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Quark and gluon distributions at the earliest stage of heavy-ion collisions
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Using the general framework of quantum Geld kinetics we consider new principles to compute
initial distributions of quarks and gluons after the first hard interaction of heavy ions. %'e start by
rewriting the integral equations of +CD in a form which is a generalization of the familiar +CD
evolution equations. These equations describe both space-time and (x, Q ) evolution before the
collision and allow one to use the ep DIS data without reference to parton phenomenology. A
new technique generates perturbation theory that avoids double counting of the processes, does not
contain an artiGcial factorization scale, and does not require low-momentum cutouts since infrared
behavior is controlled by the DIS data.

PACS number(s): 25.75.+r, 12.38.Bx, 12.38.Mh, 24.85.+p

I. INTRODUCTION

Recently, there have been many calculations [1—4] of
the initial distributions of quarks and gluons in heavy-
ion collisions, which may then lead to the creation of a
plasma. In this paper, we do not consider the later stages
of evolution which possibly lead to equilibration, or even
the formation of a hydrodynamic regime. Instead, we
shall concentrate only on the problem of the Brst quan-
tum transition which converts two initial state composite
systems —the stable nuclei in the "normal" nonperturba-
tive vacuum into a dense system of quarks and gluons
which has a perturbative vacuum as its ground state.

Any strict formulation of a quantum-mechanical prob-
lem requires an exact definition of two main elements:
the initial state of the system, and the observables in the
expected 6nal state.

(1) The initial state. Ideally, as in, for example, an
atomic collision, we would de6ne the initial state via its
wave function. The wave functions of @CD nuclei are
unknown. A natural alternative is to use the density
matrix to describe each nucleus.

Here we may assume nuclei to be well shaped ob-
jects. The uncertainty of their boundaries does not ex-
ceed the typical Yukawa interaction range. In the lab-
oratory frame, both nuclei are Lorentz contracted to a
longitudinal size Rp/p 0.1 fm. The tail of the Yukawa
potential is contracted in the same proportion. The world
lines of the nuclei are two opposite generatrices of the
light cone that has its vertex at the interaction point. No
interaction between nuclei is possible before they overlap
geometrically. For this reason the total density matrix
of two nuclei is a direct product of the two individual
density matrices. The spaces of states where they act do
not overlap either.

Since no exact information about the initial state of
the nuclei is available, it seems reasonable to rely upon
the following two considerations. First, detailed infor-
mation is inessential as it basically relates to the inter-
actions which maintain every nucleus as a /CD bound
state. The energy of the collision is incomparably higher.

It is thus enough to require that the density matrix yields
the given total momentum and the baryonic charge as av-
erages of the corresponding field operators. Second, the
residual dynamical information must reveal itself in the
same way as in other inelastic processes at extreme ener-
gies, like deep inelastic electron-proton or muon-nucleus
scattering (DIS). This statement may appear trivial, be-
cause structure functions of DIS are always used to ac-
count for this information. However, one should keep in
mind that their definition —which does not refer to the
parton model —is valid only for the DIS process itself. In
order to apply structure functions to other interactions,
using the parton model is considered unavoidable.

The 6rst priority of this study is to avoid any inter-
mediate phenomenology. We insist that any information
taken from parallel experiments is valuable only as long
as both processes can be described by the same theory
and with the same initial data.

(2) The final state. The final state is assumed to be
some distribution of free quarks and gluons in the per-
turbative vacuum. This vacuum is considered to be the
true ground state, and is free of @CD condensates. It is a
product of the nuclear collision and is postulated to exist
in a suKciently large volume. The spectrum of' possible
states of quarks and gluons after the collision is contin-
uous. These states did not exist before the collision and
are unoccupied at the beginning of the collision.

It is supposed also that the information which is most
important for understanding the future evolution is con-
centrated in the single-particle distributions of quarks
and gluons. These distributions must be calculated from
their quantum-mechanical definitions, keeping in mind
how they are to be measured in a hypothetical exper-
iment. Two- and more-particle distributions should be
defined as independent elements corresponding to other
measurements.

In this work we rely heavily on a previous paper [5],
where integral equations of @CD were derived without
assuming that averaging is performed over a stationary
state. To some extent these equations resemble the dia-
grammatic technique of Keldysh [6], which was designed
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for nonequilibrium processes. They are of the same ma-
trix form, but are not derived with a view to obtaining
quasiclassical kinetic equations. Fields and their correla-
tors remain the main objects of these equations and no
phase-space distributions are introduced. For this rea-
son the approach was named "quantum Geld kinetics"
(QFK)

These new equations are the result of an initial re-
summation of the perturbation series for probabilities of
inclusive processes (or any other observables). On the
one hand, these new equations create an approach which
proves to be very effective for studying various inclusive
processes. On the other, they allow one to trace the
temporal evolution of a colliding system, beginning &om
preparation in the past right up to the moment of mea-
surement. This latter feature makes the new approach
extremely attractive for our goals: The evolution of any
physical system is completely defined by the initial data,
and the act of measurement only selects one or more of
all the possible quantum trajectories. Therefore one can
expect that results of similar types of measurement will
be similar. In this paper, we want to consider two similar
processes, viz. , deep inelastic electron-proton scattering
and "deep inelastic pp or AA collisions, " in parallel.

To begin with, we must define the observables of these
two processes in the same way. Definitions of inclusive
amplitudes and inclusive probabilities to find one-quark
or one-gluon excitations in the perturbative vacuum in
the Gnal state are given in Sec. II. The DIS cross section,
viewed as an inclusive process where nothing is measured
except the momentum of the scattered electron, is defined
in the same terms at the beginning of Sec. III. The rest
of this section considers an instructive example of the
lowest-order calculations using a model density matrix.
This calculation allows one to introduce all spinor and
vector functions without extra complicated notation, and
to clarify the complete calculation.

The dynamical equations in their full tensor-spinor
form are derived in Sec. IV. It immediately becomes
clear that these equations have a ladder structure. It
appears that the well known ordering of ladder cells by
Feynman x and virtuality is a direct consequence of the
retarded temporal ordering inherent in these equations in
their coordinate form. Smaller x and bigger virtualities
correspond to the later times. Thus, as a by-product,
we obtain an answer to a very old question about such
correspondence [7—9].

The new equations appear to be richer than the usual
QCD evolution equations for DIS structure functions, as
derived &om the renormalization group approach. The
new evolution equations interconnect two invariant func-
tions of the vector field, and two of the quark Geld. These
equations do not depend upon the type of latest interac-
tion; however, they may be projected onto any definite
process. Specific properties of the "last" electromagnetic
interaction select only one of the spinor functions into
the definition of the structure function E2 of unpolarized
DIS. However, both quark field functions remain in the
evolution equations, along with the two functions of the
vector Geld. The relative scale of additional terms and
their possible role are examined in Appendix A.

The meaning of the objects that obey the new evo-
lution equations comes to light in a discussion of renor-
malization. The renormalization group approach cannot
be used here, if only because most of the terms in these
equations correspond to observables (imaginary parts of
self-energies), are finite, and may not be renormalized.
Instead, we renormalize the second subgroup of the evo-
lution equations for the real part of the self-energies using
a conventional Bogolyubov-Hepp-Parasyuk- Zimmerman
(BHPZ) scheme. Ultraviolet divergencies are compen-
sated for by counterterms from the original Lagrangian.
The running coupling appears precisely from the require-
ment of renormalizability. For the moment, this part of
the study is at the level of a basic idea.

Using some structural, rather than quantitative, as-
sumptions and after projecting onto specific observables
of the e-p DIS, the new equations can be reduced to the
system of the Gribov-Lipatov-Altarelli-Parisi (GLAP)
equations [10—12]. The objects which enter the new equa-
tions are similar to self-energies, and we shall call them
sources. It appears that the QCD evolution proceeds in
such a way as to create a source of a field which interacts
with the detector in a certain way. The evolution causes
the dynamical assembly of a special wave packet which
represents a quark or gluon which is "properly prepared
for the last interaction. " This process takes place in real
time and ends at the moment of interaction.

