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Spherical shell model description of rotational motion
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Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major
shell and four protons in another —or the same —major shell, behave systematically as backbending rotors. The
dominance of the q. q component of the interaction is related to an approximate "quasi-SU3" symmetry. It is
suggested that the onset of rotational motion in the rare earth nuclei is-due to the promotion of the eight particle
blocks to the major shells above the ones currently filling. Assuming a "pseudo-SU3" coupling for the
particles in the lower orbits, it is possible to account remarkably well for the observed B(E2) rates at the

beginning of the region.

PACS number(s): 21.60.Cs, 21.60.Ev, 21.60.Fw

The SU(3) model of Elliott [1] provides a microscopic
description of rotors that exhibit spectra in J(J+ 1). For suf-
ficiently low J, or sufficiently large representations they be-
came perfect in the sense of having a constant intrinsic quad-
rupole moment g„=Qo(J), where

(J+ 1)(2J+3)~o("= 3~2-J J+1 (""""'")

as postulated in the strong coupling limit of the unified
model of Bohr and Mottelson [2].

Since the quadrupole force that appears in the SU(3) Ca-
simir operator is also an important part of the nuclear inter-
action [3,4], we expect it to play a determinant role in the
onset of rotational motion in real nuclei —the problem we
want to address. A direct approach would demand, in gen-
eral, diagonalizations in spaces of two major shells in neu-
trons and protons as first proposed by Kumar and Baranger
[5].Dimensionalities are then of order 10, exceeding by far
what is possible at present (10 ) [6].

Therefore, it is necessary to develop a computational
strategy, and our starting point will consist in learning as
much as we can from situations in which neutrons and pro-
tons are independently restricted to a single major shell, that
can be the same close to N= Z: Exact calculations will show
that rotational features, including the systematic appearance
of backbending, are determined by the interplay of the quad-
rupole force with the central field, in the subspace of a major
shell spanned by the sequence of 6j= 2 orbits that comes
lowest under the spin-orbit splitting. This state of affairs will
be explained by the existence of an approximate symmetry
(quasi-SU3), which when combined with pseudo-SU3 pro-
vides the coupling scheme capable of explaining the onset of
rotational motion. We use the following notations:
v=neutrons, 7r=protons, C™=$47r/(2l+ 1)I'™,q=—q2™
=r C . p is the principal quantum number, r„ is the ge-
neric label for all orbits in the pth oscillator shell except the
largest (i.e., j=j,„=p+1/2). We use l for j=l+ 1/2 orbits
in the sense h= All/2 g g9/2 p p3/2 etc. , except in the

following convention: pfh means the full p=5 shell, i.e.,

pl/2 p3/2 f5/2, f7/2 h9/2 h 1 1/2 w»ie hfp = h i i/2f7g5 3/2

similarly for other shells.
Although a space of a full major shell, with very specific

single-particle spacings, is necessary to ensure strict SU(3)
symmetry, we know of several examples where the ds or fp
subspaces produce rotorlike spectra in the presence of spin-
orbit splittings: (ds) describes Ne quite well [7] and

(ds) „' (fp), configurations explain the onset of deformation
in 'Na and Mg [8]. Furthermore Cr provides the first
example of a backbending band in N= Z nuclei. The experi-
mental spectrum [9] is almost perfectly reproduced by a full

(pf) shell model calculation, with strong indications that
the (fp) space is sufficient to explain the quadrupole coher-
ence [10].The situation has a double interest. As we shall see
later, configurations that consist of four protons in a major
shell and four neutrons in another (the same in N=Z) play a
key role in the onset of rotational motion in heavier nuclei,
and the restriction to the Aj =2 spaces makes the diagonal-
izations possible, as illustrated by the four cases we are go-
ing to treat (in parenthesis the corresponding m-scheme di-
mensionalities):

(fp)"T, =O;(2X10 ), (fp) (gds), ;(I.I X10 ),

(gds)" T,= 0(6 Xl 0), (gds) (hfp), ;(1.9X 10 ),

against

(pf) T, =O;(2X10 ), (pf) (sdg), ;(10 ),

(sdg) T,=0;(5 X 10 ), (sdg) .(pfh) „;(1.9X 10 ).

We shall compare the results obtained with the KLS interac-
tion [11] and with pure quadrupole forces using
fi cu = 9 MeV with a uniform single-particle spacing
a = 1 MeV, corresponding to the standard —pF s splitting
(P=20A MeV and An/=40A " ) [12].

