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We introduce for canonical fragmentation models an exact method for computing expectation values which
exclude the largest cluster. This method allows for the computation of the reduced multiplicity and other
quantities of interest introduced by Campi, and a comparison shows that the percolation model and a recent
canonical model differ mostly only in small respects in these ensemble averages.

PACS number(s): 25.70.Pq, 21.65.+f, 05.70.Ce, 05.70.Jk

Campi and Krivine [1,2] introduced a method for distin-
guishing fragmentation models from one another. By com-
paring various expectation values in which the largest cluster
is excluded but the particle number and fragment multiplicity
are held fixed, they showed that the percolation model has a
distinctly different behavior than many competing nuclear
fragmentation models.

In this paper we analyze another statistical weight we
have been using recently and show that it shares many of the
same properties as percolation theory, a point already appar-
ent from a consideration of its critical exponents [3]. The
method used in this paper is unusual in that it is an exact
computational method: Monte Carlo sampling is avoided by
exploiting some properties of the partition function which
enable the exact evaluation of the reduced quantities.

We begin by assuming that each fragmentation outcome
happens with a probability proportional to the Gibbs weight
[4-71

wn)=]] = (1)

where n; is the number of fragments of size (or charge) k
and x; is a parameter associated with k sized fragments. We
then define the microcanonical partition function as

Z{(x)= E(A ) W(n), )

where ,,(A) is the set of partitions of A nucleons into m
fragments, i.e., 2 kn,=A, Zn,=m. These partition func-
tions satisfy the identity

ozZm .
=gzm-1)
ax; A—k (x), (3

which allows for the computation of the partition functions
recursively from =,(n;)=m, since
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Campi defined reduced moments as moments in which the
largest cluster is excluded from the measure, i.e.,

Ms(’;)E; ksnk_kfnax’ (5)

where k .., is the size of the largest cluster. This suggested
the definition of the reduced variance vy, [1,2] for a fragmen-
tation event should be

MZMO Ekkznk—kz

max
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Its expectation value can be computed by breaking events
into classes specified by k ..., and summing the expectation
values over those classes with the appropriate weight, i.e.,

2kkz<nk>(k max) - kzmax
(A —k max)2

<72>=(m-—1)k2 Pr(kmax) > (7)

where Pr(k .,,,) is the probability of k ., being the largest
cluster size and (n;)(k m.) is the expectation value of ny
when k ., is fixed.

To compute expectation values in which the largest clus-
ter size is fixed we need to compute the partition function for
such ensembles. Clearly this partition function is given by all
the terms in the microcanonical partition function which
have x;  as the highest x in the term. Consider

AZM (K ) =Z0(x1, ... xp,0,...,0)

max

—ZWM(xy, .. x 0,...,0). 8

max~ 1?
We see that AZ{™ (k n,,) is the partition function for en-
sembles with fixed maximum cluster size k ..., since the
first term collects all terms with x, o OF lower, and the sec-
ond term eliminates those terms which do not have an
Xy .. From this result we can determine Pr(k .,) and

{np)(k max), Which are given by

AZL(K ax)
Prlk )= ) ¥
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FIG. 1. Expected reduced multiplicity {y,)(m) (a) and largest cluster size k ;,,/A (b) vs (m—1)/A for 7=1.0,2.5 and the percolation

model at A=125.
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This method is quite general and can be applied to other
models. For example, equipartitioning models, which have
weights given by

w(my=11 z}* (11)

k=1

can also be analyzed by this method with some minor modi-
fications. For example, z;=1 is the model used by Sobotka
and Moretto [8].

With these identities there is sufficient information to
compute (7y,) and other reduced moments for any Gibbs
model specified by x, and Eq. (1). We use x,=x/k” for a
variety of reasons discussed elsewhere [9]. Campi and Kriv-
ine [2] following Mekjian [4] considered this model with
7=1.0 and showed that its reduced variance and other re-
lated expectation values had a distinctly different behavior
than the percolation model. Plotting the expected reduced
variance vs (m—1)/A, {y,)(m) has a single peak. The lo-
cation, height, and width of this peak for the two models
(and other models they considered) are completely different,
suggesting the usefulness of this plot in distinguishing frag-
mentation models. The choice 7=0 was considered by Gross
et al. [10-12], and a different model was analyzed by Pan
and Das Gupta [13].

Since that time our interest has turned to the choice
7=2.5 because of similarities with percolation theory and
Bose condensation. Namely, the sudden appearance of an
infinite cluster in the infinite A limit and the presence of
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FIG. 2. Campi probability contour plot for Z=79, 7=2.5 at the
critical point x=x_.. The axes are logarithmic, with the largest clus-
ter size on the y axis, and the ratio of the reduced moments
M, /M, on the x axis. The central rings are higher in probability
than the outer rings.
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condensation phenomena. As such, we have recomputed the
Campi plots for this model and have discovered that they
duplicate the percolation model results in many respects.
Figure 1(a) shows the results. The height and location of the
peak of the reduced variance (y,) are the same in both mod-
els. The only significant difference is the width of the peak
which is larger in the Gibbs model than in the percolation
model. Plots of (k p,,)(m) vs (m—1)/A given in Fig. 1(b)
are also very similar for both models, and the scaling behav-
ior of the position, width, and height with changing A also
agree.

Another plot suggested by Campi [14] is to divide the
event space by the maximum cluster size of the event k ,,
and the reduced second moment M, and plot the probability
of the canonical model being at any particular point on the
graph. This can also be done exactly for Gibbs models in a
way completely analogous to the way given above. Define

the partition function ZA(mz;;) as the sum of the Gibbs

weight Eq. (1) over all partition vectors n which satisfy
Sikn=A, 2k*n,=m,. This can be computed by the fol-
lowing recursion,

- 1 -
Za(my;x)= 220 kxiZylmp=k53)  (12)
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with Zy(m, ;x) = O, 0- If we define AZ as in Eq. (8) we find

again the partition function conditioned on & ,, being fixed,
which is proportional to the probability of having an event
with both m, and k ., . Figure 2 plots this probability profile
as a contour plot, which reveals the events are centered on a
particular region in this phase space. The slopes of the edges
of this region are related to the critical exponents according
to Campi [14].

Clearly there are differences between percolation theory
and a Gibbs model, but the differences are not as large as
originally suggested by early computations. Indeed the re-
duced variance might not reliably distinguish percolation
from a simple Gibbs model. A different method is needed to
distinguish these models. However, the idea of excluding the
largest cluster from the ensemble averages is a standard pro-
cedure in percolation theory [15], and this new technique for
doing that analytically in the Gibbs models shows a particu-
lar advantage of these models over percolation models,
which we hope will encourage further interest in them.
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