In Appendix A it is also shown that the new equations
naturally reduce to the Balitskij-Fadin-Kuraev-Lipatov
(BFKL) [13] equation, and that they are capable of de-
scribing the eKects of quark and gluon shadowing at small
x. The resulting shadowing terms appear to be paramet-
rically larger than those in previous derivations [14,15].

We expect DIS to provide the dynamical information
about this process. This information is valuable only
as long as no measurements were done before the last
interaction. All unobserved information (and providing
it was not observed) is included in the definition of the
sources with their full dependence upon x and Q2.

Here, we do not adhere to the picture of "wee par-
tons, " and do not share the opinion that the QCD evolu-
tion equations describe how one valence quark develops
a cloud of virtual quarks and gluons around it at small
distances. We believe that they give (perturbatively) the
"evolution" of the detector response, provided the trigger
includes the requirement of a bare on-shell quark in the
final state (which usually may be expressed as the reso-
nant condition 2:~~ = x~). That they definitely do not
correspond to the evolution of a single quark is seen, for
example, from the possibility of including fusion (shad-
owing) into the evolution equations.

The difference between the structure functions and the
sources can be explained using an analogy: in condensed
matter or scattering theory we introduce two diferent
quantities, the density of states p(E) and the number of
states below energy E, n(E) = f p(E)dE The struc-.E

ture functions then correspond to n(E), while the sources
correspond to p(E). In an experiment we measure n(E)
(which is proportional to the allowed volume in the phase
space), rather than p(E). From this point of view it
is not surprising that we eventually express observables,
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roughly speaking, via the derivatives of structure func-
tions like dG(x, Q )/dQ . Different measurements study
these quantities, integrating them with their specific "up-
per limits. " The boundary conditions for x and Q2 evo-
lution are imposed by the measurement, rather than the
initial conditions which are controlled by momentum con-
servation, sum rules, etc. These must be set in the past
without any relation to the (z-Q) evolution.

Cross sections of inclusive single-quark and single-
gluon production in the lowest nonvanishing order are
calculated in Sec. V. All of them contain scale-dependent
and -independent terms. The latter are much bigger than
the former, and as a result the cross sections are expected
to exhibit only weak scale dependence. The lowest-order
cross sections are strongly peaked at low rapidities and
low transverse momenta.

The next order of the perturbative expansion gen-
erated by the new evolution equations is examined in
Sec. VI. The new expansion does not lead to any dia-
grams which duplicate those already included in the def-
inition of the sources (or structure functions). Any such
diagrams would carry severe collinear singularities. We
carefully examine the in&ared finiteness of the diagrams
that do occur. It is shown that they are in&ared safe
and that no artificial cuto8's are necessary to find the
total cross section. Higher-order perturbation terms are
not expected to present any diKculty, as their final state
in&ared behavior will be shielded by the final distribu-
tions themselves.

We are led to the approach advocated in this paper
in an unavoidable manner. Ideally, one would start with
a complete relativistic quantum description of the static
proton and its interaction with the detector. Unfortu-
nately, the many attempts to describe the bound states
of QCD (see Refs. [16] and [17] for reviews) have not yet
met with real success. To calculate the production of
particles in hadronic collisions, one is limited to reason-
ing along the following lines: first, an operator product
expansion (OPE) analysis of the DIS data, which gives
the structure functions of DIS; next, a partonic interpre-
tation of the structure functions; and, lastly, using the
factorization technique. In the end, one still faces severe
theoretical problems caused by the soft processes, the ar-
bitrariness of the factorization scale, etc. Here, we try to
avoid these problems "experimentally, " by maximizing
the use of dynamic information hidden in the DIS data.

II. SINGLE-PARTICLE DISTRIBUTIONS OF
THE PARTONS

The entire scenario of the heavy-ion collision is very
complicated. It is common to divide it into several stages
dominated by di8'erent physical processes. Currently,
each stage is described using a difFerent approach. Quan-
tum field kinetics (QFK) [5] was conceived as a formal-
ism that allows one to describe all stages of the collision,
including the transient ones, using the same technical
tools. The theory should explicitly follow the temporal
sequence of the stages, and allow for smooth transitions
between them. In this paper we study the first hard pro-

cess which destroys coherence of the initial wave func-
tions of the incoming hadrons (or nuclei). However, it is
expedient to include a brief discussion of how the neigh-
boring transient regions look and how the language of
QFK may work there.

Before the collision, two nuclei A and B, with momenta
P~ and P~, move towards each other at almost the speed
of light, and the center-of-mass system coincides with the
laboratory frame. We assume that the center-of-mass en-

ergy is very large, 8 && M, so that the laboratory frame
is the infinite momentum frame for both nuclei. The
"infinite momentum frame" is a synonym of the "light-
front dynamic, " a very complicated object, which had
been introduced by Dirac [18] long ago, along with the
other forms of the dynamic. According to Dirac, every
(Hamiltonian) dynamic includes its specific definition of
the quantum-mechanical observables on the (arbitrary)
spacelike surfaces, as well as the means to describe evo-
lution of the observables &om the "earlier" spacelike sur-
face to the "later" one. Besides the light-front dynamics,
Dirac has also suggested the so-called. point form of Geld
dynamics which was conceived as a tool to describe the
interaction of the G.eld with the pointlike classical parti-
cle.

The applicability of the light-front form of dynamic to
the DIS process, the proton interaction with the struc-
tureless electron, is indisputable. However, in the more

complicated case of the two-hadron (or two-nucleus) col-
lision, both composite objects should be described using
the same dynamic. This requirement follows solely from
the fact that the definition of the field states (particles)
depends on how the observables are de6ned. This is most
important for gluons: the choice of the gauge is one of
the elements of the Hamiltonian dynamic. A suitable
form of dynamic should be consistent with the I orentz
contraction of the nuclei. The idea of the collision of two
plane sheets immediately leads us to the "wedge form:"
All possible states of quark and. gluon fields before and
after collision should be confined to within the past and
the future light cones (wedges) with the (x, y) collision
plane as the edge.

It turns out to be possible to treat two diferent light-
front dynamics as two limits of a single dynamic where
the states of the quark and gluon fields are defined on
the spacelike hypersurfaces of the constant proper time
w, v = t —z . Considering the collision as a kind of
detector which performs a spectral analysis of the collid-
ing composite systems, we restrict ourselves in advance
to a class of states which can resonantly participate in
the localized interaction. In this ad hoc approach, all
the spectral components of the nuclear wave functions
unavoidably collapse in the two-dimensional plane of in-
teraction, even if all the con6ning interactions of quark
and gluons in the hadrons are switched oK, and if the
coherence of the hadronic wave functions is d.estroyed.

A compete study of the wedge form of dynamic is un-

derway now. The well known DIS structure functions
remain as well defined elements of the joint dynamic. In
what follows, we refer to the process of their formation
(spectral decomposition of the nuclei into the proper set
of modes) as the precollision dynamic. We rederive the
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1 —im~ w cosh(g —y) ip~ v ~
yap~ 4

—ip t+ip z ip~r~
4~3~2 (2.I)

These wave packets represent plane waves confined to
within the future light cone of the collision point, and
are normalized on the spacelike hypersurfaces w =const:

7di)d r =' „(x-)i:-„„(x)
= ~(& —& )~(&~ —4). (2.2)

Here, we use coordinates (t = 7 cosh@, z = 7 sinhi), r~),
and denote m& ——m + p&, p = m~ cosh y, and p
m~ sinh y.

At large mJ 7 ) the phase of the wave function y p~
is stationary in a very narrow interval around g = y
(outside this interval, the function reveals oscillations
with exponentially increasing frequency): the wave func-
tion describes a particle with rapidity y. However, for
m~w &( 1, the phase of the wave function is almost con-
stant along the surface v = const. The smaller w, the
more uniformly the particle is spread along the light cone.
Up to distortions caused by the finite size of the inter-
action domain, any high-energy collision will produce a
distribution which is uniform in rapidity in the vicinity
of the light cone. The picture looks as if the incom-
ing nuclei carry this distribution ab initio. The latter is
not surprising as the same arguments can be applied to
the states of particles before a strongly localized interac-
tion. The distribution dN const x dy corresponds to

QCD evolution equations for the DIS structure functions
and generalize them for the needs of our problem in the
next two sections using the QFK language. As a result,
we find how to extract maximum information from the
DIS data and provide a smooth transition to the descrip-
tion of the later stages.

