FFNNr
~1! 1krFNNr

~2! F12
Ef2Ei

2m G GsW •pW i
E i

, ~B3c!

hW N̄Nr5FFNNr
~1! 1krFNNr

~2! F12
Ei

m
G GsW 1

krFNNr
~2!

2m
~pW f1pW i !

3FsW •pW f

E f
1

sW .pW i
E i

G1FFNNr
~1! 1krFNNr

~2! F11
Ei

m
G G

3F i ~pW f3pW i !

E fE i
1

sW ~pW f•pW i !

E fE i
2
pW f~sW •pW i !

E fE i
2

~sW •pW f !pW i
E fE i

G ,
~B3d!

hN̄Nd52FNNdFsW •pW f

E f
1

sW •pW i
E i

G . ~B3e!

The interaction energieŝ0ud†(2pW f)2*dxGNNbb
†(pW i)u0&

for meson couplings to the pair-annihilation current are
HNN̄p5NphNN̄ptW , HNN̄r5NremhNN̄r

m
tW ,

HNN̄5NdhNN̄dtW ~B4a!

hNN̄p52 iFNNpH F12~12l!
Ef

m
G1F11~12l!

Ef

m
G

3FpW f•pW i
E fE i

1 isW •S pW f3pW i
E fE i

D G J , ~B4b!

h
NN̄r

0
5FFNNr

~1! 1krFNNr
~2! F12

Ef2Ei

2m G GsW •pW i
E i

2FFNNr
~1! 1krFNNr

~2! F11
Ef2Ei

2m G GsW •pW f

E f
,

~B4c!

hWNN̄r5FFNNr
~1! 1krFNNr

~2! F12
Ef

m
G GsW 1

krFNNr
~2!

2m
~pW f1pW i !

3FsW •pW f

E f
1

sW •pW i
E i

G1FFNNr
~1! 1krFNNr

~2! F11
Ef

m
G G

3F i ~pW f3pW i !

E fE i
1

sW ~pW f•pW i !

E fE i
2
pW f~sW •pW i !

E fE i
2

~sW •pW f !pW i
E fE i

G ,
~B4d!

hN̄Nd52FNNdFsW •pW f

E f
1

sW •pW i
E i

G , ~B4e!

where all strong form factors are evaluated a
Q252q252(Ef2Ei)

21qW 2.
For theNDb vertices we define@see Eq.~3.7!#

Np
D5

igNDpFNDp

2m F EDE

~2p!38vpEDE
G1/2,

Nr
D5

gNNrGM
NDr

2m

gDNp

gNNp
F EDE

~2p!38vrEDE
G1/2. ~B5!

The interaction energieŝ0ubD(pW )2*d3xGDNbb
†(pW )u0& for

meson couplings to theN→D current are

HDNp5Np
DhDNptWND , HDNr5Nr

DhDNr
n entWND,

~B6a!

hDNp52sW ND•FpW DS E

mD
2

~pW D•pW !

EDmD
D 2pW G

3F 12S sW •pW D

ED
D S sW •pW

E
D G , ~B6b!
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hDNr51F2pW D•sW ND

mD
;sW ND1pW D

sW ND•pW D

EDmD
GmF S sW •pW D

ED
D

1S sW •pW

E
D ;sW 1

~sW •pW D!sW ~sW •pW !

EDE
Gl

3@~pD2p!mdl
n2~pD2p!ldm

n !]. ~B6c!

The interaction energieŝ0ub(pW )2*d3xGDNbbD
† (pW D)u0& for

meson couplings to theD→N current are

HNDp5Np
DhNDptWND

† , HNDr5Nr
DhNDr

n entWND
† ,

~B7a!

hNDp51F 12S sW •pW D

ED
D S sW •pW

E
D GsW ND

†

3FpW DS E

mD
2

pW D•pW

EDmD
D 2pW G , ~B7b!

hNDr
n 52F S sW •pW D

ED
D 1S sW •pW

E
D ;sW 1

~sW •pW D!sW ~sW •pW !

EDE
Gl

3F2sW ND
†
•pW D

mD
;sW ND

† 1pW D

~sW ND
†
•pW D!

EDmD
Gm

3@~p2pD!mdl
n@~p2pD!ldm

n !#. ~B7c!