It has been shown in [4] that for one shell the quadrupole
component of a general realistic interaction has the form
—e2q .q, where e2 goes as A " and, q =q /. zl' is the
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FIG. I. Yrast transition energies E =E(J+2)—E(J) for differ-

ent configurations, KLS interaction.
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FIG. 2. Yrast transition energies E =E(J+2)—E(J) for the

(gds) configuration with an —e2q q force.

quadrupole operator q„ in shell p, normalized by
~f~~ ~—the square root of the sum of the squares of the ma-

2trix elements of q„which goes as (p+ 3/2) . For two con-
tiguous shells the force is —e2(q~+ q„+ t) (q„+q„+ t),
with the same e2 coupling, and it differs markedly from the
traditional y(q„+ q„+ t) (q„+q~+, ), with y= O(A ' )

Figure 1 shows the yrast bands in the four spaces. Rota-
tional behavior is fair to excellent at low J. As expected
from the normalization property of the realistic quadrupole
force the moments of inertia in the rotational region go as
(p+3/2) (p'+3/2), i.e. , if we multiply all the E values

by this factor the lines become parallel. The Qo values are
constant to within 5 lo up to a critical J value at which the
bands backbend.

Since all the spaces behave in the same way we specialize
to (gds) in what follows. Figure 2 shows the results of
diagonalizing e2 q„.q„(p=4). At e2=9.6 the e splittings
are overwhelmed and we have a nearly perfect rotor. The
value of Qo stays practically constant up to J=16—18 and
then decreases slowly. At e2 = 4.8, 3.2, and 2.4 the rotational
behavior remains very good below J=14. Then there is a
break and the upper values are again aligned. At e2= 3.2 the
overlap of each state with the one obtained with the full KLS
interaction is always better than (0.95), which suggests that

0.4-

q&
h&
q&

slope (i.e., smaller moment of inertia) in the bigger calcula-
tion. Here again, the variation in moment of inertia is a per-
turbative effect [13].

To gain some insight into the backbending phenomenon
we examine the evolution of the wave functions and quadru-

pole moments. In Fig.4 we find that for e2=9.6 the percent-
age of the g configuration in the full eigenstate is very small
and nicely correlated with the Qo values. This is what we
expect from a good rotor, for which the amplitudes of any
configuration (not only g ) must be J independent (since all
states must be projections of the same intrinsic state). For the
KLS results and their ez=3.2 counterparts Qo(J) decreases
abruptly above J= 14, while the g configuration increases
its amplitude and becomes dominant in the region where

Qo(J) reaches a plateau. It is clear that at the backbend the
notion of intrinsic state loses, or changes, its meaning, and
the idea of a band crossing suggested by Fig. 2 becomes

(hl W")J=(ql~dq) 1 ~

where lb) and q) are the eigenstates of the full Hamiltonian
.XV and the quadrupole force (e2=3.2), respectively. Figure
3 shows that this is the case indeed. It means that the ob-
served backbending pattern is obtained by doing first-order
perturbation theory on q): the spectrum changes but not the
structure (i.e. , the wave functions). A similar situation is
found when comparing the full (pf)s calculation with a
renormalized interaction and a=2 (Fig. 10 of Ref. [10j) and
the (fp) result in Fig. 1: the backbend occurs at the same J
and the Qc values are very close in spite of a much larger
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FIG. 3. (hl&W)h) =(gds)" in Fig. 3; (qlqqlq) = 3 2 in Fig. 4

compared with (q .7(iq). See text.
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FIG. 4. Qo(J)/Qo(2) (full lines) and gs=(g I(gds) ) (dashed

lines). Wave functions calculated with —e~q q (crosses
—=e2=9.6, squares =e2=3.2) and KLS (diamonds).

questionable. The connection of our results with those of
cranked mean-field calculations [14] is explored in a forth-
coming publication [13].

That the build up of quadrupole coherence needs only the
lower 5j= 2 sequence of the full shell can be understood by
examining Table I where we list the matrix elements of

q =r C =2(3z —r ), in jj and LS coupling. It is seen20 2 20 & 2 2

that the Aj = 1 matrix elements are small, both for m small

(prolate shapes) and m large (oblate). If we simply neglect
them, diagonalizing the 5j= 2 matrix in jj scheme is
very much equivalent to diagonalizing the exact q oper-
ator in LS scheme. This amounts to saying that the se-
quence j= 1/2, 5/2, 9/2, . . . (or j=3/2, 7/2, 11/2, . . . )
must behave very much as an l=O, 2, 4, . . . (or
l= 1, 3, 5, . . . ) one. Therefore we introduce a new opera-
tor (the "quasi" q ), defined in the Aj=2 space via the
following replacements in the LS matrix elements of
q: l~j, p~p+1/2, m~m+1/2 and —m~ —m —1/2:20.