A qualitative understanding of the expected final state
can be obtained by a "quantum kinematic" analysis of
the extreme case when no dynamical information is re-
quired. Let the nuclei collide at an energy of about 100
TeV per nucleon, when the nuclear longitudinal size is
only 10 fm. This size is much less than any known
in nuclear interactions, and one may consider the do-
main where the nuclei overlap as a plane surface [or a
point in the (t, z) plane]. All the subsequent dynam-
ics takes place within the future light cone of this point,
t —z ) 0, t ) 0. As the translation invariance in t and
z directions is manifestly broken by the initial conditions,
one should look for the appropriate quantum numbers
(other than p and p') to describe the final states of the
particles. The symmetry that does survive is Lorentz in-
variance, and the relevant quantum number is the boost.

However, rather than the boost, it is more common to
use the momentum as a quantum number of the particle.
While in the geometry of a localized interaction there is
no quantum operator for conserved momentum, we may
find wave packets which behave as free plane waves, at
least asymptotically. The wave packets with the required
behavior are

(X~d(p, a, i)S~in) and (X~c(k, A, a)S~in), (2.3)

where dt(p, cr, i) is a creation operator for an on-mass-
shell quark with momentum p, spin o., and color i. Sim-
ilarly, the operator ct(k, A, a) creates an on-mass-shell
gluon with momentum A:, polarization A, and color a.
Summing the squared moduli of these amplitudes over
a complete set of uncontrolled states ~X), and averag-
ing over the initial ensemble, we find inclusive spectra of
quarks and gluons

dp
q = ) Spp;„Stdt(p, cr, i)d(p, o, i)S, (2.4)

= )

Spp;„Stet�(k,

A, a)c(k, A, a)S .
A, a

(2.5)

The initial state of the colliding system consists of
two Lorentz-contracted nuclei which are causally inde-
pendent, and thus the total density matrix is a direct
product of two independent density matrices,

Pin = PA 3 PB ~Ocont) (Ocont ~. (2.6)

Matrix elements of p;„are obtained by sandwiching it
between all state vectors ~in) which enter definition (2.3)
of inclusive amplitudes. The density matrices p~ and p~
contain only bound states of quarks and gluons in the
presence of vacuum condensates. The latter are assumed
to be destroyed in the course of the initial hard collision
and replaced by the perturbative QCD vacuum. Initially,
all states in the continuum are unoccupied. This means
that p;„contains a projector ~0, „t)(Ocont~ onto the vac-
uum state in the continuum. So we may commute the
quark Pock operators with S and S~ and only commuta-
tors survive in the final result:

bS~d~q ) - d4 d4 ~(+) ( )
~S q(+) (&)

dp " * Sq, (y) bq, (x)

(2.7)

In this expression Q„+;(x)is the Dirac wave function of
a quark. Summing over spin and color we get

dK const x dxz/xz in terms of the Feynman variable
x~. Thus we arrive at a result which is typical for the
Williams-Weiszacker approach. The full consideration
for the QCD nucleus has been recently given by Mcl er-
ran and Venugopalan [4]. We assume that deviation Rom
this ideal distribution can be studied perturbatively with
increasing accuracy the higher the energy of the collision
ls.

The realistic structure functions invoke the scale which
is absent in the limit of infinite energy. They allow one to
compute various distributions of quarks and gluons cre-
ated after the first interaction of two nuclei. As we expect
creation of a dense system, we consider the one-particle
distributions to be most important. The inclusive ampli-
tudes leading to the creation of one quark or one gluon
from the initial state ~in) are as follows:



52 QUARK AND GLUON DISTRIBUTIONS AT THE EARLIEST. . . 999

dp
~ = ) d xd4y TrgiZO', (x, y)], (2.8)

2vr s2po

where the full 2 x 2 matrix of the quark self-energy is
given by [5]

2~a(x, y) = i(—1) +ag' ) (—1) +s
R,S=O

d(drjt p"

&R(~ &)I'aa, s(& y'rI)DsA, & (9 ~) .

(2.9)

This formula implies that both quark and gluon corre-
lators, CAR and DsA &, are averaged with the density
matrix p;„given by Eq. (2.6). In the first approximation
we may replace the exact qqg vertex by the bare one.
Then Eq. (2.8) takes the following simple form:

bSt bS
»'lw)» (*))

Its general formula was derived in [5]:

(2.12)

dN~ g2 d4k

+[(&) ++ (B)0 (2.1o)

where the additional superscript (A) or (B) denotes that
the correlation function is averaged over the initial state
of nucleus A or B, respectively.

A similar procedure yields the following expression for
the inclusive gluon production:

—ip(x —y)' = ) d'*d' ' .l"i.~"l[- 11.'.""(*, )]
dp (2vr) s2pe

A, a

(2.11)
where the primary definition of the gluon polarization
tensor IIoi is given by

1

&a(* y) = '( —)"+ y.') (—)"+' — &»" »(* &)~as,aR ~ y)»(~ *)
R,S=O

I

+ ~ f »~ AR RSH;b'f' ~ ~ SA (2.13)

and we postpone its further expansion because of the
complexity of the emerging polarization structure. How-
ever, the main idea remains the same as for quark pro-
duction: in first approximation we get a product of two-

q a k Coi C io or two-gluon, Doi Dio correlation(A) (&) (A) (&)

functions. Each of them is averaged with the density
matrix of only one of the two nuclei. This is in line with
the independence of the initial states of the colliding nu-
clei.

In a previous paper [5], it was demonstrated how
the technique of QFK works at the later (quasi)thermal
stages of the heavy-ion collision. It was applied to the
problem of dilepton emission &om the nonequilibrium
quark-gluon plasma (QGP). The technique allows one to
examine the balance between real processes and radiative
corrections providing proper cancellation of the infrared
divergencies at the intermediate stage of calculations (for
further details see Ref. [19]).

The explicit form of calculations at the transient stage,
conversion of the initial fIux of the quarks and gluons
into continuous quark-gluon matter, the QGP, is not yet
clear. It seems well established that this stage will be
dominated by the gluon dynamics: the gluons are most
abundant and have the highest rate of interaction. How-
ever, there remain some problems to be solved before
practical calculation can be carried out. These prob-
lems are (i) choice of the initial scale for the structure
functions (known as the factorization scale) and (ii) the
problem of gauge invariant calculations. The first prob-
lem seems to find natural solution in the QFK approach

I

(see Sec. V). The second problem is not yet solved. It is
clear that one should choose a physical gauge. Otherwise
one would have to introduce an auxiliary distribution of
ghosts which is ill defined. It seems expedient to calculate
only the observables, like the energy-momentum tensor,
which are gauge invariant. There were many attempts to
derive a kind of kinetic equation for the Wigner distri-
butions, which, however, were never successful. At the
moment, we connect a hope to overcome this problem
with the natural gauge of the "wedge form" of dynamic:
the local temporal axial gauge.

III. DEEP INELASTIC SCATTERING ON THE
ELECTRON

In the previous section we have expressed the cross
sections of the one-quark and one-gluon production via
certain field correlators of the colliding nuclei. The goal
of this and the next sections is to find those elements of
a theory which are common to two essentially diff'erent
problems, viz. , nucleus-nucleus (or proton-proton) colli-
sions and deep inelastic electron-proton scattering. Our
primary demand is that these elements should appear as
a by-product of the two independent lines of calculation,
initiated separately from first principles. Thus our next
step will be a separate investigation of the deep inelastic
scattering of the proton on the structureless electron.

We divide this section into two parts. For the sake of
completeness we begin with a brief definition of the DIS
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cross section in terms of the QFK approach and define
the null-plane variables which will be used for all follow-
ing calculations. Before turning to a detailed derivation
of the self-consistent equations in the next section, we
give an instructive example of the lowest-order calcula-
tions. These have no direct physical value, but they allow
one to overcome technical problems and avoid premature
discussion of the highly nontrivial approximations.

