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Nuclear curvature energy in relativistic models
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The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially
with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal
wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic
models quantal and semiclassical calculations of the curvature energy are in good agreement.

PACS numbse(s): 21.10.Dr, 21.60-n, 21.65+f

While there exists general agreement on the magnitude ofhere a, is the energy per particle in the bulk(r) and
the volume &,) and surface &) energy coefficients in the p(r) stand for the local energy and particle densities, respec-
nuclear mass formula tively, and the quantity,=#—a,p is called the surface
energy density. Following Ref8], one writes Eq.(2) in
terms of a variablau=r—R which measures the distance
AV .. 1) from the equivalent sharp surface of radRisexpand<?2) in
powers of the curvature (2/R for spherical systemsand
takes the limitR— o, in which case the geometry becomes
that of a semi-infinite system. The surface energy coefficient
Ns given by the lowest order of the expansior(correspond-
ing to the plane surfage

2
i)

E=a,A+aA?3+|a,— <

oo

(K is the bulk incompressibility the curvature energy con-
tribution a. has been up to now a controversial subject. O
the one hand, all the past theoretical calculatigm®st of
them based on semiclassical methdusve reported a value
for the a,, coefficient around 10 MeV, whereas the empirical
value extracted from fits to nuclear binding energies and fis-
sion barriers is compatible with zero. Very recently, Myers
and Swiatecki{1] have provided an explanation to this so-
called curvature energy puzzle and conclude that the theo- ) _ _
retical estimates of. are probably quite realistic. where th.e variable has been replaced with the Egordmate
On the other hand, a recent paper by Von-Eiffal. [2] ~ Perpendicular to the surface, amd=(3/4mp..)~" is the
dealing with the analysis of nuclear surface properties in th@uclear matter radiugwith p.. the saturation density The
relativistic mean field theoryRMFT) presents at the end, for linear term in« gives the curvature energy coefficient
the first time in the literature, a few relativistic quantal cal-
culations of the curvature energy. The authorfXfcompare
their results with the corresponding semiclassical calcula-  a.=ag®+ aﬂy”=8wrmf
tions of Ref.[3], finding a large discrepancy which is inter- -
preted as an indication that semiclassical approaches to the = 95(Z,K)
curvature energy might not be sufficient within the relativis- +87Trmf dz p
tic framework[2]. Indeeda, is a very subtle quantity. The ‘°° K
aim of the present paper is twofold: to give a clarifying out-
line, tailored to the relativistic model case, of the calculationThe constanizy=[[~.dz 2’ (2)]/[ [~ ..dzp'(2)] is the lo-
of the curvature energy coefficient, and to show that in Refzation of the effective sharp surface.
[2] there was a misinterpretation when comparing the rela- The two contributions to the curvature energy(# are
tivi_stic q_uantal and semiclassic_al curvature energy resultsggied geometrical 4%°9 and dynamical zﬁgy”). The geo-
which will be shown to be both in good agreement.  petrical contribution only involves the variation &t across
We start by shortly recalling some basic considerationgpe syrface parallel to the axis. The dynamical part comes
(see also Refs{3—7]).. In the droplet.modeS] the energy _of from the change of by curvature when the plane surface is
an uncharged spherical nucleus with mass number split  jysinitesimally bent. Some confusion may arise since the nu-
into a volume and a surface part: merical values ofal® and a®" are not uniquely defined
(only their sum i$. This stems from the fact that the form of
E=aUA+477fmdr P A —a,p(r)], ) Z(r) in (2) is not unique under the integral sign. Aqtually,
0 #(r) can contain Laplace operators both explicilyd im-

as:47TriJ‘7 dz gS(ZIK)|K=0’ (3)

oo

dz(z—20) Z5(2,8)| =0
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plicitly. One notorious example for the explicit dependence 1 s 2 1 ST
is the kinetic energy part of(r) in the nonrelativistic case ~ “1=5[(V ¢0)*+ms¢p] = 5[(VVo)“+m, Vo] + s bdg
(unitsh=c=1 are used

1
1 1 +—cop. (7)
_——_— * = =_— 2 4
T f dr @3 (NAe.(N) =72 f dr|V oq(r)[2.
(5)  The single-particle wave functions, and the scalar ¢,)

