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We propose a theoretical description of superdeformed bands based on the projected shell model. The shell
model basis is constructed at the superdeformed minimum and projected onto states of good angular momen-
tum, and a two-body Hamiltonian is then diagonalized in this basis. We take the superdeformed band in
132Ce as an example. Good agreement with the measured gamma-ray energies allows us to suggest spin values
for these superdeformed states. Finally, we propose an explanation for the recently observed AI=4 bifurcation
disappearance at a rotational frequency of Zw==0.65 in this nucleus.

PACS number(s): 21.10.Re, 21.60.Cs, 27.60.+j

The topic of superdeformation (SD) has been at the fore-
front of nuclear structure physics since the observation of the
SD band in 2Dy [1]. The existence of enhanced deforma-
tion, diminished pairing, and less frequent band crossings
makes phenomena such as identical bands [2] and Al=4
bifurcation [3] easier to detect in SD than in normally de-
formed (ND) systems.

Superdeformation is both theoretically and experimentally
a well-established concept, but the measured SD bands are
not firmly tied to the nuclear ground state by complete decay
sequences. Thus, the spin assignments for superdeformed
states remain uncertain. This leaves hypotheses such as the
existence of quantized alignment [4] open questions [5].
Other important physical quantities such as the static mo-
ment of inertia 31 for SD bands cannot be uniquely deter-
mined because one does not know the angular momenta.
Mean-field descriptions of the cranking type are of limited
utility for these questions because angular momentum is not
a conserved quantity in those theories.

In this paper we propose a description of SD bands based
on the projected shell model (PSM) [6,7]. The PSM is a shell
model truncated in a deformed (Nilsson-type) single particle
basis, with pairing correlations incorporated into the basis by
a BCS calculation for the Nilsson states. More precisely, the
truncation is first implemented in the multi-quasiparticle ba-
sis with respect to the deformed BCS vacuum |¢) [see Eq.
(1) below]; then the violation of rotational symmetry is re-
moved by projection [8] to form a shell model basis in the
laboratory frame. Finally a shell model Hamiltonian is diago-
nalized in this projected space. For this study we include 0-,
2-, and 4-quasiparticle (gp) states:

{16).a},a} |8).a),al | #ralal abab @) (D

where o' is the creation operator for a quasiparticle and the
index n (p) denotes neutrons (protons). Thus, the PSM en-
joys many of the advantages of standard mean-field theories
in that it can easily account for the most important nuclear
correlations (the pairing and quadrupole interactions), and
that the results can be interpreted in simple physical terms.
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However, the PSM goes beyond the mean field because it
incorporates shell-model configuration mixing within the ba-
sis of projected states.

The model was initially constructed to treat normally de-
formed high-spin states [6], and has proven to be rather suc-
cessful [7,9] in this application. Application of this model to
superdeformation requires an assignment for the interaction
terms of the two-body Hamiltonian. Although there is no
reason of principle to expect that these interaction strengths
will be the same as those found to be appropriate for normal
deformation, in this paper we take a minimalist approach: we
attempt to calculate the properties of SD states using the
same Hamiltonian as employed for the ND case. The Nilsson
parameters are well established for the normal deformation
region and are simply extrapolated to the larger deformation
region. We have applied these methods systematically to the
SD states in the mass-130 region. In this paper we shall
report on results obtained for '32Ce as a representative ex-
ample of these calculations. This is a typical SD nucleus in
the A =130 mass region and has been studied in a variety of
experimental [10—-13] and theoretical [14] papers. Calcula-
tions for SD bands in other mass regions are underway and
will be reported in forthcoming publications.

We use the “Q X Q plus monopole pairing plus quadru-
pole pairing force”” Hamiltonian [6,7]

H=H,— ; % 010,-GyP'P- GQ% PP,
which has been used to explain the systematics of rotational
spectra for a large number of nuclei. In Eq. (2), the first term
I:IO is the spherical single-particle Hamiltonian and the re-
maining terms are residual quadrupole-quadrupole, mono-
pole pairing, and quadrupole pairing interactions, respec-
tively.