2. Currents for electromagnetic vertices

We define

Ng5
ep

~2p!3 H E iE f

4EfEi
J 1/2. ~B8!

The photon coupling to the positive frequency nucleon cu
rent ^0ub(pW f)Jeff(0)b

†(pW i)u0& is given by

JNNg
m 5Ng j NNg

m , ~B9a!

j NNg
0 5FFNNg

~1! 1kFNNg
~2! F12

Ef1Ei

2m
G G

1FFNNg
~1! 1kFNNg

~2! F11
Ef1Ei

2m
G G

3FpW f•pW i
E fE i

1
isW •~pW f3pW i !

E fE i
G , ~B9b!

jWNNg5@FNNg
~1! 1kFNNg

~2! #F pW f

E f
1
pW i
E i

1 isW 3F pW f

E f
2
pW i
E i

G G
2

kFNNg
~2!

2m
~pW f1pW i !F12

pW f•pW i
E fE i

2
isW •~pW f3pW i !

E fE i
G .
~B9c!

The photon coupling to the pair-creation curren

^0ub(pW f)Jeff(0)d(2pW i)u0& is given by
JN̄Ng5Ngem j N̄Ng

m
, ~B10a!
r-

t

j
N̄Ng

0
5FFNNg

~1! 1kFNNg
~2! F11

Ef2Ei

2m G GsW •pW f

E f

2FFNNg
~1! 1kFNNg

~2! F12
Ef2Ei

2m G GsW •pW i
E i

,

~B10b!

jW N̄Ng5FFNNg
~1! 1kFNNg

~2! F12
Ei

m
G GsW 1

kFNNg
~2!

2m
~pW f1pW i !

3FsW •pW f

E f
1

sW •pW i
E i

G1FFNNg
~1! 1kFNNg

~2! F11
Ei

m
G G

3F i ~pW f3pW i !

E fE i
1

sW ~pW f•pW i !

E fE i
2
pW f~sW •pW i !

E fE i
2

~sW •pW f !pW i
E fE i

G .
~B10c!

The photon coupling to the pair-annihilation current

^0ud†(2pW f)Jeff(0)b
†(pW i)u0& is given by

JNN̄g5Ngem j NN̄g

m
~B11a!

j
NN̄g

0
5FFNNg

~1! 1kFNNg
~2! F12

Ef2Ei

2m G GsW •pW i
E i

2FFNNg
~1! 1kFNNg

~2! F11
Ef2Ei

2m G GsW .pW f

E f
,

~B11b!

jWNN̄g5FFNNg
~1! 1kFNNg

~2! F12
Ef

m
G GsW 1

kFNNg
~2!

2m
~pW f1pW i !

3FsW •pW f

E f
1

sW •pW i
E i

G1FFNNg
~1! 1kFNNg

~2! F11
Ef

m
G G

3F i ~pW f3pW i !

E fE i
1

sW ~pW f•pW i !

E fE i
2
pW f~sW •pW i !

E fE i
2

~sW •pW f !pW i
E fE i

G ,
~B11c!

where the electromagnetic form form factors are defined as

FNNg
~1! 5

1

2
FNNg

~1!; is1
1

2
FNNg

~1!; ivt0,

kNFNNg
~2! 5

1

2
k isFNNg

~2!; iv1
1

2
k ivFNNg

~2!; ivt0, ~B12a!

⇒protons: FNNg
~1! ~k250!1kNFNNg

~2! ~k250!

5~1!1S k is1k iv

2 D5mp,

~B12b!

⇒neutrons: FNNg
~1! ~k250!1kNFNNg

~2! ~k250!

5~0!1S k is2k iv

2 D5mn.

~B12c!

For theNDg vertices we define@see Eq.~3.7!#,
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Ng
D5

ep
~2p!32m

GM
iv

2

gDNp

gNNp
F EDE

4EDE
G1/2;

GM
iv ~0!511k iv54.706. ~B13!

The photon coupling to the N→D current

^0ubD(pW )Jeff(0)b
†(pW )u0& is given by

JDNg5Ng
D j DNg

n en~tND!0, ~B14a!

j DNg
n 51F2sW ND•pW D

mD
;sW ND1pW D

sW ND•pW D

EDmD
Gm

3F S sW •pW D

ED
D 1S sW •pW

E
D ;sW 1

~sW •pW D!sW ~sW •pW !