Instead of the invariant W2, we will use the mass-
independent structure function I'2(x~z, Q ) = vW2/M,
which is calculated via the equation

(P+)'F,
c2 ——W" n„n„=

V

The longitudinal structure function Er, (x~~, Q2) = WL,
should be calculated in accordance with

A. Basic de6nitions for DIS

(4 ~a(k') Sat(k) ~in), (3.1)

where A: and k' are the laboratory frame momenta of the
electron before and after the scattering. If q = k —k'
is the spacelike momentum transfer, then the DIS cross
section is given by

, do. in L„(k,k') W" (q)
dk' (4') (kP) (q )2

where W""(q) is the standard Bjorken notation for the
correlator of two electromagnetic currents,

2V P
(3.3)

We accept without any discussion its standard tensor de-
composition,

W/Il/
( )

goal/ (gLI/

2ZBj 2ZBj M (3 4)

wherev=qP, Q = —q )0, x~~ =Q /2v, and

p
p~ pgg, q qe = —g

q2

P"q + q"P—g +
V

2 P"P—q (3.5)

Hereafter we will perform all computations using the in-
finite momentum frame fixed by the null-plane vector n",

n" = (1,0, —1), n = 0. (3.6)

It defines the "+" components of the I.orentz vectors,

na=a =a =a +a, a =a =a —a0 3 — 0 3

In the infinite momentum frame, the four-vector of the
proton's momentum has components

P" = (P+/2, 0, P+/2), P = P —P = 0. (3.7)

The momentum transfer has the components

q" = (v/P+, qq, v/P+), q+ = 0, —q = 2v/P+.

(3.8)

As was emphasized in the Introduction, it is important
to have similar definitions of observables for all processes
which will participate in the future information exchange.
We may rewrite Eq. (2.3) for the inclusive amplitude of
DIS as

3FI, ——2xBjcg + 2F2, cg ——R' g„~. (3.10)

B. An instructive example: The low-order
calculation

Gio(p) = —27ri(P+ m)8(p —m )

x(~(p.)[1 — "'(p)] —0(—p ) ' '(p)) (3»)
We define matrix elements of our one-particle (twist-1)

density matrix by a certain set of field correlators. We
assign the superscript "g" to all states in the continuum
of free on-mass-shell fields:

G+*~(p) = 2vrib, , ($+ m)0(+p )b(p ——m ),

D+ '""(p) = —27rih sd" (p)0(+po)h(p').

(3.12)

(3.13)

These states are initially empty and the vacuum correla-
tars Gio Oi(p) and Dio Oi(p) represent only on-mass-shell
particles in the final states.

In order to proceed with the calculations we must spec-
ify the density matrix. We shall begin the physical mo-
tivation of our choice by reminding the reader that a
widely used approach based on Wilson's operator prod-
uct expansion (OPE) does not utilize any information
about the proton's internal structure. Only the total
momentum and the discrete quantum numbers are con-
trolled by sum rules. Indeed, the dynamical equations of
QCD contribute only to the singular coefficient functions
while the regular operator functions, the averages over
the proton's state, remain unknown. We can only decide
whether or not to include the high-twist operators in the
expansion. The twist-1 operators of the OPE correspond
to one-particle matrix elements of the proton's density
matrix. Including the twist-2 operators into the OPE
would correspond to irreducible two-particle correlations
in the density matrix used here.

The system of integral equations which we expect to
derive eventually does not require any explicit form of the
density matrix either. Nevertheless, it is useful to keep
in mind some representation which may serve as a simple
reference point. For example, we may choose an artificial
exponential form which reproduces the total momentum
Aux of the proton and allows us to derive the integral
equations of the Schwinger-Dyson type [5].

The twist-1 operator functions of the OPE, by their
structure, are binary products of quark and gluon fields
and to some extent resemble occupation numbers which
enter the on-mass-shell correlators. For example, in the
statistical ensemble we usually have
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The superscript "+"will label "bounded" states of "va-
lence" quarks and gluons in the initial proton:

G*o (p) = 2
' -~'. -Pb(p')~(p )0(p')V(p+)

lab

G'„(p)= o.

(3.14)

(3.15)

. 1 (2~) 1
D,*, '""(p) = —2mi — 8 g

—d" (p)0(~pp)8 Vib 2

x ~(p")~(p~) g(p+) (3.16)

The factors 1/2 and 1/3 correspond to the averaging of
the distribution over the quark spin and color, respec-
tively. The factor (2vr)s/Vj b corresponds to the normal-
ization: we consider a flux with one proton in a volume
Vl b per unit time.

Equation (3.14) describes the phenomenological distri-
bution of the "valence" quarks as a function of their light-
cone momenta p+, while Eq. (3.15) means that there
are no "valence" antiquarks within the proton. This ap-
proach corresponds to beginning the evolution at a very
low scale, and was used by Cluck, Reya, and Vogt [20].
At low q one probably cannot take the perturbative
@CD evolution equations seriously. However, if the pa-
rameters that are obtained allow for a good fit to the
data, these distributions will work as well as any other.
If one starts at a higher scale, one should use Eq. (3.15) in
the same form as Eq. (3.14). This approach corresponds
to the strategy of the CTRL [21] or Martin-Roberts-
Stirling (MRS) [22] parametrizations. We shall discuss
them in more detail at the end of Sec. IV.

In the same way we define the "initial" distribution of
"valence" gluons by

for the (++) component of the quark energy-momentum
tensor. In these equations we have introduced the Feyn-
man variable, z = zF = p+/P+ .The momentum flux
density kom the gluon component is given by

T++=- ", S+ '~ -Dp" S

P+ ~+ 1

dp+p+g(p+) = d*zg(z),
+lab p Vlab

(3.2o)

where P+V(p+) = V(z) and P+g(p+)—:g(z). The ini-
tial quark and gluon distributions are normalized in such
a way that in aggregate they carry the proton's total
quantum numbers.

Neglecting any corrections to the electromagnetic ver-
tex we may rewrite Eq. (3.13) in the following way:

p, ~ r w 2 2 VlabPlabW~" jqj = ef 4'
x Try" Gyp(p+ q)p Cpg(p) . (3.21)

d p
2vr 4

The ofI'-diagonal quark field correlators in this equation
obey integral equations [5] which express them in terms
of exact retarded and advanced propagators and sources
Z] p p.[ (the "current" correlators):

G ret :G ret + G ret E ret G' ret
adv Bdv adv adv adv

(3.23)

G'zo = Gr~otG(pIG&oG(p)Crop» —Gr~otZxoGog» . (3.22)

The retarded and advanced Green's functions obey
more familiar equations,

with I/8 and 1/2 standing for the color and polarization
average and where d~" is a projector

which allow symbolic solutions

C... = G... —Z,.t
adv adv Bdv

(3.24)

P D P
dgv( )

gll P P
p+ (3.17)

which is a sum over the physical gluon polarizations in
the null-plane gauge, n"B„=0.

The reason for introducing these distributions is to give
definite values to the quantum numbers (the charges and
the momenta). Their densities are given by

»i.b f,

f dV()

dp+V(p+)

(3.1S)

for the quark's light-cone charge flux, and by

4
T++ = —i " T.&+p+G* *(p)

(2vr) 4

P+
dp+p+V(p+) = dzzV(z)

+l b p +l b p

(3.19)

In the first approximation we may replace the exact re-
tarded and advanced quark Green's functions, G„tand
G d, , by the bare ones that carry the same leading light-
cone singularity,

G- (p) =
(pp y io)2 p2

(3.25)

Then by virtue of (3.15) Eqs. (3.22) take the following
form:

G'01 G01 + +p1 Gret~plaadv

C10 = +10 G t~lpaadv .

