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Isospin mixing in proton-rich X=Z nuclei

G. Colo, ' M. A. Nagarajan, P. Van Isacker, and A. Vitturi
Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex, France

Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Milano, Italy
Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro, Italy

"Grand Accelerateur National d'Ions Lourds, Boite Postale 5027, F-14021 Caen Cedex, France
Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Padova, Italy

(Received 9 December 1994; revised manuscript received 7 June 1995)

Estimates of isospin mixing in proton-rich medium-heavy nuclei in the region of mass numbers A = 80 and

100 are made with the use of Hartree-Fock (HF) calculations with Skyrme forces. An isospin mixing prob-
ability of 4 —5% is predicted in the ground state of ' Sn and about 3—4% in Zr. These are about a factor of
2 larger than the estimates given by Bohr and Mottelson who directly evaluate the isospin mixing with a
collective model description of the isovector giant monopole resonance (IVGMR). We show that if we use the

energy-weighted sum rule together with the energies of the IVGMR given by Bohr and Mottelson, the pre-
dicted isospin admixtures are close to those of HF calculations. More realistic estimates of isospin mixing with

random-phase approximation are also presented in the case of ' Sn.

PACS number(s): 21.10.Hw, 21.60.Jz, 21.60.Ev, 27.60.+j

During recent years, with the advent of heavy-ion accel-
erators, it has been possible to detect and separate new
proton-rich nuclei with masses ranging from 80 to 100. In
particular, the identification of ' Sn, predicted to be the
heaviest particle-stable N =Z nucleus, has been recently re-
ported [1,2].

These nuclei, on the proton-rich side of the valley of P
stability, are subject to two convicting nuclear effects: on the
one hand the attractive symmetry energy which tries to mini-
mize the difference between neutron and proton densities,
and on the other hand the repulsive Coulomb interaction. The
latter is expected to dominate with increasing mass and,
since this interaction does not conserve isospin, considerable
isospin mixing could result in the ground state of heavy
N=Z nuclei. Estimates of isospin mixing have been pre-
sented recently by Hamamoto and Sagawa [3] for several
exotic nuclei and their effect on the Gamow-Teller matrix
element has been commented upon by Brown [4].In the case
of ' Sn, Hamamoto and Sagawa [3]obtain a 4—5 % admix-
ture of T= 1 in the ground state, making it the largest isospin
impurity in the ground state of a particle-stable even-even
nucleus.

In this Rapid Communication we present calculations for
the nuclei Zr, Sn, In, and ' Sn. In addition to Zr and

Sn, which are two N =Z nuclei of current interest, we also
consider the pair of mirror nuclei Sn and In since these
are related through superallowed Fermi transitions and, as a
consequence, isospin mixing may be measurable in the P
decay. In contrast to these, Zr and ' Sn can P decay only
through Gamow-Teller transitions.

Hartree-Fock calculations. We first show the results of
Hartree-Fock (HF) calculations with Skyrme interaction
(SIII). To explore the importance of the neutron-proton inter-
action with regard to isospin admixtures, we present two sets
of HF calculations. First, HF calculations are performed
without Coulomb interaction between the protons. (This in
order to check that there is no spurious isospin mixing due to
the effective interaction. For N= Z nuclei we obtain identical
proton and neutron single-particle spectra and densities. )

Next, the HF calculations are repeated with the Coulomb
interaction.

To estimate isospin admixtures in the ground state we use
the method suggested by Soper [5].We assume that the part
of the Coulomb force causing the isospin mixing is of is-
ovector character. The proton single-particle wave function
in the orbit (nlj), if expanded in the basis of neutron wave
functions, is of the form

R I (r)=N„I~ R„'I (r)+ g p„", R„,I (r).
n'4n

where n, n' are principal quantum numbers. The Coulomb
interaction has off-diagonal elements in the principal quan-
tum number only and furthermore, the dominant contribution
to the sum in Eq. (1) stems from n ' =n+ 1, so that