EDE
Gl

3@~pD2p!mdl
n2~pD2p!ldm

n !]. ~B14b!

The photon coupling to the D→N current

^0ub(pW )Jeff(0)bD
† (pW D)u0& is given by

JNDg5Ng
D j NDg

n en~tND
† !0, ~B15a!

jNDg
n 52F S sW •pW D

ED
D 1S sW •pW

E
D ;sW 1

~sW •pW D!sW ~sW •pW !

EDE
Gl

3F2pW D•sW ND
†

mD
;sW ND

† 1pW D

sW ND
†
•pW D

EDmD
Gm

3@~p2pD!mdl
n2~p2pD!ldm

n !]. ~B15b!
The photon coupling to the vector-meson-decay current
given by

JVPg
m ~0!~qP ,qV!5

2epgVPgFVPg

mV

1

~2p!3

3
1

A4vVvP

emjabej~qWV ,lV!

3~qP!a~qV!b ~B16!

where FVPg(k
250)51, qV and qP are the four-momenta

delivered to the nucleons by the vector and pseudoscalar m
sons, respectively.

APPENDIX C: THE MOMENTUM-SPACE NNg
RESCATTERING CALCULATION

TheNNg rescattering amplitudes in bremsstrahlung we
first calculated by Brown@21# in r space. Forp-space calcu-
lations, a recipe has already been given in@10#, although the
residue terms are valid only for soft photons and the dom
nant final-state interaction is scaled by~guessed! off-shell
minimal relativity factors and cast into theI frame with a
barycentric momentumk. This choice of frame does not
minimize the effect of the neglected boost operators and t
inclusion of minimal relativity factors disturbs the conver
gence properties of thep space integral.

Casting the entire rescattering amplitude into theA frame
of Eq. ~3.33! requires a somewhat different numerical proce
dure. We start from Eq.~3.44! and simplify our notation by
defining
Mfi
R5KE E H~ p̂!dudf, H~ p̂!5E F~pW !

Gi~pW !Gf~pW !
dp, ~C1!

with

F~pW !5p2sinu@E~pW 31
1
4kW !1E~pW 1 1

4kW !#@E~pW 12
1
4kW !1E~pW 2 1

4kW !#

3 (
MSMS8

^pW 31
1
4kW̃ ;SfMSf

;TfMTuF11 ixS 2
kW

2
D G t ~2 !†F12 ixS 2

kW

2
D G upW 1 1

4kW ;SfMS8;TfMT&

3^SfMS8;TfMTuJNNg@1#S 2pW 1
kW

2
,2pW 2

kW

2
D uSiMS ;TiMT&

3^1pW 2 1
4kW ;SiMS ;TiMTuF11 ixS 1

kW

2
D GGit

~1 !F12 ixS 1
kW

2
D G upW 12 1

4kW̃ ;SiMSi
;TiMT&,

Gi~pW !5~pW 12
1
4kW !22~pW 2 1

4kW !21 ih i5D i
22~p2 1

4 ukW ucosq!21 ih i ,

Gf~pW !5~pW 31
1
4kW !22~pW 1 1

4kW !21 ih f5D f
22~p1 1

4 ukW ucosq!21 ih f ,

D i
25~ 1

4 ukW ucosq!22pW 1•pW 2 , D f
25~ 1

4 ukW ucosq!22pW 3•pW 4 ,

K5
N

2
~21!~Sf1Si1Tf1Ti !, ~C2!
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with cosq5p̂•k̂5sinupsinukcos(fp2fk)1cosupcosuk . Within
the ~maximally symmetric! A frame the effects of the boos
operatorsx(1kW /2) andx(2kW /2) can be expected to sub
stantially cancel and will therefore be neglected in t
present numerical applications. Their inclusion wou
change nothing that we will discuss in this appendix.