. and vector ¥,) meson fields are obtained by solving a set of
We thus see that the explicit appearance of Laplace operatogg, pled variational equations, namely, a Dirac equation for
can be modified arbitrarily by partial integration. These dif-{he nucleons

ferent forms of #(r) leave, of course, the total curvature

energy (as well as the surface enejgynchanged but the st . .
individual values forag®® and a?" are modified, since the W=[—Ia~v+l8m +9,Vo—Mle,=€,0,, (8)

Laplace operator in the limitR—o reads asd?/dz?
+ xd/dz. In order not to obscure the discussion unnecessamnd standard Klein-Gordon equations for the meg@is

ily, we will now make one definite choice for the form of  We remark that the quantal energy density of Eq. (6)
Z(r) for which one may also find a certain logic: The fully does not contain any explicit Laplace operators, so that
quantalexpression o(r) should be such that there appear a®" comes only from the implicit curvature dependence of
no explicit Laplace operators; i.e., all's have been elimi- the wave functions and the meson fields. Then, from(Ex.
nated by partial integrations. The dynamical contributiongne finds

a®" to the curvature energy then entirely comes from the 7 7
implicit curvature dependence of the wave functions from dyn_ * 8x8 do, 677 del,
which #(r) is constructed. Indeed the ScHinger equation ac,H_87Tr°Of_de ; S, dk * Sot dk
contains the Laplacian, and thus the wave functions and the ¢

guantum-mechanical density matrix contain the curvature 56': deg 5/5': dVp
in a nonexplicit way. Though in the relativistic problem the Sby dx = oV, dx - ©

Dirac equation is linear in th¥ operator, the elimination of

the lower components in favor of the upper components a|59vith Mo _a p. Usingp=3 ¢! 0. and the variational
“s T ¢ vl —“~a¥a¥a

generates an implict dependence of the relatvisi WaVG,q aiions for the meson field by~ 515V, =0.

It is fortunate that semiclassical expansions in powers of © st do
fi, like the Wigner-Kirkwood and density functiondéx- a®"=8nr, >, f dz ( —a,¢h | =
tended Thomas-Ferinapproaches, make such impligitde- ' @ J-o 0¢q dx
pendence of the quantél(r) anexplicitone via the Laplace St do!
operators which appear in the semiclassical seriesz{o) +| —F—a,0, ¢ (10)
[7]. At this step one again has to be very careful in order not 00, dx =

to get mixed up. Actually, the Laplacians in theexpansion

can also be eliminated in various ways by partial integra-The equaFi0n§5H/5%=8a90£ andsM s =& .0, allow

tions, leading to a change &f®® anda" separately. If we One to write

are interested in a direct comparison with our above defini- . d

tion of a®"in the quantal case, it is clear that the Laplacians adn=8mr,>, f dz(e,—a,)~—(¢le,)

appearing in thé expansion shouldot be eliminated, since ’ a J-o dx k=0

they reflect exclusively the implicik dependence of the (11)

wave functions. As will be shown below, another important :

feature of a self-consistent calculation in the densitr;/ func-After « has been set equal to zero, the ]r_ldne_x_efers to the

tional theory is that the contribution &, of the implicit « guantum numbers of th(.:‘ “”‘;”“";’d s§m|-|nf|n|te system, that

dependence of the densipy(and of the meson fields in the ' a=(k; k., 7) [10] with k*=k; +k (O<k=ke ) and

relativistic mode), which stems from solving the Euler- 7~ =1 the spin orientation. The Hugenholtz—Van Hove

Lagrange equations, exactly vanishes. We shall now exen{heoregn teIIs* e that for nuclear matter at equilibrium

plify all this with the relativistic model. a,= (kg »+ M) "*+g,Vo.—m, where kg is the Fermi
First, we address the calculation agyn in the quantal momentum ar_wd all quantities are evaluated at saturation. _F|-

hernally, taking into account that the energy eigenvalues in

semi-infinite nuclear matter are identical with the single-

cle energies in infinite nuclear mattef10],

(k2+m%?)¥24+g, Vo, —m, one obtains

case. The starting point is the well-known Lagrangian of t
RMFT including nonlinear couplings of the scalar fi¢i]. .
Using standard notation, in the relativistic Hartree approxi-Pa"
mation the local energy densitf'(r) of a neutral spherical €a~
nucleus reads

ai=8mr.> [Vk*+mi?— ki .+ mi?]
M=2 gl i V+pm* g No-mlet 4y, (6) ’