The quasiparticle states in Eq. (1) are determined by the
following procedure: For the Nilsson parameters « and p we
take the N-dependent values from Ref. [15], subject to modi-
fications introduced by Ref. [16]. The deformation parameter
€, in the Nilsson model is a well-studied quantity for this
nucleus. Instead of deriving it from self-consistent mean-
field calculations [14], we consider it to be known and use a
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value €, = 0.38. This is the value obtained by minimizing
the single particle energy [14] and is consistent with the ex-
perimental value [11]. The strength of the 010 force in Eq.
(2) was then fixed in such a way that it would give the
empirical deformation in the mean-field calculations, and the
gp representation was then defined by applying the BCS pro-
cedure to the Nilsson basis. We note that the exact choice of
deformation parameter is not as crucial in our shell model
approach as they would be in a mean-field approach because
it is only used to construct a basis. The final results come
from diagonalizing a two-body Hamiltonian in this basis, and
therefore incorporate fluctuations beyond the average defor-
mation and pairing fields.

The single-particle basis in the PSM calculation consisted
of three major shells each for neutrons and protons. For the
mass region A~ 130, N = 3, 4, and 5 shells were employed
for the protons in both the ND and the SD cases. For neu-
trons we used N = 3, 4, and 5 for the ND case and N=4, 5,
and 6 for the SD case. These valence space choices for the
superdeformed case incorporate high-N shells thought to be
important for the SD moment of inertia [17]. The strength of
the monopole pairing interaction in Eq. (2) is critical for a
quantitative discussion of the moment of inertia. As was rec-
ognized long ago [18], the pairing strength is a function of
the size of the single-particle space that is employed, and
decreases roughly as the inverse square root of the number of
levels participating in the BCS correlations. We employ
monopole pairing strengths

G (ND)=[19 6—15.7 u XA™!
M . A )

. N-Z] |
(SD)=|18.0— 14.4 ——|xA"", A3)

G"» (ND, SD)=19.6XA ™!,

which are the strengths found to be appropriate for this mass
region in Ref. [19], but scaled according to the above con-
siderations to account for the different spaces employed here
and in Ref. [19]. (A similar prescription was used in Ref.
[20].) However, we do not claim that our present choice of
the strengths of Eq. (3) are optimal since we did not try to fit
many samples. Finally, the quadrupole pairing strength G
in Eq. (2) is assumed to be 16% of the monopole pairing
G, in agreement with the average ratio of quadrupole to
monopole pairing strengths found to be appropriate for nor-
mally deformed rare-earth nuclei [7,9].

Our results are compared with the data [13] in Fig. 1,
where the dynamical moment of inertia J‘® is plotted as
function of rotational frequency #w. The peak appearing at
fiw=0.36 corresponds to a near-simultaneous crossing of
four bands: the SD ground-state band (g band), a band asso-
ciated with the alignment of a vi,3, neutron pair, and two
bands corresponding to 4, proton alignment (see Fig. 2 for
their configurations). The neutron pair consists of the
K=1/2 and K=3/2 quasineutrons coupled to K= 1. Because
of the strong decoupling effect, this 2-quasineutron state be-
comes yrast after the crossing with the g band. The two
quasiproton bands rise quickly away from yrast, as we dis-
cuss further below, and so play a minor role in the structure
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FIG. 1. Comparison of calculated SD dynamical moment of
inertia J® (42 MeV ~!) with the data [13]. Definitions of the quan-
tities: JP= 4[E(D—E,(I-2)], fhw=E/ /2, and E.(I)
=E(I)—E(I-2).

of the presently known yrast sequence in this nucleus. How-
ever, the proton bands may play a significant role in the rapid
disappearance of superdeformed population observed near
this band crossing, and in the yrast structure of adjacent odd-
neutron nuclei where the neutron alignment is blocked (see
below).