(m) 0).
In Fig. 5 we draw to the left the spectrum of the full q

operator (in fact 2q ), i.e., the SU(3) Nilsson orbits. The
bandheads come at 2(p+ 3/4 —3/2! m! ). To the right we have
plotted the spectrum of the "quasi" 2q operator. Now the
bandheads are at 2(p+1/2 —3/2!m!), that is, the exact LS
values, except for m= ~1/2, where the one to one corre-

FIG. 5. Nilsson orbits for SU(3) (k = 2p) and quasi-SU3
(k = 2p —1/2).

spondence between the "quasi" q and the exact q in LS
scheme breaks down. The corresponding "quasi-SU3" sym-
metry cannot be exact because of this (small, (1%) mis-
match. The spectrum of the true q operator in the Aj=2
space is extremely close to the one in Fig. 5, and it is clear
that the amount of quadrupole coherence obtained by filling
the rn (or K) = I/2 and 3/2 orbits is almost as large as for the
SU(3) orbitals. For the eight particle blocks we are interested
in, the intrinsic Qo would be

Qo = 8[e (p —1)+ e,(p, —1)]. (2)

The Qo values obtained with the q q interaction at ez= 9.6
saturate the value predicted by Eq. (2) within 2% while at
e2=2.4 we still have 80% of this limit.

It is interesting to note that in an SU(3) scheme, the two
possible fillings in Fig. 5 for four particles lead to nonaxially
symmetric rotors. For quasi-SU3, the filling is unique and we
expect therefore axial symmetry, which in the absence of an
observed y band, seems to be the case in " Cr.

The indications obtained so far are of use in suggesting a
computational strategy for more general situations.

It is only exceptional, as in Ne or " Cr, that ground-state
rotational bands involve only one major shell. Usually, two
are needed, and to fix ideas we examine how we would go
about a shell model calculation in the space shown in Fig. 6
[3]. For the lower shells the sequence of orbits is the con-
ventional one, and for the upper (empty) ones we have as-
sumed a spin-orbit splitting, which may be naive, but it is
correct in the light nuclei and consistent with the (scarce)

TABLE I. The matrix elements of r and C20 in jj and LS coupling.

(pl I
r'I pl) =p+ 3/2

j(j+1)—3m
(/m! C, I/m) =

2j(2j+ 2)

3m[(j+I) —m ]"
jm C~ j+ lm (2j+4)(2j+2)(2j)

(pl lr'I pl+ 2) = —
I. (p —l)(p+ I+ 3)]'"

l(l+ 1)—3m~

(2l+ 3)(2l —»

3 [(j+2) —m ][(j+1)—m ]
(2j+2)'(2j+4)'

3 [(1+2) —m ][(1+I) —m ]
lm C2 l+ 2m

2 (21+5)(21+3) (2l+1)
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FIG. 6. Schematic single-particle spectrum above ' Sn.

TABLE II. B(E2)1 in e b compared with experiment [21].

4.47
2.6(7)

4.51
4.36(5)

4.55
4.64(5)

Dy

4.58
4.66(5)

94 4.68 4.72 4.76
5.02(5)

4.80
5.06(4)

4.90 4.95 4.99
5.25(6)

5.03
5.28(15)

5.13 5.18 5.22 5.26
5.60(5)

available data in the heavier ones. Mutatis-mutandis, the
same scheme applies to the Z=28, N=50 and Z=82,
W= 126 closures.

We do not aim directly at exact solutions, but at suffi-
ciently good ones to do perturbation theory on them. There-
fore, according to what we learned in Fig. 3, it should be
sufficient to diagonalize the quadrupole force in the presence
of the single particle, or more generally, monopole field
[15,16]. Then, the number of particles in each of the four
major shells in Fig. 6 is a good quantum number. Now, start
by assuming the quadrupole force to be so strong that SU(3)
becomes an exact symmetry. Since each representation is
closed under the quadrupole operator, the problem of finding
eigenstates would be reduced to one of coupling different
representations. In other words, the basis in each block (ma-
jor shell) would consist of a small number of states for each
J. Naturally, the most interesting would be those associated
with the lowest representations, obtained by filling the lowest
orbits in the left of Fig. 5. The general idea is that the break-
down of SU(3) will be such that the exact symmetry may be
replaced by an approximate one, so that the calculations
could proceed under similar lines. It is clear that quadrupole
dominance will lead to enormous computational gains, and