/

P"„1J=P„"IJ'.(We shall omit the superscript n+ 1 henceforth
and denote this coefficient by P„~, .) The admixture of
T= To+ 1 into the ground state with isospin To is then given
by [5]

T=To+1)= (,~ ~ JP2 To+ 1)

where ~„,/ is the number of protons in the orbit (nlj) and
the prime implies that only those orbits (nl j) are included in
the sum for which the neutron orbit (n+ l, lj) is not occu-
pied. For small isospin admixtures one has that the deviation
from unity in the overlaps of the neutron and proton wave
functions,

(3)

is approximately given by

II+P!i,
(4)

C„,,—= 1 — R„,J(r)R„",,(r)r dr= 1 N„,~, —
Jo
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TABLE I. Values of the coefficients C„IJ for the different orbitals
in ' Sn, as resulting from an HF calculation. For the difference
between the two columns, see text.
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FIG. 1. Isovector density (p„—p„) for the two cases discussed
in the text. The solid line refers to the case in which both proton and

neutron densities are obtained in the full HF calculation. In the case
of the dashed line, the neutron density is obtained in an HF calcu-
lation without the Coulomb interaction.

so that

P(T= TP+ 1)= g ~„l,C„t& .
Tp+ 1 pzlj

One can thus evaluate the isospin admixture directly from
the overlaps of neutron and proton single-particle wave func-
tions.

Table I shows the values of C„Ij for the nucleus ' Sn,
obtained in two different ways. In the first, overlaps are cal-
culated of proton wave functions from the full HF calcula-
tion with neutron wave functions from the HF calculations
without Coulomb interaction. Deviations from unity in the
overlaps are designated as C„I and shown in column 2.
(These overlaps will be similar to those where Woods-Saxon
wave functions are used for the neutrons, and Woods-Saxon
plus Coulomb for the protons. Strictly speaking these would
differ from the Woods-Saxon overlaps because the proton
wave functions have already taken into account the full
n pinteracti-on. ) In a second approach, overlaps of neutron
and proton wave functions from the full HF calculation are
computed and the resulting C„I are shown in column 3. The
latter procedure is the correct one, since it takes into account
the full self-consistency of the HF method. It can be seen
that the C„IJ coefficients obtained with the correct procedure
are about a factor of 2 smaller. The T= 1 admixtures in the
ground state corresponding to these two approaches (9.12%
and 4.25%, respectively) are also shown in the last row of
Table I. The difference between the two estimates arises be--

cause of the neutron-proton interaction which minimizes the
difference between the neutron and proton densities. This
effect is illustrated in Fig. 1 which shows the isovector den-
sity (p„—p„) for the two cases discussed above. The isovec-
tor density is reduced in the case of the full HP calculation.
This effect is referred to as the induced isovector correction
by Ormand and Brown [6].

Similar calculations with full HF were done for Zr,
Sn, and In. In the mirror nuclei Sn and In the

T= 3/2 states mix in the T= 1/2 ground state. The results of
the isospin admixtures in these nuclei are shown in Table II.

Ze I' r
2R

~
R' (6)

with R = 1.24A' fm, results in the isospin mixing probabil-
ity

3.50X10 '
P(T=T +1)= Z A'"

T,+1 (7)

This yields admixtures of 1.0% and 1.9% in Zr and
Sn, which are about three and two times smaller, respec-

tively, than those obtained in HF.
Alternatively, one could use a hybrid model where the

isospin mixing is evaluated from the energy-weighted sum
rule (EWSR) for isovector monopole excitations [9,10], i.e.,

TABLE II. Percentage admixtures of T= T0+ 1 in the T0 ground
states of different proton-rich nuclei. The two columns refer to the
predictions of HF calculations and of Eq. (11).