For a better understanding of these results let us now look
at the band diagram shown in Fig. 2. A band diagram is
defined [7] as the diagonal elements of the Hamiltonian in
the projected basis of Eq. (1). We concentrate on two kinds
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FIG. 2. Band diagram (bands before configuration mixing) and
the yrast band (the lowest band after configuration mixing, denoted
by dots). Only the lowest-lying bands in each configuration are
shown. For the 2-gp states, K quantum numbers are given in square
brackets. The 4-qp states are combinations of one 2-quasineutron
and one 2-quasiproton bands shown in this figure.
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of band crossings: the first crossing between the g band and
the 2-qp bands at spin 22%, and the second crossing between
the 2-qp and the 4-qp bands at spin 38%. The gain of align-
ment can be read from the plot. In this energy vs angular
momentum plot, rotational frequency w=dE/dI is the slope
of the curve. For the 2-quasineutron band one finds that
w==0 until the system begins to rotate at spin 12 (see the
flat portion of the curve in Fig. 2). This is a perfect alignment
process, since 127 is the maximum angular momentum that
a pair of j=13/2 particles can contribute. The same perfect
alignment can be seen for Ay, proton pairs, which do not
rotate until spin 10%. Thus, for a 4-qp configuration (2-
quasineutron + 2-quasiproton), the band begins to approxi-
mate collective rotational motion near 224 = 124 + 10 .

As noted above, the 2-quasineutron band and two
2-quasiproton bands cross the g band at almost the same
point (spin 22%). Therefore, the band interaction at the first
crossing involves many bands. Because of different rota-
tional frequencies, the proton bands depart quickly from the
yrast region with increasing angular momentum and are less
likely to be detected experimentally. In a separate publication
[21] we shall demonstrate that the present methods give a
satisfactory description of odd-mass superdeformed bands in
this mass region with the same parameter set employed for
even-mass nuclei. These calculations indicate that this proton
band crossing is dominant in the odd-neutron case (e.g.,
13lCe), where the neutron crossing is blocked, and that the
effect of this crossing is less pronounced than that of the
neutron crossing because of the smaller crossing angle asso-
ciated with the proton alignments (see Fig. 2). This explains
the observed differences in dynamical moment of inertia be-
tween, for example, *'Ce and '32Ce at rotational frequen-
cies near Aw=0.40. We find that bands with alignment of
neutron pairs built upon Ao, and ki, orbitals lie high in
energy (more than 1 MeV higher than the 2-qp bands pre-
sented here at the crossing spin 22%) and are unlikely to play
a significant role in the yrast region, which is contrary to the
results of Ref. [14].

The neutron band remains the yrast band until it crosses
with 4-gp states at spin 38%. Thus, the observed yrast band
in this spin region is mainly 2-quasineutron in structure, as
indicated in Fig. 2. After the second band crossing, the yrast
band structure is dominated by 4-qp components. This sec-
ond crossing has not entered other theoretical [14] and ex-
perimental [11] discussions, probably because its effect on
the observed bands is small. Indeed, even in the plot of the
dynamical moment of inertia shown in Fig. 1, one can hardly
see the effect. The crossing partners approach each other,
interact, and move away with very similar behavior (i.e.,
with very small crossing angle [7]) as if no crossing had
occurred as far as the moment of inertia diagram is con-
cerned. However, such a crossing implies a rearrangment of
the wave function at that spin for the yrast structure and
should have other observable consequences. We will suggest
below that the second band crossing plays an important role
in understanding the observed anomalous behavior of
AI=4 bifurcation in 3?Ce [13].

We observe that all the configurations (0-, 2-, and 4-qp
states) shown in Fig. 2 behave similarly at higher spins:
above angular momentum 367, all bands displayed are ap-
proximately parallel (they rotate with the same frequency).
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FIG. 3. Comparison of the calculated gamma-ray energy with
the data (SD taken from [13] and ND from [22]). E ([) is defined
as E()—E(I—2).

Higher band crossings (e.g., 6-qp with 4-qp states) may oc-
cur at higher spins (>50%), but with even smaller crossing
angles. Therefore, the effects caused by such crossings on the
moment of inertia should be smaller still.

The good agreement with data encourages us to make a
theoretical spin assignment for the observed SD band in
132Ce. In Fig. 3 we plot the gamma-ray energy E., as a func-
tion of spin I. For comparison, the ND yrast band of the
same nucleus is also plotted. The ND calculation is carried
out in such a way that the shell model space is now truncated
at a deformation of €, = 0.21, with a corresponding change
in the strength of the quadrupole-quadrupole term in Eq. (2)
according to the deformation self-consistency condition dis-
cussed above. For the SD band, the calculation coincides
best with the data when we place the measured [13] first
gamma-ray energy at spin 24#4. This is a positive shift of
6% relative to the spin assignment given in Refs. [11,23].
The upper portion of the theoretical SD curve deviates
slightly from the experimental curve, suggesting that 6-qp
states may be required in the projected space of Eq. (1) to
describe the highest spins accurately .