(12

® d
. . . Xf dZd—(QDZ%)
wherem* =m— gy is the nucleon effective mass and — K «=0
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In the nonrelativistic framework one would find a similar Equations(13)—(20) are the semiclassical counterpér or-

expression for the quantaﬂy”, with nonrelativistic single-
particle energies and wave functions. It is clear from @8&)

der #2) of the relativistic quantal energy densitg). We
insist that no partial integrations of gradients or Laplacians

that in general the dynamical contribution to the curvaturéhave been performed in the expression given above‘for
energy in a quantum-mechanical calculation is a nonvanishFherefore, the explicit Laplace operators in Etp) display
ing quantity. Furthermore, it cannot be directly calculatedexclusively the implicit dependence of the quantal wave

since the dependence of the wave functions soms un-
known; i.e., we cannot evaluate the

functions on the curvature, which was hidden iz, Note

derivative in passing that this is the first time that the functiofal of

d(¢le.)/dx| o in (12). As a consequence, the total curva- the RETF method is given as in E¢45)—(20), since in the
ture energy is not fully accessible within the quantal frame-previous literature it had always been published in the form

work, and it is only its geometrical pa&®® which can be
directly calculated.

which results after eliminatind p andAm* by partial inte-
grations[3,11,13. The RETF variational density and meson

As mentioned above, when one resorts to a semiclassicfields are obtained by solving the Euler-Lagrange equation

formalism the implicit curvature dependence of the wave
functions turns into an explicit one in the form of Laplace
operators in thé series, so that one can certainly get a value
in the semiclassical context. We will illustrate this in
relativistic extended

for a®"i

our problem by considering the
Thomas-Ferm(RETP method[11], which is an extension
of the relativistic Thomas-FernfRTF) approximatior 9]. It
incorporates gradient corrections of second ordefi iand

thus it is more appropriate than the RTF approximation for

the description of nuclear surface properti8sl2]. For an

uncharged spherical nucleus, the RETF energy density

ZRETH(r) of the RMFT is
ZRETP= 04+ £+ 9,Vop—mp+ ;. (13

#: has been defined in Eq7); #; is the well-known RTF
functional,

*4|n

k|:+8|:
*

1
bo=72 5| kee2+kiep— . (19

and
Z,=Cy(Vp)2+C,Vp-Vm* + C4(Vm*)2+C,Ap

+CsAm* (15

is the correction of ordeti?. As usual the local Fermi mo-
mentum is related to the density vie-=(372p/2)3
ep= \/k§+ m* 2, and the function€; are defined as follows:

Crtke = o Lowe[ 1425 | in et ee
1(kg,m )_ﬁ48k§sp F k?_ N =
k
—&g 3+28—2 , (16)
F
k2 m* k|:+8|:
Cz(kF,m)— Z e ke N e | 17
kg 8'2: E k|:+8|:
Ca(ke ,m*) 7728§<2 )| |
(18
EE k|:+8|:
Calke ,m* >—128F[1 2 = } (19
kF k|:+8|:
Cs(kg,m* )— L‘F * (20)

S/ RETF 64,
op

:8F_m+gUV0+ 5_p:)\,

(21
with A the chemical potential, and Klein-Gordon equations
which have the same form as in the quantal ¢ase Ref[3]
for details.

Applying Eg. (4) to the surface energy density
#RETF= /RETF_ 3 p, we get the semiclassical value for the
dynam|cal part of the curvature energy:

o d
agyRETF_ 87Tfocfiwd2 Ca(kg,m* )d_l;
*
*
+Cs(ke.m*)—- L
. Jm . 5 RETF dp
+8mr, . Z 5p —a, dr
5(rRETF d¢ 5ZRETF dVO
-+ —_ (22
5(,'b0 dK (SVO dK =0

The first two lines of(22) originate from theA operators
present in #, [we have used thatd(AA)/dk|.—o
=dA/dZ,_,, with A=p, m*]. The last two lines represent
the contribution of the implicik dependence: The solutions
p, &o, andV, of (21) and of the Klein-Gordon equations
depend in an implicit way on curvatutbecause those equa-
tions contain Laplacians However, as mentioned earlier,
this implicit x dependence does not play any role in the
semiclassical curvature energy. First, for the self-consistent
density and fields the chemical potentiabquals the energy
per particlea, of saturating nuclear matter. Second, the en-
ergy density is stationary with respect to variations of the
density and the fields:

