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Nuclear curvature energy in relativistic models
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The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially
with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal
wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic
models quantal and semiclassical calculations of the curvature energy are in good agreement.

PACS number~s!: 21.10.Dr, 21.60.2n, 21.65.1f
a

s

c-

s
nt

s
u-

,

While there exists general agreement on the magnitude
the volume (av) and surface (as) energy coefficients in the
nuclear mass formula

E5avA1asA
2/31S ac2 2as

2

K`
DA1/31••• ~1!

(K` is the bulk incompressibility!, the curvature energy con-
tribution ac has been up to now a controversial subject. O
the one hand, all the past theoretical calculations~most of
them based on semiclassical methods! have reported a value
for theac coefficient around 10 MeV, whereas the empiric
value extracted from fits to nuclear binding energies and fi
sion barriers is compatible with zero. Very recently, Mye
and Swiatecki@1# have provided an explanation to this so
called curvature energy puzzle and conclude that the th
retical estimates ofac are probably quite realistic.

On the other hand, a recent paper by Von-Eiffet al. @2#
dealing with the analysis of nuclear surface properties in t
relativistic mean field theory~RMFT! presents at the end, for
the first time in the literature, a few relativistic quantal ca
culations of the curvature energy. The authors of@2# compare
their results with the corresponding semiclassical calcu
tions of Ref.@3#, finding a large discrepancy which is inter
preted as an indication that semiclassical approaches to
curvature energy might not be sufficient within the relativi
tic framework @2#. Indeedac is a very subtle quantity. The
aim of the present paper is twofold: to give a clarifying ou
line, tailored to the relativistic model case, of the calculatio
of the curvature energy coefficient, and to show that in R
@2# there was a misinterpretation when comparing the re
tivistic quantal and semiclassical curvature energy resu
which will be shown to be both in good agreement.

We start by shortly recalling some basic consideratio
~see also Refs.@3–7#!. In the droplet model@8# the energy of
an uncharged spherical nucleus with mass numberA is split
into a volume and a surface part:

E5avA14pE
0

`

dr r 2@E~r !2avr~r !#, ~2!
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whereav is the energy per particle in the bulk,E(r ) and
r(r ) stand for the local energy and particle densities, respe
tively, and the quantityEs5E2avr is called the surface
energy density. Following Ref.@8#, one writes Eq.~2! in
terms of a variableu5r2R which measures the distance
from the equivalent sharp surface of radiusR, expands~2! in
powers of the curvaturek (2/R for spherical systems!, and
takes the limitR→`, in which case the geometry become
that of a semi-infinite system. The surface energy coefficie
is given by the lowest order of thek expansion~correspond-
ing to the plane surface!:

as54pr`
2 E

2`

`

dz Es~z,k!uk50 , ~3!

where the variableu has been replaced withz, the coordinate
perpendicular to the surface, andr`5(3/4pr`)

1/3 is the
nuclear matter radius~with r` the saturation density!. The
linear term ink gives the curvature energy coefficient

ac5ac
geo1ac

dyn58pr`E
2`

`

dz~z2z0!Es~z,k!uk50

18pr`E
2`

`

dz
]Es~z,k!

]k
U
k50

. ~4!

The constantz05@*2`
` dz zr8(z)#/@*2`

` dzr8(z)# is the lo-
cation of the effective sharp surface.

The two contributions to the curvature energy in~4! are
called geometrical (ac

geo) and dynamical (ac
dyn). The geo-

metrical contribution only involves the variation ofEs across
the surface parallel to thez axis. The dynamical part comes
from the change ofEs by curvature when the plane surface i
infinitesimally bent. Some confusion may arise since the n
merical values ofac

geo and ac
dyn are not uniquely defined

~only their sum is!. This stems from the fact that the form of
E(r ) in ~2! is not unique under the integral sign. Actually
E(r ) can contain Laplace operators both explicitlyand im-
1018 © 1996 The American Physical Society
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plicitly. One notorious example for the explicit dependen
is the kinetic energy part ofE(r ) in the nonrelativistic case
~units\5c51 are used!:

2
1

2m(
a

E dr wa* ~r !Dwa~r !5
1

2m(
a

E dr u“wa~r !u2.

~5!