ForD i ,D f,0, there are no poles on the real axis, but it
easy to see that there are singularities in the Green’s fu
tions atpW 5 pW 1 , pW 2 , pW 3 , pW 4 as well as (pW 12pW )•(pW 22pW ) and
(pW 32pW )•(pW 42pW ), the latter two requiring particular atten

tion when cosqi564ApW 1•pW 2/ukW u or cosqf564ApW 3•pW 4/ukW u
causeD i50 or D f50, so thatGi

21 and/orGf
21 each have a

second-order pole~on the real axis!. We adopt the utilitarian
attitude of noting that for experiments below th
p-production threshold, the second-order poles only occu
u1
lab,u2

lab,6°, and even then, only forug
lab,1°. Since no

data exist in this region, we simply defer a treatment of s
ond order singularities and confine our attention to the ki
matics containing the simple and separable poles,

p5pi
~6 !51

1

4
ukW ucosq6D i

if D i
2>0 then D i5Upi~6 !2

1

4UkW ucosqu,

p5pf
~6 !52

1

4
ukW ucosq6D f

if D f
2>0 then D f5Upf~6 !1

1

4UkW ucosqu, ~C3!

and evaluateD i
2 andD f

2 to determine if poles exist on the
positive realp axis. Defining such poles to be vectors so th
p̂i

65p̂f
65p̂, we obtain

H~ p̂!5V.P.E dp

3
F~pW !

FD i
22S p2

1

4
ukW ucosq D 2GFD f

22S p1
1

4
ukW ucosq D 2G 2Z,

~C4!
where

Z5
ipF~pW i

~1 !!

2D iGf~pi
~1 !!

1
ipF~pW i

~2 !!

2D iGf~pi
~2 !!

1
ipF~pW f

~1 !!

2D fGi~pf
~1 !!

1
ipF~pW f

~2 !!

2D fGi~pf
~2 !!

~C5!
t
-
e
ld

is
nc-

-

e
r at

c-
e-

at

remains well defined. This formally completes the specifica
tion of the integral. However, for practical purposes, we nee
to add special forms of zero to smooth the divergences ne
the poles. With a simple generalization of

VPE
a1

a2 1

k22p2
dp5

1

2k
ln U a21k

a22k

k2a1
k1a1

U ~C6!

we obtain

H5Hp
i
~1 !1Hp

i
~2 !1Hp

f
~1 !1Hp

f
~2 !, ~C7!

where

Hp
i
~1 !5E

a1

a2 1

Gi~pW !
F F~pW !

Gf~pW !
2

F~pW i
~1 !!

Gf~pW i
~1 !!

Gdp1
1

2D i

F~pW i
~1 !!

Gf~pi
~1 !!

3F lnU ~a22pi
~2 !!

~a22pi
~1 !!

~a12pi
~1 !!

~a12pi
~2 !!

U2 ipG , ~C8a!

Hp
i
~2 !5E

b1

b2 1

Gi~pW !
F F~pW !

Gf~pW !
2

F~pW i
~2 !!

Gf~pi
~2 !!

Gdp1
1

2D i

F~pW i
~2 !!

Gf~pi
~2 !!

3F lnU ~b22pi
~2 !!

~b22pi
~1 !!

~b12pi
~1 !!

~b12pi
~2 !!

U2 ipG , ~C8b!

Hp
f
~1 !5E

c1

c2 1

Gf~pW !
F F~pW !

Gi~pW !
2

F~pW f
~1 !!

Gi~pW f
~1 !!

Gdp1
1

2D f

F~pW f
~1 !!

Gi~pf
~1 !!

3F lnU ~c22pf
~2 !!

~c22pf
~1 !!

~c12pf
~1 !!

~c12pf
~2 !!

U2 ipG , ~C8c!

Hp
f
~2 !5E

d1

d2 1

Gf~pW !
F F~pW !

Gi~pW !
2

F~pW f
~2 !!

Gi~pf
~2 !!

Gdp1
1

2D f

F~pW f
~2 !!

Gi~pf
~2 !!

3F lnU ~d22pf
~2 !!

~d22pf
~1 !!

~d12pf
~1 !!

~d12pf
~2 !!

U2 ipG ~C8d!

where the domains [a1:a2]1[b1:b2]1[c1:c2]1[d1:d2]
span @0:̀ # and contain the polespi

(1) , pi
(2) , pf

(1) , and
pf
(2) , respectively. In the event thatpa

(6) does not exist in
@0:̀ #, then our expressions requireF(pa

(6))50.
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