(3.26)

(3.27)

Substituting Eqs. (3.12) and (3.14) and rewriting the
b function of the on-mass-shell final state quark as

In the lowest order we neglect sources and leave only
correlators of the initial fields:

2 2+lab+labW" (g) = Rf
4m
d4

x Try"G+ (p+ q)p Gp, (p) . (3.28)
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b+((p + q) ) = (1/2v)h(x —x~~), we get the incredibly
simple result of the "naive" parton model:

p+

lab +
1

F,' (z~, ) = e~ dzb(z —z~, ) zV( z)
0

(3.29) k+ +(C & V(k+)+-'(1 — )&+&(k ))

d4I
, (~„C,*,(k)~.D~""(k —p)

+&~aoi (k)&-Dio" (k —p) )

Zo, (p) = ig C~—

(3.30)

In the next approximation we should include the quark
fields coming &om the quark and antiquark sources, Zp~
and Zqo, i.e. , the last terms in Eqs. (3.26) and (3.27).
The general expression for the quark self-energy matrix
is given by Eq. (2.9). Still restricting ourselves to bare
vertices and bare tree Green functions we get

(3.37)

where z = p+/k+, and the invariants for the antiquark
source Zyp do not contain terms with valence distribution
V(k+).

It is now straightforward to find the first correction
I"2 (x~~, Q ) to the DIS structure function:

Z~o (p) = —ig Cp
4

,&~C io(k+ p) ~-Doi" (k).

1

~,"(»,) = e',
0

(3.38)

(3.31)

The superscript "sg" means that one of the contributing
states belongs to the set of final states, while the other
originates Rom the initial proton.

The gluon correlators obey the following equations:

It is presented in the same form as the zero-order term,
(3.29), with Vy(x) = qf(x, Qo) replaced by

VlabP 2 + ia z (p)+
qf(x, Q ) =

( )3 dpt dp p
0

001 —D01 + D01 DretII010advy
10 10 10 10

D ret :D ret + D ret II ret D ret

(3.32)

(3.33)
(3.39)

~(p) = 8~2(p) + 1''~s(p) (3.34)

In the first approximation, all contributions of the gluon
sources, IIyp py, should be dropped along with radiative
corrections to the retarded and advanced gluon propaga-
tors. The tensor structure of the self-energy may be only
of the form

To be consistent with the resonant condition of the mea-
surement, we must require that Q be large enough (for-
mally, Q ~ oo), and that the behavior of the integrand
at high p~ guarantees the convergence of the integral. If
we substitute (3.36) into the right-hand side (RHS) of
(3.39) and perform a residual integration over p using
the b function

P~(p)A = A~~(p) + A 'p+~s(p),
.(p) = p' .(p)+2(p')' .(p) (3.35)

After a long but routine calculation we find

~g' p' dI+
i~i (p) = V~, p' —

k
~Np+ —k')p

lab p+

k+ z'+ 1x C a+V(k+)
p+ 1 —z

+"',"+'Y+g(k+)),

In all the equations it enters in a single combination,
g(k+ +) ~I(p+ —k+)p —pH

k+p Pg

(3.4O)

then we easily recover the first approximation of the
Altarelli-Parisi equation for the nonsinglet quark struc-
ture functions of deep inelastic electron-proton scatter-
ing.

In the newt order we must iterate Eq. (3.32), including
the inQuence of the source II&& on the gluon field. Cut-
ting the accuracy of calculations in Eq. (2.13) to bare
vertices, and neglecting the sources in the internal lines,
we get the result

4

Dol ( )og (V0D(Y Dol(k)Y Glo(k V) + Y +01( +V) Y Dlo(k)l

4
V".Y"(V, k —Y1—k)Do, , (k) VY„~Y (, V, V —k, k)D10 0'Y(k —V) )— (3.41)
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S"Ill""(p) = g" ~i(p)+, ~2(p). (3.42)

Others, like p"n + n"p or n"n, will cancel out. Intro-
ducing one more projector,

d" (p) = -d"'(p)d;(p)
p~n + n"p"pv

(np)
2 n"n" (p+)" (3.43)

which is orthogonal to both vectors n and p", we find
I

where a sum over the quark flavor f is assumed in the
erst term.

The polarization tensor II~ only appears between
retarded and advanced propagators: [D„t(p) II(p)
D g (p)]+". The latter contain projectors d" (p) which
are orthogonal to the four-vector n~. So of the general
tensor only two terms survive:

that the invariants mi and m2 can be found from two
convolutions,

—4-(p)ll" (p) = 2~i(p)
2

n~n„il~ (p) =, io2(p),
(p+

(3.44)

independently of other invariants accompanying the
missing tensor structures. The new projector, which in-
cludes only two transversal gluon modes, naturally ap-
pears in the tensor with a gluon source:

Now it is easy to find the first approximation for the
invariants i()i(p) and ii)2(p):

[d(p)ll(p)d(p)]" = dp-(p—)~i(p) +, ~2(p)n"n".

(3.45)

k+
~~i (p) = —

~ ~,p'
k

~[(p+ —k')p —p~l,
jab J,+ p+

I 2

x C~ P+Vk+ +2K, z1 —z + + P+ k+ (3.46)

k+
p* 4[(p+ —k+)p —p,'] 4C P+V(k+) + 4P4, (4 ——

) P+g(k+)') . (3.47)z 2

In accordance with the previous convention, and as a
reminder of the approximations involved, the invariants
carry superscripts vg. These indicate that the invariants
are contributed to by one proton's "bound" state and one
on-mass-shell final state of a quark or gluon. We hope
that the reader is not confused by the absence of other
indices like quark color, or indices indicating the type of
ordering in the invariants m; and o;. They can easily be
recovered when it is needed. . For example, to; and 0, are
parts of the self-energy which are summed over the color.
So if II and Z appear as internal elements in any formula,
we must restore the color factors in the following way:

f(z)dz
(1 —z)+

' f(z) —f(1)d,
1 —z

and then modify the end-point behavior in such a way
that the 6rst integrals are not changed by radiative cor-
rections. The erst integrals are the total flux of the flavor

I

the pinch poles of the gluon correlators in the null-plane
gauge. To cure this problem we will proceed following
Altarelli and Parisi [10]. We will first shield the IR sin-
gularity by introduction of the "plus distributions, "

'2 3 8
j& ———iVj~b
.+

4

—...~~ [G.', (p) -C',.(p)], (349)

Now we may reconstruct a missing element, viz. , the
first correction to the gluon structure function,

Vj bP+~(i)~( q2) lkkb

(2vr)' Ip']'

(3.48)

which is siinilar to the correction (3.40) to the quark
structure function. In a sequence of approximations it
should be added to the "valence" gluon distribution g(x).

If we substitute Eq. (3.46) into (3.48), we immedi-
ately obtain the lowest-order approximation of the second
GLAP equation for the gluon structure function of deep
inelastic electron-proton scat tering.

Concluding this section, let us pay special attention
to the in&ared poles at z = 1, which originate from

and the total flux of the light-cone momentum,

, I):

T'~'p'[Goo�

(p) + 4'-(o (p))

+(p')'po. Doo (p)
I

.

T = —iVj~b

(3.50)

+ ~+ Q2
lab

d + d 2

0

ioi~' '(p) iof' (p)
22 22 (3.51)

As follows from Eqs. (3.39) and (3.48), the first radiative
corrections to the flavor and momentum cruxes are
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y+y &+
~T++ d+ d 2 d

—(+)2p pt p
0

f '(I

~ - i~i'"(p) ~~i'"(p) '~i'(p)
p2 2 p2 2 2 2

(3.52)

respectively. The superscript "g*" is omitted because
these equations remain valid beyond the first order ap-
proximation. The resulting conditions, 4j& ——0 and
AT++ = 0, for the splitting kernels in the leading loga-
ri.thmic approximation are obvious,

1

Pqq(z)dz = 0,
0

where the factor P()
——11—2ny/3 coincides with the first

coefficient of the Gell-Mann-I. ow function.