Q o
= 56e + (76+4n) e, , (3)

f 152+2nNd 154+2nSm 156+2nGd and 158+2nDy respec-
tively. Note that, at fixed n, the value is constant in the four
cases because the orbits of the triplet K= 1/2, 3/2, 5/2 in Fig.
5 have zero contribution for p = 3. Qo (given in dimension-
less oscillator coordinates, i.e., r~r/b with b =1.01A
fm ), is related to the E2 transition probability from the
ground state by B(E2)T

= 10 A '
Qtr. The results, using ef-

fective charges of e =1.4, e,=0.6 calculated in [4] are
compared in Table II with the available experimental values
[21].The agreement is quite remarkable especially if we con-
sider that no parameters enter the calculation. (It is interest-
ing to note that the "regional" systematics of [22] call upon
formulas similar to Eq. (3), but need much larger effective
charges. ) The discrepancy in Table II in ' Nd is likely to be
of experimental origin, since systematics indicate, with no
exception, much larger rates for a 2+ state at such low en-
ergy (72.6 keV).

The assumption that the upper blocks consist of eight par-
ticles has been checked by considering possible alternatives
and the only one that cannot be ruled out easily involves
6v4~ promotion. However, energetically it is not favored

what follows provides a clue on the viability of the approach
we have outlined.

Granted that quasi-SU3 operates in the upper shells in

Fig. 6, we need a counterpart for the lower ones. Since the
r groups in the figure are pseudo-oscillator shells, the
pseudo-SU3 symmetry of Arima, Draayer, Harvey, and
Hecht is an excellent candidate (Ref. [17] contains a recent
survey). The situation is seen to be quite analogous to the
one for exact SU(3), but now the most interesting states are
obtained by filling the lowest orbits to the left and right of
Fig. 5 for the lower and upper shells, respectively. The quasi-
SU3 symmetry can be more than an interpretative tool, as
made clear by the constancy of Qo and its closeness to the
theoretical maximum given by Eq. (2) even with relatively
weak quadrupole couplings. If we assume that the same is
true for pseudo-SU3, we may estimate Qo for some typical
rare earth rotors.

The number of particles in each shell for which the energy
will be lowest will depend on a balance of monopole and
quadrupole effects, but we can tentatively borrow from Nils-
son diagrams [18,19] a result common to different regions
and to different calculations: When nuclei acquire stable de-
formation, two orbits @=1/2 and 3/2, originating in the up-
per shells of Fig. 6, become occupied. In spherical terms it
means that the upper group is an 8-particle configuration

(hfp) (igds), , of the type we have studied. Following this
hint, a very rough treatment of the monopole-quadrupole bal-
ance is capable of detecting the onset of deformation and of
providing ground-state binding energies with an rms error of
some 250 keV [20]. Let us take then Qo for the upper shell
from Eq. (2) with p =5, p, =6, and consider even-even
nuclei with Z= 60—66 and N= 92—98, corresponding to 6 to
10 protons with pseudo-p=3, and 6 to 10 neutrons with
pseudo-p =4 in the lower shells. From the left part of Fig. 5
we obtain easily their contribution to Qo, which added to
that of Fq. (2) yields a total
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because the very slight gain in quadrupole coherence could
hardly compensate the monopole loss. Furthermore, it would
entail low lying y bands in places where they are not seen. In
all other cases the agreement deteriorates, not only in the
magnitudes but in the trends along the isotopic and isotonic
lines. It is worth noting that for 16 particles in the upper
shells the B(E2) can reach a value of 8e b How. ever this is

probably an underestimate, because by then, the effective
couplings between the blocks may increase sufficiently to
push the systems into yet other variants of SU(3), or even the
exact symmetry.

The famous low lying 4p-4h states in ' 0 and Ca are
early examples of the general mechanism we are proposing
for rotational nuclei. In the next oscillator closure, at Zr
[23], the intruders become ground states. From then on 8p-8h

excitations seem necessary to ensure the observed quadru-

pole coherence, and something akin to rotor-rotor coupling
operates between major shell blocks. It appears that the
spherical description of rotational motion rests on variants of
the SU(3) symmetry, which may supplement, and eventually
extend, the standard mean field theories. In particular the
tendency of quadrupole forces of Elliott type to produce
clustering in the excited states [24,25] will probably lead to
significant differences of interpretation between the spherical
and deformed formulations for large quadrupole moments.
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