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Bonn potential model at finite temperature
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By using the thermofield dynamics, we have calculated the effective coupling of nucleon-nucleon mesons by
summing the three-lines vertices and the masses of nucleon and mesons by summing the corresponding
self-energy diagrams of the Bonn potential model at finite temperature. Through the temperature dependence of
effective couplings and the screening masses, we have extended the Bonn potential to finite temperature.

PACS number~s!: 21.30.Fe, 11.10.Wx, 13.75.Cs
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The Bonn potential@1# is one of the very successful po
tentials in nuclear physics. It provides a nice fit to nucleo
nucleon (NN) phase shifts and deuteron properties and
widely in use@1,2#. For studying physics under extreme co
dition of high temperature and/or high density, it is essen
to extend the Bonn potential to finite temperature. This is
purpose of this paper.

The Bonn potential model is a boson-exchange mo
The intermediate bosons in this model arep, s, h, d, v,
and r mesons which provide the long-range a
intermediate-range as well as the short-range force forNN
andND interactions. For simplicity, we neglect theD reso-
nance here. The interaction Lagrangian for the Bonn po
tial model is

L I5Lps1Ls1Lv ,

Lps52gpsc̄ ig5cw, Ls5gsc̄cf, ~1!

Lv52gvc̄gmcVm2
f v
4mN

c̄smnc~]mVn2]nVm!,

where w, f, and Vm are the pseudoscalar (p,h), scalar
(s,d), and vector (v,r) bosons, respectively, andmN is the
nucleon mass in vacuum.

We use the thermofield dynamics~TFD! @3# to extend the
Bonn potential to finite temperature. In order to investig
theNN potential due to various meson exchanges, as in
previous studies@4–7#, we calculate the three-line vertice
correction@Fig. 1~a!# which will lead to the temperature de
pendence ofNNa (a5p,h,s,d,v,r) effective coupling,
and the vacuum polarization@Fig. 1~b!# which will lead to
the temperature dependence of the masses of mesons
nucleons, and then use the temperature-dependent effe
coupling and masses to study the Bonn potential. In
framework of TFD, the thermal propagator has 232 matrix
structure, but only the 1-1 component refers to the phys
field @3#. The calculations are very complicated; hereafter
show the final result and some examples only.

1. Vertices correction.Each effective coupling ofNNa
includes six diagrams, because the exchanging mesons
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be itself and five other mesons. For example, the effect
coupling of aNN pseudoscalar meson due to the exchange
a pseudoscalar meson is

gpsLps
psg5tk5 i E d4k

~2p!4
~gpsg5t i !D

11~p82k!

3~gpsg5tk!D
11~p2k!~gpsg5t i !Dps

11~k!,

~2!

where

FIG. 1. Feynman diagrams.~a! The three-line vertices; the solid
lines denote nucleons, the dashed lines for the corresponding
sons, and the dotted lines for all mesons.~b! Self-energy diagrams
for the nucleon.~c! Self-energy diagrams for the meson.
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D11~k!5~k”1mN!F 1

k22mN
21 i e

12p inF~k!d~k22mN
2 !G ,

~3!

D11~k!5
1

k22ma
21 i e

22p inB~k!d~k22ma
2 !, ~4!
are the 1-1 component propagators for fermions and boso
respectively@3,6,7#. Substituting Eqs.~3! and ~4! into Eq.
~2!, we can prove that Eq.~2! can be separated into two
parts: the zero-temperature part and the temperatu
dependent part. The contribution of the zero-temperature p
can be treated by introducing a form factor as in Ref.@1#, and
the temperature-dependent part is
Lps
ps~T!52gps

2 E d4k

~2p!3
k2

@~p82k!22mN
2 #@~p2k!22mN

2 #
d~k22mps

2 !nB~k!1gps
2 E d4k

~2p!3
k2

@~p2k!22mN
2 #~k22mps

2 !

3d@~p82k!22mN
2 #nF~p82k!1gps

2 E d4k

~2p!3
k2

@~p82k!22mN
2 #~k22mps

2 !
d@~p2k!22mN

2 #nF~p2k!. ~5!
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The vertex correction of pseudoscalar mesons due to the
change of scalar mesons or vector mesons can be calcu
similarly. The total vertices correction of pseudoscalar m
sons at finite temperature is

Lps~T!5Lps
ps~T!1Lps

s ~T!1Lps
v ~T! ~6!

and the effective coupling of the pseudoscalar meson is

gps* ~T!5gps@11Lps~T!#. ~7!

The calculations of the temperature-dependent effective c
plings for other mesons are analogous to that for the ps
doscalar meson. But for therNN coupling, there are two
coupling constantsgr and f r which correspond to the vecto
coupling and the tensor coupling, respectively.

2. Self-energy corrections.According to the Feynman
rules of TFD, the in-medium nucleon massmN* can be found
by summing the self-energy diagrams@Fig. 1~b!# where the

FIG. 2. The central potential at different temperatures. A:T50;
B: T5100 MeV; C:T5150 MeV.
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dashed lines denote the corresponding six mesons. The s
energy corrections of mesons can be obtained by summ
the corresponding self-energy diagrams of mesons@Fig.
1~c!#. For example, the self-energy of pseudoscalar mesons

Pps~q!5 igps
2 E d4k

~2p!4
Tr@g5t iD

11~k!g5t jD
11~k1q!#.

~8!