IV. EVOLUTION OF THE SOURCES

Now we are ready to derive integral equations that
govern the field correlators and their sources. Actu-
ally, they have already been given above. An exami-
nation of the calculations in the previous section shows
that we did. not sum any series. We were consequently
performing a series expansion of the previously derived
self-consistent solution of the integral Schwinger-Dyson
equations. These' are Eqs. (2.9) and (2.13), which define
the self-energies via the field correlators, and Eqs. (3.26),
(3.27), and (3.32), which define the field correlators via
the self-energies. We shall rewrite the last equations in
the form

f [zPgg(z) + 2nyzPea(z)]dz = 0,
0

f [zPg, (z) + zPqq(z)]dz = 0.
0

and

G'10,01 —+10,01 Gret ~10,01G'adv &

D 10,01 D10,01 Dret II10,01Dadv y

¹

(4 1)

(4 2)

However, beyond the leading logarithmic approximation
(LLA) they may change. One now readily finds an ex-
plicit form of the splitting kernels,

z2+1 3
Pm(z) = Cp + -h(1 —z),

(1 —z)+ 2

omitting the +-labeled terxns as they do not contribute
to the differential form of the evolution equations. In
contrast to the integral evolution equations, the differen-
tial equations do not require any information about the
initial data. At this point we have not made any approx-
imations.

P () "+(- )'
2

Pg~(z) = C~
1+ (1 —z')

z
A. Dynamical equations in the leading logarithmic

approximation

P„(z)= 2N. z(1 —z)+
(1 —z)+

b(1 —z) ,z 4N,
(3.54)

In order to obtain the equations of the leading logarith-
mic approximation, which sum up the perturbation series
with the leading logarithms, we must consider the vertex
operators in Eqs. (2.9) and (2.13) as the bare ones. We
must also confine one of the off-diagonal field correlators
to the out states in the continuum:

d4A:
Zo (p) = ig C Tr(p„C„,(k)E (k)G „(k)pD "(k —p) + p„G+(k+ p)p„[D„(k)IIo(k)D „(k)]""),

(4.3)

d4I
Iiaa(P) = —ig, (

— aTa(I' G a(k)Zaa(k)G a (k)I' Gaa(k —P)+I'"Gaa(k+P)I'"G, a(k)Eaa(k)G a (k)]

4+,ia".I"(p, k —p, k) [D...(k)IIa, (k)D a (k))... Ia".,i (—P P —k, —k)D„~pa(k —P)). (4 4)

By inspection, these equations reveal an astonishing
result —the equations which govern the dynamics of the
sources Z01 and II01 of the field correlators Gp1 and Dp1
have a ladder structure. This result appeared though we
did not try to set any momentuxn or angular ordering of
the emission process. Equations (4.3) and (4.4) are iden-
tical to the initial system of the Schwinger-Dyson equa-
tions (4.1) and (4.2) with the only simplification that the

l

vertices and the final states are not dressed (some gen-
eralizations will be considered in Appendix A). We did
not sum any perturbation series. The latter would be
necessarily divergent. We start &om the integral equa-
tion which sums this series. This result deserves special
discussion. We must answer two questions: (i) what was
the physical input; and (ii) what follows from the appli-
cation of the new method to the well known problem of
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DIS, for which the solution was obtained earlier using the
operator product expansion (OPE).

A more careful analysis shows that our result is not
exactly the same as that of the OPE-based approach.
Though we get (up to a quantitatively inessential shift
of the singularities) the LLA of the perturbation series
which results in the GLAP equations, an important quali-
tative difFerence appears. The Feynman tree propagators
were replaced by the retarded ones. This change reveals
the causal structure of the whole process. The last in-
teraction, which puts a single quark onto its mass shell
in the perturbative vacuum, is also the latest in time. In
other words, the last interaction results in a collapse of
the initial wave function.

So, as a by-product, we have answered an old question
[7—9] about the correspondence between the evolution-
ary scale Q2 or x and the temporal scale. The causal
space-time structure is contained, a priori, in evolution
equations like the GLAP equations. It is not necessary
to impose it a posteriori. The x ordering is a further
consequence of the 0 functions that allow only for emis-
sion into the initially unpopulated continuum. The Q
ordering with respect to transverse momentum is not a
necessary condition, and we shall discuss it shortly.

What are the practical consequences of this picture?
First, in order to find the structure functions of the deep
inelastic scattering of a proton ofF an electron, one should
know the intensity of the quark field source Zpi before
the field interaction with the electron. That is why it
does not matter before what kind of interaction. The
intensities of the sources Z and II turn out to be uni-
versal functions. Unlike the structure functions of DIS
they do not depend on the particular choice of measure-
ment procedure. We can also use this reasoning for pp
and AA collisions. This leads to the conclusion that, if
we wish to use e-p DIS data for the description of p-
p collision dynamics, we should rely on the sources Z
and II, rather than the structure functions q(x, Q ) and
G(x, Q ). Their evolution is only a specific projection of
the more complicated dynamic of the sources.

The second consequence is that, after the structure
functions q(x, Q ) and G(x, Q ) of the e-p DIS are found
(simply by fitting data, for example), we do not need
their phenomenological interpretation as a parton density
in order to apply them to other types of collision. This
is an explicit advantage because the well known OPE
method, instead of calculating the observable e-p cross
section, computes the imaginary part of the truncated
Feynman amplitude of the auxiliary Compton process.
The next step is a renormalization group analysis of this
definite S-matrix amplitude. As a result, the power of
the method is restricted to one single problem of DIS.
Any extension of this method requires parton language.

Indeed, though the cross section of the Drell-Yan pro-

cess is defined by the same (except for the kinematic
region) polarization operator as in DIS, it cannot be cal-
culated via the OPE. The difference is that now the oper-
ator functions should be averaged over a state with two
protons. Feynman propagators which contribute to an
auxiliary S-matrix amplitude do not disappear outside
the light cone. For the massless partons, and especially
in the infinite momentum kame, this leads to the effec-
tive interaction before the collision. The factorization
theorem [35] may be a remedy, but it requires parton
language. At the same time it is clear that protons col-
liding at high energies are causally independent until the
moment of collision.

We shall now show that the above equations (4.3)
and (4.4) for the self-energies are equivalent to the well
known @CD evolution equations. Indeed, let us rewrite
Eqs. (4.3) and (4.4) in terms of their tensor compo-
nents. Beyond the first order calculations of Sec. IIIB,
we must also take into account radiative corrections to
the retarded and advanced Green's functions. The spinor
(tensor) structure of Z„t g (II„tg ), as is given by
Eqs. (3.34) and (3.42), remains unchanged. The solution
of the Schwinger-Dyson equations (3.23) and (3.33) for
retarded and advanced Green's functions is easily cast in
the form

~i"'"(p) = p' —»i '"(p)
gRA( )

2 R&( )

~2"'"(p) = J' —»2"'"(p)

~2 '"(p) = I —~."'"(p)
(4.6)

we easily obtain

G-~(p)~»(p)G ~ (p)

I—6(p'/2p+)1~i" (p) i ~ (p)
~"(p)~"(p) 2p+ ~."(p)&."(p) '

[D„,(k)IIpi(k)D g (k)]""
—d""(p)»i" (p) [p'/(p+)'1» (p) n"n"

wP(p) w,"(p) wP(p)~,"(p)
. (4.S)

The complete evolution equations are long, and are
given in Appendix A along with an analysis of further ap-
proximations. Here we write only the leading logarithmic
terms which eventually result in the GLAP equations:

Cr ret, ad v (p) p' —~i"'"(p)

Ap+~."'"(p)
[p' —,""(p)][I— .""(p)]

d""(p) p n"n"
B,A + 2 2 R,A

Introducing the following shorthand notations for the
denominators of the propagators of difFerent modes:

dk+~i"(p) =
(2vr) s „+ k+ d kgdk h[(p+ —k+)(p —k ) —(p, —k, ) ]

2
k+ t'p+ l k+o.P'(k) t'p+ ) k+»P'(k)

+ " 'qk+ ~ S"(k)S"(k)
+ "I, k+&' W"(k)yP, (k)

(4.9)
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~+ du+~i"(p) =
(2vr) ' „+ k+ d kgdk b[(p+ —k+)(p —k ) —(p, —k, ) ]

2
k+ (p+ ) k+o., '(k) (p+ i k+u) (k)" ik+) 8"(k)S"(k)

" k+ W"(k)W" (k)
(4.10)

Substituting Eqs. (4.9) and (4.10) into Eqs. (3.9) and
(3.21), we easily find that the well known structure
functions of the electron-proton deep inelastic scatter-
ing are defined by equations which are similar to (3.39)
and (3.48):

v...s+e(* Q') = e(* Qo) +

— ip+~i" (p)
~"(p)~"(p)

'

v r+
G(*,Q') = &(* Qo)+

ip'~i" (p)
Wi (p)Wi (p)

(4.11)

(4.12)

The first of these equations is exact; it does not depend
on any further approximations. The second one is ap-
proximate. It holds only in the LLA. We observe that
the structure functions of deep inelastic e-p scattering in
the LLA require only one of the two invariants &om each
of the sources II and Z. This nice feature fails beyond
the LLA, and does not hold for processes with diferent
polarization properties of the interact;ion vertex.