Nucleus

80z

'~Sn
"In
99Sn

HF

3.90
4.25
2.77
2.83

Eq. (11)

2.21
4.07
2.48
2.59

These T= 3/2 isospin admixtures in Sn and In are closely
related to the T= 1 admixture ' Sn through the isospin fac-
tor (Tp+ 1)

The hybrid model. An alternative and direct means of
evaluating isospin admixtures is to directly construct the
T= Tp+ 1 states and evaluate Coulomb matrix elements be-
tween these and the ground state with isospin Tp. Bohr and
Mottelson [7] suggested the existence of a giant isovector
monopole resonance (IVGMR) which would carry most of
the monopole strength. Treating the IVGMR as a compres-
sional mode, they obtain its energy E&vGMR as 170A
MeV. Direct evaluation [8] of the matrix element of the Cou-
lomb interaction, described as due to a uniformly charged
sphere
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EWSR= g (8„—Eo) (nip r, t (t')IO)
n00

82

fi, 2NZ
(rz)(1+x),

m A
(8)

where x is the contribution from the exchange matrix ele-
ments (due to the isospin exchange part of the two-body
interaction). For nuclei with masses ranging from 80 to 100,
x is of the order of 0.3. The EWSR in conjunction with the
energy of the IVGMR can be used to evaluate the isospin
admixture P(T= Tp+ 1), i.e.,

P(T=T,+X)
(%)

1 tZe ~ EWSR
P(T= Tp+ 1)=

3To+ 1 ( 2R ) (EtvGMR +o)

The resulting expression is
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FIG. 2. Plot of the isospin mixing P(T= To+1), Eq. (11),
shown as a function of N and Z.

whereuseismadeof(r )= R andR=1. 2A". 'Ifoneuses
the value for E&vMR as predicted by the hydrodynamical
model [7], another effect must be included since neutrons
and protons are subject to different average potentials result-
ing in a neutron-proton exchange potential of the form

t ~ T, where t is the nucleon isospin and T that of the rest of
the nucleus. This potential gives rise to further increases [11]
in the energy denominator by an amount 2V, (N Z+2)/A—
whel e V~ 25 MeV and a corresponding decrease in the
isospin admixture. Thus we evaluate the quantity

P(T= To+ 1)

16.09 NZ 1

To+ 1 A [EtvGMR Fo+ 4V, (To+ 1)/A]

This quantity is shown in Fig. 2 as a function of N and Z. It
can be seen that the amount of isospin mixing is exceedingly
small along the line of P stability. This is primarily due to
the isospin factor (To+ 1) ' in Eq. (11),referred to by Soper
[5] as the geometrical quenching, and to a lesser extent to the
factor 4V&(To+1)/A in the energy denominator (i.e., the
analogue quenching). Both effects drastically quench the
isospin mixing in nuclei with a neutron excess. For example,
in Pb the geometrical quenching provides a factor of 23
while the analogue quenching reduces the isospin mixing by
another factor of 3. This correction should not be introduced
in the formula if the energy of the monopole resonance is
determined microscopically, since the isospin exchange in
the nucleon-nucleon interaction is explicitly treated in this
approach.

In Table III we compare the predictions of Eq. (11) with
those of HF or RPA calculations for some of the stable nuclei
[9]. Predictions of Eq. (11) for some proton-rich nuclei are
shown in the third column of Table II. The expression (11)
predicts admixtures comparable to those of HF in all cases
except Zr. It should be noted that HF+TDA calculations of
Hamamoto and Sagawa [3] and more recent deformed HF
calculations by Dobaczewski and Hamamoto [12] predict
values of 3% and 2.5% for this admixture, which are much
closer to the prediction of Eq. (11).All these nuclei are pre-
dicted to have similar isospin mixing in HF [except for the
factor (To+1) '] because the overlaps are very similar in
all cases.

The RPA calculations. To obtain a more realistic estimate,
one has to go beyond HF and do RPA calculations. The re-
sults of the RPA calculations in the continuum [13] for

Sn are discussed below.
The calculation was performed with the SIII force, includ-

ing in the p-h space all occupied levels, as well as up to
An = 6 unoccupied levels for each value of (l,j). This space
was found to be large enough so that the RPA solutions were
found to exhaust approximately 97% of the energy-weighted
sum rule for the IVGMR. Following the idea of Auerbach [9]
one can estimate the isospin mixing due to the Coulomb
interaction by perturbation theory in the form

/ ze'i '
l(nl z, ,'t3(t')

l 0) I'
2R') „» Fo F.„'—

TABLE III. Percentage admixtures of T= To+ 1 in the To ground
states of different stable nuclei. The three columns refer to the pre-
dictions of HF calculations [9], of HF+RPA [9], and of Eq. (11).