5gRETF 5gRETF
sp ody

Consequently, the integrand of the last two line$2#) van-
ishes and¥Re1ris simply given by the first two lines of this
equation. Since we have made sure not to performiany
rearrangement aA operators by partial integrations, it now
is clear that Eq(22) is the quantity which corresponds di-
rectly to the quantahdyn of Eq (12) Similarly, it will be
valid to compareageRETF with a2%$ arising from the quantal

functional (6) only if we employ Eq.(15) for £,. It should

5&/)(RETF
Vo

=0. (23
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TABLE I. Contributions to the curvature energy calculated inthe  One should not attach a special significance to the fact
relativistic quantal Hartree approach and in the semiclassical RETEhat the magnitude odi; retr OF @ gre in Table | is about a
and RTF approximation¢ésee tex), for the parameter sets of Ref. factor of 3 larger than the usual values-efl0 MeV. This is
[2] which have been labeled by their incompressibility, (the  due to the small scalar maag,=400 MeV of these param-
remaining saturation properties asg=—15.75 MeV, p.=0.16  eter sets, which was chosen in Rgf] so as to minimize the
fm 3, andm3/m=0.55, withm,=400 Me\V). All quantities are in  influence of Friedel oscillations and spin-orbit effects in the

MeV. quantal density distributions. Current parameter sets of the
y relativistic model haveng around 500 MeV and yield better
K a2l  adRerr  ackerr  Acrerr Acrrrl2] values fora.; see Ref[3].

We now explain where the comparison made in R2f.

528 12% ig';g 13'22 53'23 gggg of their quantal results faags;, obtained from the functional
: ' ' ' ' (6), with the RETF values for the curvature energy published
300 12.15 11.71 14.84 26.54 26.98

in Ref.[3] went wrong. As discussed [13] the RETF calcu-
lations were made with the energy densif§ which one
. . obtains from Eq.(15) once the Laplacians have been re-
be noted that in the simpler RTF approach where #e moyed by suitable partial integratiof® starred quantity
correction;, and therefore the correspondidg operators  means that it is calculated as [8] using the functional
are neglected we hawa’zre=0, and thusa; rre=ag gre- #%). In practice, if one only wants the total curvature energy,
In Table | we present the values @*in the quantal and 73 has the advantage thaa®r, =0 and a3,
RETF approaches for the same three parameter sets of thea: RETE= 8c.reTES 1-€., fOr &3 the total curvature énergy
relativistic model that were considered in Table IV of Ref. coincides with the geometrical part. Unfortunately, when
[2] (from which we have extract ,e,j’).We see that there is comparing the semiclassical and quantal results Von-Eiff
close agreement between the results of both approaches, aseinal. [2] took adtgr as the quantity which should corre-
the nonrelativistic cas¢7]. Also given are the values for spond toad}], and therefore found a striking disagreement
a‘c’}’SETF to which no quantal counterparts exist, and the totabetween them. In doing this comparison it was overlooked
curvature energya. gere=alioeret aliere. It is worth  that al{l leaves out the implicit« contribution from the

mentioning that in the nonrelativistic framework the semi-wave functions, i.ea®}, whereas its semiclassical counter-

classicala®" is analytical[7] and only depends on nuclear part is included irad%g . Such disagreement disappears if
matter propertiesthe saturation density and effective mass the proper comparison is made: Indeed their values for
We have performed numerical tests that indicate that thi®gy agree very nicely with our values f@g R listed in
also happens in the relativistic model, but we have not beenable I.

able to obtain an analytical result for E2). Though the In conclusion, we have tried to carefully point out the
RTF approximation misses the individual values in the sepasubtleties and pitfalls when dealing with the curvature en-

ration of the curvature energy into dynamical and geometri€rgy, and to make clear the fact that the implicit curvature

cal parts eg?'STFZO), we have also includeal, gy in Table | content of the quantal wave functions can be directly evalu-

to show that the RTF method provides a reasonable estimaf€d only in a semiclassical framework which includes, at
for the total value, which is close to the RETF one. This is/€@St, second order correctionstinWe have shown that also
not surprising as we have checked that in the RETF calculdl the relativistic models there is full consistency between
tion the contribution of ordek? to %%, due to the func- quantum-mechanical and semiclassical results.

tional £, of Eq. (15), almost cancels out the dynamical part  This work was supported by the DGICY(Bpain under
agygETF, so that the net correction of ord&f to the curva-  Grant No. PB92-0761, the IN2P3-CICYT Collaboration, and
ture energy is small as compared with the Thomas-FermContract No. ERBCHRXCT920075 of the Human Capital
contribution(order#°). and Mobility program.
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