Integration over the null-plane momentum p is a
highly nontrivial procedure and it cannot be performed
without keeping in mind at least the idea of confinement:
before the collision the proton is a composite object and
the wave packet which represents it propagates in the
physical vacuum without dispersion. When we were do-
ing similar calculations in the lowest order, we designed
the density matrix of "valence" quarks and gluons in such
a way that p = 0 and p~ ——0. Then they could propa-
gate along the light cone together even without interac-
tion. Now we consider quark and gluon states with pq g 0
and p ( 0, and propagation of these fields before they
reach a collision vertex is not &ee. Assuming the oppo-
site, we would immediately violate the causality princi-
ple, or be in contradiction with previous calculations. A
partial solution of the problem comes &om the vision of
the states before the collision as those localized at very
small w and at very large rapidity y. In the wedge form of
the dynamic these states, by their design, are predeter-
mined to collapse in the vertex of the interaction. As long
as p+ e" and p e ", and we consider the proton to
have infinite positive rapidity, consistency with this limit
requires that we put p = 0 during all precollision dy-
namics. On the other hand, the spectral decomposition
of the proton in terms of the eigenstates of the wedge
dynamic can be viewed as a kind of emission-absorption
process. We shall see shortly that the requirement of
self-consistency between emission-absorption and propa-
gation provides a natural condition for renormalization.

Suppression of the patterns with p g 0 in the spec-
tra of the sources is a part of this condition. Physically,
it means that the field correlators like II(x —y) do not
depend on the di8'erence x+ —y+ of the coordinates in
the direction of light-cone propagation. We will conjec-
ture that the exact retarded and advanced propagators
indeed protect the wave packet of a proton (or a nucleus)
from premature decay, and shall cast the requirement in
two forms.

The first, weak form, of this condition can be cast in
the form of the inequality ~k

~

&& ~p ~. Then we may
integrate over p using the previous formula (3.40) as a
physical approximation. The second, strong form, re-
places the inequality by the exact condition p = 0,
which can be incorporated into the prescription

ip+&i" (p) (2~)'
~ „-d&~(& pi)

gP (p) gA (p)
(4.i3)

ip+ envoi'(p) (2m. )
s dG(x, p, )

Wi (p)Wi (p)
~(p ) (4.i4)

These equations are a recipe on how to use DIS data
in the LLA. They require an additional comment about
the p~ integration, which is the next step in obtaining the
DIS structure functions. First, an unambiguous de6ni-
tion of the structure functions is possible only in the limit
of v —+ oo which eventually leads to the resonant condi-
tion (3.38) of the measurement: z~ = z~i. Second,
when the RHS's of Eqs. (4.9) and (4.10) are integrated
over pi with a large upper limit Q, the kernel of the re-
sulting equation depends on k~ only in the combination
k~ + (k+/p+)Q . The kz behavior of the structure func-
tion in the new integral should guarantee its convergence.
Therefore, one may neglect k~ &om the very beginning
by assuming that only the domain k~ && p& contributes in
the initial equations. This condition is known as "order-
ing by angles. " Unlike the ordering by Feynman x, it is
not a fundamental requirement. After integration over p~
in the limit of high Q, the short system (4.9) and (4.10)
of the evolution equations results in the GLAP evolu-
tion equations for the nonsinglet DIS structure functions
[io-i2].

The GLAP equations were rederived in a somewhat
different way in Refs. [7,23], and with different modifica-
tions in Refs. [13—15]. The common eleinent in all these
derivations is a selective summation of the divergent per-
turbation series for the cross section of a specific process
in powers of n, log(Q2) or n, log(1/x) (or both). The
only way to obtain a meaningful result is to 6nd an in-
tegral equation with an analytic solution that has the
same series as its expansion. . Depending on which per-
turbation series is chosen, one obtains the GLAP, BFKL,
or Gribov-Levin-Ryskin (GLR) equations.
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Our method of obtaining the evolution equation relies
neither on the summation of a perturbation series, nor
on any particular process we may have in mind. The
initial transformation of the Schwinger-Dyson equations
of QCD to the form of the solution of the Cauchy problem
[5] resulted in a closed system of ladder-type equations
which can be reduced to any known evolution equations
(after excluding certain types of radiative corrections to
propagators and vertices, and high-order correlations).

For example, in the OPE-based approach, the Feyn-
man variable x~ does not appear at all. Just like the
OPE method itself, the GLAP equations are not expected
to work at very low x. Nevertheless, even for low x, the
initial equations (4.9) and (4.10) remain unchanged. In
Appendix A, we show that at low z they may be reduced
to the BFKL equation.

An explicit expression for the longitudinal structure
function of the DIS follows &om Eq. (3.10):
3~'~.(*,a')

Vj bP+ ~.
(2') s

f
2

~P(p) ~i"(p)

~2(P)
~2"(P)~2"(P)

(4.15)

This equation is exact and proves the Callan-Gross re-
lation when we neglect the scaling violation (Q2 depen-
dence) in the structure functions. The longitudinal struc-
ture function found via OPE has an extra small factor
o., which is not compensated for by any large logarithm.
Thus its contribution to the QCD evolution of the struc-
ture function F2 seems to be small. However, the OPE
predictions for Ei. are known to be in poor correspon-
dence with data [25]. In Refs. [26] the q dependence of
EL, was calculated taking into account the II:q-dependent
gluon distribution. Equation (4.15) provides an excellent
opportunity to perform a calculation of EI, using stan-
dard elements of the general evolution scheme.

At present, we can only trace the correspondence be-
tween our approximate equations (4.9) and (4.10), and
the LLA of the OPE-based calculations or the Lipatov
LL(1/x) approximation of the Regge calculus. Corre-
spondence between the two approaches in the next orders
is still unclear. In what follows we are going to use stan-
dard structure functions of the LLA obtained by Gtting
the data. Thus we shall neglect all terms which can be
explicitly reduced to El..

B. Renormalization of the evolution equations

Until now we have dealt only with objects which do not
require renormalization. All these objects were tightly
connected with observables. Corresponding field correla-
tors and self-energies were imaginary and for this reason
could not contain ultraviolet divergencies. So we could
safely use a "naive" form of the Schwinger-Dyson equa-
tions,

+AB GAB + ) GAR~RSGSB)
RS

D„= D„+ ) D„II,D, .
RS

(4.16)

The divergent retarded and advanced self-energies were
completely neglected, and retarded and advanced Green's
functions were treated as the bare ones. Consequently,
the counterterms of the Lagrangian still did not manifest
themselves, and the renormalized coupling constant g„
still remains undefined. We must now fill this gap.

After including the counterterms we obtain the same
equations, but with the self-energies modified by the
quasilocal terms:

DAB = D + ) DAR[(Z RIIRs + Z II" )
RS

+(1 —Zs) (—1) bRsDp ']DsB, (4.17)

+AB GAB + ) GAR[Z1P~RS
RS

+(1 —Z2)( —1) bRSGp ]GsB) (4.18)

D;;(p) = D-(p) + D-t(p) [(Z»11'..+ Z~ll.".)

+(1 —Zs) o '(p)] ~„(p), (4.19)

G„,(p) = G„(p)+ G„,(p) [Zg~Z„(p)

k(l —Z2)G (p)]G q„(p) (4.20)

where Ilqq pp(p) and Zyy pp(p) should be calculated using
Eqs. (2.10) and (2.13) with the bare vertices and no
more than one source. We omit the +-labeled terms here
as we are interested in the UV renormalization and low-x
efFects. These terms are efFectively cut off at very high
momenta and do not afFect the latest stages of evolution.