'Note that the quoted value of R, to be used in the rest of the

paper, was used by Auerbach [9], and is different from the value

used by Bohr and Mottelson. If the value of R is evaluated from the
expectation value (r ) with HF wave functions, it is usually found

to be consistent with R=1.2A'

Nucleus

40(

88S

208Pb

HF

0.70

HF+RPA

0.29
0.17
0.29

Eq. (11)

0.33
0.19
0.30
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where IO) and In) are the RPA ground state and excited
isovector monopole states of the nucleus, with Fo and F„ the
corresponding energies. Within this perturbative approach
these should be calculated by turning off the Coulomb inter-
action in the Hamiltonian. The resulting isospin mixing in
this case was obtained as 5.2%, which should be compared
with the value of about 4% predicted by the HF calculation.
This increase is caused by two factors, namely, the lowering
of the centroid of the isovector giant monopole resonance in
RPA with respect to the empirical value 170A ' predicted
by Bohr and Mottelson, and more importantly due to the fact
that the matrix elements of the Coulomb interaction between
the RPA wave functions are considerably larger than those
between the HF wave functions due to correlations. The dis-
tribution of the IVGMR predicted by RPA is shown in Fig. 3.
For comparison the figure also shows the strength distribu-
tion for RPA in a discrete basis. A high dispersion of the
strength of the IVGMR is apparent from the figure, together
with a shift to lower energies of the centroid (at 35.9 MeV).

The RPA calculation was repeated keeping the full Cou-
lomb interaction in the mean field. In this case one can di-
rectly evaluate the isospin mixing from the correlated ground
state, with the use of the formula [9]

P(T= To+ 1)= 0 5(GSI T T+
I
GS)—

where GS represents the ground state wave function. This
matrix element is nothing but the mo sum rule (non-energy-
weighted) for the operator which excites the isobaric analog
state. If the GS is assumed to be the HF ground state (Tamm-
Damcoff approximation), one obtains an isospin mixing of
3.8%, very close to the 4% quoted above. If instead one uses
the correlated RPA ground state, Eq. (13) gives a value of
4.8% for the isospin mixing, which is close to 5.2% obtained
with the perturbative approach.

In summary, HF calculations for very proton-rich nuclei
in the region around A = 80 to A = 100 predict isospin mixing
of the order of 3—5 %. The use of the EWSR in conjunction
with the value of the energy of the IVGMR
(E»GMR

——170A ") as given by Bohr and Mottelson [7]
was shown to yield isospin admixtures very close to the val-
ues predicted by HF calculations. More realistic RPA calcu-

0.2

0.15 X 1/2

'"Sn lVGMR

RPA —Sill

No Coulomb

IIJ
0.1

O
C0
O
U

X 1/2

0.05

0
10 20

il I, . Ii
30

! I L L I I I

40 50

Energy (Mev)

60

FIG. 3. RPA prediction of the distribution of the strength of the
IVGMR in ' Sn, shown as fraction of the sum rule. The discrete
lines represent the RPA calculation in a discrete basis, while the
continuous curve is the result of the RPA in the continuum. The
RPA wave function used to generate the IVGMR was obtained
without the Coulomb interaction in the mean field.
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lations yield a value around 5% for isospin mixing in
' "Sn. An admixture of 4—5 % in probabilities imply admix-
tures in amplitude of around 25%. Direct tests of the isospin
mixing in N=Z nuclei would be through measurements of
El transitions [14] or Fermi P transitions, both of which
vanish in the absence of isospin mixing. Such measurements
would be very useful.
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