We thus see that the explicit appearance of Laplace opera
can be modified arbitrarily by partial integration. These d
ferent forms ofE(r ) leave, of course, the total curvatur
energy ~as well as the surface energy! unchanged but the
individual values forac

geo and ac
dyn are modified, since the

Laplace operator in the limitR→` reads asd2/dz2

1kd/dz. In order not to obscure the discussion unnecess
ily, we will now make one definite choice for the form o
E(r ) for which one may also find a certain logic: The fully
quantalexpression ofE(r ) should be such that there appea
no explicit Laplace operators; i.e., allD ’s have been elimi-
nated by partial integrations. The dynamical contributio
ac
dyn to the curvature energy then entirely comes from t
implicit curvature dependence of the wave functions fro
which E(r ) is constructed. Indeed the Schro¨dinger equation
contains the Laplacian, and thus the wave functions and
quantum-mechanical density matrix contain the curvaturek
in a nonexplicit way. Though in the relativistic problem th
Dirac equation is linear in the“ operator, the elimination of
the lower components in favor of the upper components a
generates an implicit dependence of the relativistic wa
functions on the Laplacian.

It is fortunate that semiclassical expansions in powers
\, like the Wigner-Kirkwood and density functional~ex-
tended Thomas-Fermi! approaches, make such implicitk de-
pendence of the quantalE(r ) anexplicit one via the Laplace
operators which appear in the semiclassical series forE(r )
@7#. At this step one again has to be very careful in order n
to get mixed up. Actually, the Laplacians in the\ expansion
can also be eliminated in various ways by partial integr
tions, leading to a change inac

geo andac
dyn separately. If we

are interested in a direct comparison with our above defi
tion of ac

dyn in the quantal case, it is clear that the Laplacia
appearing in the\ expansion shouldnot be eliminated, since
they reflect exclusively the implicitk dependence of the
wave functions. As will be shown below, another importa
feature of a self-consistent calculation in the density fun
tional theory is that the contribution toac of the implicit k
dependence of the densityr ~and of the meson fields in the
relativistic model!, which stems from solving the Euler-
Lagrange equations, exactly vanishes. We shall now exe
plify all this with the relativistic model.

First, we address the calculation ofac
dyn in the quantal

case. The starting point is the well-known Lagrangian of t
RMFT including nonlinear couplings of the scalar field@9#.
Using standard notation, in the relativistic Hartree appro
mation the local energy densityEH(r ) of a neutral spherical
nucleus reads

EH5(
a

wa
†@2 ia•“1bm*1gvV02m#wa1E f , ~6!

wherem*5m2gsf0 is the nucleon effective mass and
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21ms
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2#2
1

2
@~“V0!

21mv
2V0

2#1
1

3
bf0

3

1
1

4
cf0

4 . ~7!

The single-particle wave functionswa and the scalar (f0)
and vector (V0) meson fields are obtained by solving a set
coupled variational equations, namely, a Dirac equation
the nucleons,

dEH

dwa
† 5@2 ia•“1bm*1gvV02m#wa5«awa , ~8!

and standard Klein-Gordon equations for the mesons@9#.
We remark that the quantal energy densityEH of Eq. ~6!

does not contain any explicit Laplace operators, so t
ac
dyn comes only from the implicit curvature dependence
the wave functions and the meson fields. Then, from Eq.~4!
one finds

ac,H
dyn58pr`E

2`

`

dzF(
a

S dEs
H

dwa

dwa

dk
1

dEs
H

dwa
†

dwa
†

dk D
1

dEs
H

df0

df0

dk
1

dEs
H

dV0

dV0
dk G U

k50

, ~9!

with Es
H5EH2avr. Using r5(awa

†wa and the variational
equations for the meson fieldsdEH/df05dEH/dV050,

ac,H
dyn58pr`(

a
E

2`

`

dzF S dEH

dwa
2avwa

† D dwa

dk

1S dEH

dwa
† 2avwaD dwa

†

dk G U
k50

. ~10!

The equationsdEH/dwa5«awa
† anddEH/dwa

†5«awa allow
one to write

ac,H
dyn58pr`(

a
E

2`

`

dz~«a2av!
d

dk
~wa

†wa! U
k50

.

~11!

After k has been set equal to zero, the indexa refers to the
quantum numbers of the uncurved semi-infinite system, t
is, a5(kz ,k' ,h) @10# with k25kz

21k'
2 (0<k<kF,`) and

h561 the spin orientation. The Hugenholtz–Van Hov
theorem tells us that for nuclear matter at equilibriu
av5(kF,`

2 1m*̀ 2)1/21gvV0,̀ 2m, where kF is the Fermi
momentum and all quantities are evaluated at saturation.
nally, taking into account that the energy eigenvalues
semi-infinite nuclear matter are identical with the singl
particle energies in infinite nuclear matter@10#,
«a5(k21m*̀ 2)1/21gvV0,̀ 2m, one obtains

ac,H
dyn58pr`(

a
@Ak21m*̀ 22AkF,`2 1m*̀ 2#

3E
2`

`

dz
d

dk
~wa

†wa! U
k50

. ~12!
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In the nonrelativistic framework one would find a simil
expression for the quantalac

dyn, with nonrelativistic single-
particle energies and wave functions. It is clear from Eq.~12!
that in general the dynamical contribution to the curvat
energy in a quantum-mechanical calculation is a nonvan
ing quantity. Furthermore, it cannot be directly calculat
since the dependence of the wave functions onk is un-
known; i.e., we cannot evaluate the derivati
d(wa

†wa)/dkuk50 in ~12!. As a consequence, the total curv
ture energy is not fully accessible within the quantal fram
work, and it is only its geometrical partac

geo which can be
directly calculated.