Substituting the nucleon propagator into Eq.~8!, we can
separate Pps(q) into two parts: P ps(q)5Pps

F (q)
1Pps(q,T). The last term depends on temperature expli
itly, and the first termPps

F (q) depends onmN* . Obviously,
P ps

F (q) involves divergent integrals and also depends o
temperature throughmN* . These divergences may be ren
dered finite by a regularization procedure as in Refs.@8,9#,
and the finite parts are called the vacuum fluctuation~VF!

FIG. 3. The tensor potential at different temperatures. A:T50;
B: T5100 MeV; C:T5150 MeV.
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correction. After the above treatment we find that the VF p
of the self-energy of ap meson, for example, is

Pp
F~q!52

gp
2

2p2 HmN
22mN*

222~mN2mN* !21 1
6 ~q22mp

2 !

1E
0

1

dx@mN*
223q2x~12x!#

3 lnFmN*
22q2x~12x!

mN
22q2x~12x! G J . ~9!

Pps(q,T) can be calculated as in Refs.@6,11# directly.
art The screening masses of mesons which represent the
verse Debye screening length and imply the long-distanc
corrections are defined as in Refs.@10,11#:

ma
s5@ma

21Pa~0,qW→0;T,r!#1/2~a5p,s,h,d,v,r!.
~10!

3. Bonn potential at finite temperature.TheNN potential due
to the one-boson exchange can be found by summing th
exchange amplitude of certain bosons with given screenin
masses and effective couplings. Following a treatment sim
lar to our previous work@4–7,11#, we finally obtain theNN
potential at finite temperature for the Bonn potential mode
as
VBonn~r !5(
a

Va~r !, ~11!

Vps~r !5Hps

gps*
2

4p

mps
s3

12mN
2 @Z~xps!S121Y~xps!~sW 1•sW 2!#, ~12!

Vs~r !52Hs

gs*
2

4p
ms
sF S 12

ms
s2

4mN
2 DY~xs!2

ms
s2

2mN
2SW •LW

1

xs

d

dxs
Y~xs!G , ~13!

Vv~r !5
HvL

4p
mvL
s H gv* 2F S 11

mvL
s2

4mN
2 DY~xvL!2 1

2Z1~xvL!LW •SW G1
1

2
gv* f v* F SmvL

s

mN
D 2Y~xvL!22Z1~xvL!LW •SW G J

1
HvT

4p
mvT
s H gv* 2F mvT

s2

4mN
2 S 12

mvT
s2

16mN
2 DY~xvT!2S 12

mvT
s2

16mN
2 DZ1~xvT!LW •SW 1

1

6 SmvT
s

mN
D 2Y~xvT!~sW 1•sW 2!2 1

12Z~xvT!S12G
1gv* f v* F13 SmvT

s

mN
D 2Y~xvT!~sW 1•sW 2!2Z1~xvT!LW •SW 2 1

6Z~xvT!S12G1
f v*

2

6 F SmvT
s

mN
D 2Y~xvT!~sW 1•sW 2!2 1

2Z~xvT!S12G J ,
~14!
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wherea5p,h,s,d,r,v, andHps, HvL , Hs , andHvT are
some convergent integrals@7,11#. The contributions from the
isovector bosonsp, d, and r will multiply a factor of
tW1•tW2 to the corresponding equations~12!, ~13!, and ~14!.
Thexi5mi

sr , Y(xi), Z1(xi), Z(xi), andS12 are defined as in
Ref. @1#.

The Bonn potential can be separated into different co
ponents as

Va~r !5VC~r !1VT~r !S121VLS~r !LW •SW , ~15!

whereVC(r ), VT(r ), andVLS(r ) are, respectively, the cen
tral, tensor, and spin-orbit potentials.

The numerical results of the Bonn potential at finite te
perature are shown in Figs. 2–4, where the parameters h
been chosen as in Ref.@1#. The central potential curves fo
different temperatureskBT50 ~A!, 100 ~B!, and 150~C!
MeV are shown in Fig. 2. From Fig. 2, we find that th
potential well ofVC(r ) becomes shallower as the temper
ture increases. The tensor potential curves for different te
perature are shown in Fig. 3. As the temperature increa
the zero of the tensor force is shifted toward the larger
region, and the tensor force is weaker in the outer regi
m-

-
ave

e
a-
m-
es,

on.

This result is in agreement with the in-medium tensor for
@12#. Figure 4 shows the curves of the spin-orbitVLS(r ) for
various temperatures; the absolute value of the spin-orbit
tential uVLS(r )u increases as temperature increases, b

FIG. 4. The spin-orbit potential at different temperatures. A
T50; B: T5100 MeV; C:T5150 MeV.
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VLS(r ) is not sensitive to temperature. The above result is
course reasonable because the temperature plays a ‘‘re
sive’’ role.

Since the Bonn potential is the meson-exchange poten
the above derived temperature dependence is valid onl
the temperature region below the chiral and/or deconfin
critical temperature. If one wants to discuss the nuclear fo
based on the quark model, in particular, on QCD, some c
of
pul-

tial,
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ng
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or-

rections, for example, the cutoff in the meson-nucleon vert
form factors, must be added to the Bonn potential@13#.

By using our temperature-dependent Bonn potential, w
can discuss the equation of state, the temperature depende
of the saturation point of nuclear matter, and others. Work
this topic is in progress.
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