A detailed analysis of the SD data indicates an interesting
staggering for AI=2 spin members in some SD bands [3].
This AI=4 bifurcation effect suggests a possible fourfold
rotational symmetry of the nuclear shape. However, we have
shown recently [24] that the PSM can produce AI=4 bifur-
cation through the usual interactions, without introducing an
explicit fourfold symmetry into the Hamiltonian. In future
work we will address whether the PSM can describe the
detailed features of AI=4 bifurcation observed in superde-
formed nuclei, but we would like to conclude this paper by
giving a possible cause for a particular aspect of this phe-
nomenon: the as-yet unexplained observation that in '3*Ce
the energy staggering starts at low rotational frequency, dies
away to zero near Aw==0.65, and reappears at higher fre-
quency with no change in phase [13]. Our calculation shows
that the second band crossing occurs at spin 38% (see Fig. 2),
which corresponds exactly to Zw=0.65. We suggest that this
crossing leads to the modulation in the staggering behavior.
As already pointed out, the crossing angle is so small that
one cannot see the effect of this crossing in the 3 diagram
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(see Fig. 1). Thus, we conclude that the A/=4 bifurcation
amplitude may be a sensitive probe of high-spin superde-
formed band crossings in a regime where such crossings may
have little obvious influence on the dynamical moment of
inertia.

In summary, we have presented the first calculations of
superdeformed bands using the projected shell model. The
results shown here are representative of a set of calculations
that we have performed indicating that this method gives a
quantitative description of observed superdeformed bands in
the mass-130 region, with parameters specified by a prescrip-
tion analogous to that used for normally deformed states.
Although we certainly expect that optimal parameters for
superdeformed systems will differ from those for normally
deformed systems, the present results with a nonoptimized
set of parameters are already extremely encouraging. Thus,
the PSM could be a powerful tool for the systematic analysis
of superdeformed data. Because our theory conserves angu-
lar momentum we are able to make theoretical spin assign-
ments for superdeformed bands. For the presently employed
interaction strengths, our angular momentum assignments for
states in '32Ce are 6 units higher than those assigned by the
experimental discoverers of the band. We find a complex
intersection of four bands at the point where the superde-
formed band in '32Ce is known to exhibit anomalies in the
moment of inertia and to lose intensity rapidly, and find that
the three 2-qp bands crossing the ground band at this point
correspond to structures that are fully aligned before they
begin to rotate. These findings may be relevant to the super-
deformed feeding-out mechanism, though we have not ad-
dressed that issue explicitly in this paper. Finally, we suggest
that the recently discovered modulation of the A7=4 bifur-
cation to zero near a frequency of Aw=0.65 in *’Ce is a
consequence of a band crossing observed at this frequency
that has little influence on the dynamical moment of inertia
plot. Thus, we propose that fine structure in the AI=4 bi-
furctation effect may be a sensitive fingerprint of high-spin
band crossings that might escape detection in a simple
moment-of-inertia analysis.
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Finally, we would like to stress that the PSM may be
superior to the traditional cranking model analysis of super-
deformed data in certain respects. The PSM restores quan-
tum numbers violated in mean-field calculations, thus ensur-
ing that band mixing is carried out at a fixed angular
momentum rather than a fixed rotational frequency. The re-
sulting theory should be more reliable in the band-crossing
region. Although we have not done so here, a corresponding
restoration of particle number symmetry can also be imple-
mented with these methods. More importantly, the PSM
implements shell-model configuration mixing by diagonal-
ization of a two-body Hamiltonian in the projected space.
The Nilsson plus BCS single quasiparticle states serve only
as a basis from which a more sophisticated wave function is
constructed. Important correlations that are omitted at the
mean-field level are included by such configuration mixing.
Furthermore, the laboratory-system wave functions obtained
from the PSM can be used directly to compute transition
probabilities, unlike the situation with wave functions of the
cranking type. A fast and easily used computer code is avail-
able from the authors that implements these features of the
PSM. We believe that such a code will be of considerable
utility in analyzing the data emerging from the large new
detector arrays.
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