As mentioned above, when one resorts to a semiclass
formalism the implicit curvature dependence of the wa
functions turns into an explicit one in the form of Lapla
operators in the\ series, so that one can certainly get a va
for ac

dyn in the semiclassical context. We will illustrate this
our problem by considering the relativistic extend
Thomas-Fermi~RETF! method@11#, which is an extension
of the relativistic Thomas-Fermi~RTF! approximation@9#. It
incorporates gradient corrections of second order in\ and
thus it is more appropriate than the RTF approximation
the description of nuclear surface properties@3,12#. For an
uncharged spherical nucleus, the RETF energy den
ERETF(r ) of the RMFT is

ERETF5E01E21gvV0r2mr1E f . ~13!

E f has been defined in Eq.~7!; E0 is the well-known RTF
functional,

E05
1

4p2 FkF«F
31kF

3«F2m* 4ln
kF1«F
m* G , ~14!

and

E25C1~“r!21C2“r•“m*1C3~“m* !21C4Dr

1C5Dm* ~15!

is the correction of order\2. As usual the local Fermi mo
mentum is related to the density viakF5(3p2r/2)1/3,
«F5AkF21m* 2, and the functionsCi are defined as follows

C1~kF ,m* !5
p2

48kF
3«F

2 F2kFS 112
«F
2

kF
2 D ln kF1«F

m*

2«FS 312
kF
2

«F
2 D G , ~16!

C2~kF ,m* !5
1

6«F
2 F kF

2

m* «F
1
m*

kF
ln
kF1«F
m* G , ~17!

C3~kF ,m* !5
kF
3

12p2«F
3 S 213

«F
2

kF
2 D F12

«F
kF

ln
kF1«F
m* G ,

~18!

C4~kF ,m* !5
1

12«F
F122

«F
kF

ln
kF1«F
m* G , ~19!

C5~kF ,m* !5
m*

6p2 F kF«F
2 ln

kF1«F
m* G . ~20!
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Equations~13!–~20! are the semiclassical counterpart~to or-
der \2) of the relativistic quantal energy density~6!. We
insist that no partial integrations of gradients or Laplacia
have been performed in the expression given above forE2 .
Therefore, the explicit Laplace operators in Eq.~15! display
exclusively the implicit dependence of the quantal wav
functions on the curvaturek, which was hidden inEH. Note
in passing that this is the first time that the functionalE2 of
the RETF method is given as in Eqs.~15!–~20!, since in the
previous literature it had always been published in the for
which results after eliminatingDr andDm* by partial inte-
grations@3,11,12#. The RETF variational density and meso
fields are obtained by solving the Euler-Lagrange equatio

dERETF

dr
5«F2m1gvV01

dE2

dr
5l, ~21!

with l the chemical potential, and Klein-Gordon equation
which have the same form as in the quantal case~see Ref.@3#
for details!.

Applying Eq. ~4! to the surface energy density
Es
RETF5ERETF2avr, we get the semiclassical value for the

dynamical part of the curvature energy:

ac,RETF
dyn 58pr`E

2`

`

dzFC4~kF ,m* !
dr

dz

1C5~kF ,m* !
dm*

dz G U
k50

18pr`E
2`

`

dzF S dERETF

dr
2avD dr

dk

1
dERETF

df0

df0

dk
1

dERETF

dV0

dV0
dk G U

k50

. ~22!

The first two lines of~22! originate from theD operators
present in E2 @we have used that](DA)/]kuk50
5dA/dzuk50 , with A5r, m* #. The last two lines represent
the contribution of the implicitk dependence: The solutions
r, f0 , andV0 of ~21! and of the Klein-Gordon equations
depend in an implicit way on curvature~because those equa-
tions contain Laplacians!. However, as mentioned earlier
this implicit k dependence does not play any role in th
semiclassical curvature energy. First, for the self-consiste
density and fields the chemical potentiall equals the energy
per particleav of saturating nuclear matter. Second, the e
ergy density is stationary with respect to variations of th
density and the fields:

dERETF

dr
2l5

dERETF

df0
5

dERETF

dV0
50. ~23!

Consequently, the integrand of the last two lines of~22! van-
ishes andac,RETF

dyn is simply given by the first two lines of this
equation. Since we have made sure not to perform inE2 any
rearrangement ofD operators by partial integrations, it now
is clear that Eq.~22! is the quantity which corresponds di-
rectly to the quantalac,H

dyn of Eq. ~12!. Similarly, it will be
valid to compareac, RETF

geo with ac,H
geo arising from the quantal

functional ~6! only if we employ Eq.~15! for E2 . It should
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be noted that in the simpler RTF approach where the\2

correctionE2 and therefore the correspondingD operators
are neglected we haveac,RTF

dyn 50, and thusac,RTF5ac,RTF
geo .

In Table I we present the values ofac
geo in the quantal and

RETF approaches for the same three parameter sets o
relativistic model that were considered in Table IV of Re
@2# ~from which we have extractedac,H

geo). We see that there is
close agreement between the results of both approaches,
the nonrelativistic case@7#. Also given are the values fo
ac,RETF
dyn to which no quantal counterparts exist, and the to
curvature energyac,RETF5ac,RETF

geo 1ac,RETF
dyn . It is worth

mentioning that in the nonrelativistic framework the sem
classicalac

dyn is analytical@7# and only depends on nuclea
matter properties~the saturation density and effective mas!.
We have performed numerical tests that indicate that
also happens in the relativistic model, but we have not b
able to obtain an analytical result for Eq.~22!. Though the
RTF approximation misses the individual values in the se
ration of the curvature energy into dynamical and geome
cal parts (ac,RTF

dyn 50), we have also includedac,RTF in Table I
to show that the RTF method provides a reasonable estim
for the total value, which is close to the RETF one. This
not surprising as we have checked that in the RETF calc
tion the contribution of order\2 to ac,RETF

geo , due to the func-
tional E2 of Eq. ~15!, almost cancels out the dynamical pa
ac, RETF
dyn , so that the net correction of order\2 to the curva-
ture energy is small as compared with the Thomas-Fe
contribution~order\0).

TABLE I. Contributions to the curvature energy calculated in t
relativistic quantal Hartree approach and in the semiclassical R
and RTF approximations~see text!, for the parameter sets of Re
@2# which have been labeled by their incompressibilityK` ~the
remaining saturation properties areav5215.75 MeV, r`50.16
fm23, andm*̀ /m50.55, withms5400 MeV!. All quantities are in
MeV.

K` ac,H
geo @2# ac,RETF

geo ac,RETF
dyn ac,RETF ac,RTF @2#

200 13.87 14.19 14.84 29.03 28.56
250 12.70 12.79 14.84 27.63 27.57
300 12.15 11.71 14.84 26.54 26.98
f the
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One should not attach a special significance to the fa
that the magnitude ofac,RETF or ac,RTF in Table I is about a
factor of 3 larger than the usual values of;10 MeV. This is
due to the small scalar massms5400 MeV of these param-
eter sets, which was chosen in Ref.@2# so as to minimize the
influence of Friedel oscillations and spin-orbit effects in th
quantal density distributions. Current parameter sets of t
relativistic model havems around 500 MeV and yield better
values forac ; see Ref.@3#.

We now explain where the comparison made in Ref.@2#
of their quantal results forac,H

geo , obtained from the functional
~6!, with the RETF values for the curvature energy publishe
in Ref. @3# went wrong. As discussed in@3# the RETF calcu-
lations were made with the energy densityE2* which one
obtains from Eq.~15! once the Laplacians have been re
moved by suitable partial integration~a starred quantity
means that it is calculated as in@3# using the functional
E2* ). In practice, if one only wants the total curvature energ
E2* has the advantage thatac,RETF

dyn* 50 and ac,RETF
geo*

5ac,RETF* 5ac,RETF; i.e., for E2* the total curvature energy
coincides with the geometrical part. Unfortunately, whe
comparing the semiclassical and quantal results Von-E
et al. @2# took ac,RETF

geo* as the quantity which should corre-
spond toac,H

geo , and therefore found a striking disagreemen
between them. In doing this comparison it was overlooke
that ac,H

geo leaves out the implicitk contribution from the
wave functions, i.e.ac,H

dyn , whereas its semiclassical counter
part is included inac,RETF

geo* . Such disagreement disappears i
the proper comparison is made: Indeed their values f
ac,H
geo agree very nicely with our values forac,RETF

geo listed in
Table I.

In conclusion, we have tried to carefully point out the
subtleties and pitfalls when dealing with the curvature en
ergy, and to make clear the fact that the implicit curvatur
content of the quantal wave functions can be directly eval
ated only in a semiclassical framework which includes, a
least, second order corrections in\. We have shown that also
in the relativistic models there is full consistency betwee
quantum-mechanical and semiclassical results.
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Grant No. PB92-0761, the IN2P3-CICYT Collaboration, an
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