Equations (4.19) and (4.20) are too approximate to
give an explicit value of the running coupling constant.
The questions we want to consider are the following: (i)
does renormalization of the sources II and Z result in
renormalization of the coupling constant? and (ii) does

where II' and II" are the fermion and gluon loops, re-
spectively. In perturbative calculations the factors Zq q~
should be split further as Zq» = 1+ (Zq qR —1), with
the second. term assigned to the UV renormalization of
the vertex. The only changes &om Eqs. (4.16) are due to
additional diagonal terms in II and Z. This is quite nat-
ural as the ofF-diagonal terms are imaginary and if they
were divergent we would have no remedy. As the matrix
structure of Eqs. (4.18) and (4.18) is literally the same
as that of Eqs. (4.16), we can rotate the 2 x 2 basis as
usual [6,5]. Keeping in mind the light-cone dominance,
we may rewrite equations for T-ordered and Tt-ordered
correlators as
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DO —Dret Dadv D10 D01 q

IIQ = IIret IIadv II10 + II01 (4.21)

define imaginary parts of T- and Tt-ordered, as well as
retarded and advanced, correlators in an interdependent
way. The real parts are not independent either. Indeed,

I

the coupling constant, attached to the vertex at some
moment t, require for its renormalization any information
besides the dynamics of the ladder at previous moments'?

Before turning to explicit calculations, let us address
some qualitative issues. The new equations are not com-
pletely independent of those we have already studied. In-
deed, the sums and the difFerences

D1 —DQQ + D11 —D10 + D01)

II1 = IIQQ + II11 = —II10 —II01~

2D. = Doo —D11 = D..t + D d

= 2ReDQQ ———2Re 011 ——2ReDret
= 2ReD d,

2II8 —IIQO II11 —IIret + IIadv

= 2ReIIoo = —2ReII11 ——2ReIIret
= 2ReII d . (4.22)

In addition, the causality principle connects real and
imaginary parts of the retarded and advanced correla-
tors by means of dispersion relations. Therefore we can
draw two major conclusions: (i) we have to follow the
BHPZ scheme [24] in regularization of the divergent real
functions, and (ii) the physical condition of renormaliza-
tion should be consistent with the above analysis of the
evolution of the sources. I et us begin by writing down
the integral equation for the gluon polarization correla-
tors in the leading approximation:

IIoo ]p) = &oo "(p) oa f o To]p Goo(k —p)p G, o(k)]Zoo Zoo(p) + ]1 —Zo)Go (k)]G o (k)

4
—ig„' V",

~ (p, k —p, —k)D,o~„,(k —p)V~",~y, (—p, p —k, k)

x(D„,(k)[(Z II' + Z, II" )(k) + (1 —Z )D (k)]D (k))&,&]. (4.23)

D."."(p) =,~,.0 &;;(p) =„,~,o

+d" (p) (4.24)

and IIOO ""(p) is the usual ultraviolet-divergent vacuum
gluon polarization tensor.

For the sake of simplicity, let us consider only the
gluon sector in the leading approximation. Projecting
Eq. (4.24) onto the normal modes, one obtains

00 QO ZZ1g d4k t'p+ )
2(2 ) (k — )' —0 qk+)

iU,"(k) + (1 —Zs)k'
[k2]2

(4.25)

where we have denoted

&( ) = 8[(—p'/ + k')& ( ) —(k —p)'( + 1/ —1/4)]

and the splitting kernel P~g is the same as in the evo-
lution equation for a gluon source II01. It must be IR
regularized in the same way, otherwise we would obtain
a contradiction with Eqs. (4.21) and (4.22). Alternating
T-ordered and Tt-ordered correlators in the ladder rungs
is crucial for the subsequent conclusions.

The corresponding equation for 11~ii (p) is the complex
anticonjugate of Eq. (4.23), and can be obtained via re-
placement of the T-ordered functions by the minus Tt-
ordered ones and vice versa. Similar integral equations
may be written for the fermion sources. In complete
agreement with (4.21) and (4.22), these equations have
ladder structure with retarded behavior. To lowest order,
gluon and fermion Green functions are given by

The imaginary part of Eq. (4.25) is finite. It can be
obtained as the sum of the two ladder equations for mi
and m1 . The divergent real part of the equation in the
leading approximation is an equation for Remi = Re~~,
i.e., the real part of the retarded self-energy. Separating
real and imaginary parts in Eq. (4.25) one obtains

~i(p) = ~(o)i(p) +, d'k~[(k —p)'7
I

u)i (k) + (1 —Zs) k2

[k2]2

(p'& ~i(k)
27r (k —p) ' I, k+ [k']' (4.26)

4
II"... (p) =ig„V",f (p, —k —p, k)D', .', ' (k + p)

xV,".~, ( p, p+ k, —k)D,""—(k). (4.27)

where P denotes principal value integration. Another
way to derive this equation is to start with the explicit
expression for the retarded self-energy. Their sum, be-
ing projected onto the transverse normal mode, leads
again to Eq. (4.26). This consistency is a consequence
of the dispersion relation for II„twhich allows one to re-
cover ReII„tvia the already known ImII„t.It reassures
us that we are considering the propagation of the gluon
field in agreement with the precollision dynamics of the
sources.

Indeed, the explicit expression for the retarded and
advanced gluon self-energies can be written as
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(4.2S)

Thus the known behavior of the running coupling con-
stant is recovered. Since we have used very rough approx-
imations, the exact equality of the coefBcient deserves
further study. In the renormalization group approach it
is a direct consequence of the Slavnov-Taylor identity in
the null-plane gauge: Zi ——Z3. After this renormaliza-
tion the integral equation (4.26) for the real part of the
gluon self-energy [oui (p)]"" takes its final shape:

o. N p+
i(p) = ~jo)i(p) + ' ', d'k~[(k —p)'1&

l k

ioi(k) n, (p, )N, 4„. 'P

[k']' (27r)s (k —p)'
(p+ ) ur,'(k)
g k+ ) [k']' (4.29)

where the superscript "ren" is omitted.
Despite the remaining uncertainty caused by the ap-

proximation, it seems to be very important that the run-
ning coupling appears as a consequence of causal evo-
lution. Only the processes which took place inside the
past light cone of the local interaction contribute to the
magnitude of the coupling in its vertex. This guarantees
the proper balance between propagation and emission-
absorption processes at the precollision stage.

This equation has a very clear physical meaning. The
propagator in the loop is retarded (advanced), and guar-
antees the required time direction. It is affected by the
surroundings less than other correlators. The correlator
Di describes the density of states which develops in the
course of the evolution. Thus, even the light-cone propa-
gation is not really &ee—emission introduces additional
phase shifts which result in the assembly of special wave
packets.

One may easily see that the imaginary part of the
self-energy, considered given, defines the &ee term in
the inhomogeneous equation (4.26) for the real part of
the gluon self-energy. The unusual feature of this equa-
tion [which is common for all ladder-type equations like
(4.23)] is the counterterm which is detached from the
vacuum part of the self-energy. The latter is divergent,
and the corresponding counterterm is in the integrand of
the equation. This immediately requires that the kernel
should act on the counterterm as b(k —p). Furthermore,
the integral which contains the counterterm, by inspec-
tion, is proportional to the one-loop vacuum self-energy
of a gluon. After the UV renormalization, the latter typ-
ically behaves like p ln(p /A ), where A is the IR cut-
oQ' mass. We find that in order to have the counterterm
—p (1 —Zs) in its legitimate place near cubo) (p), the fol-

lowing relation should hold: a„1/ln(p /A ).
We have estimated the contribution of the counterterm

by first calculating the imaginary part of the retarded
gluon self-energy, and then singling out the logarithmic
terms in the dispersion integral for the real part. We
obtained

Re,"(p,', p+, p- = O) —(1 —Z, ) (-p,') = O. (4.3O)

[We can suggest the formal mathematical argument:
once ImII„t h(p ), then from the dispersion relation
ReII„t 'P(1/p ) which, though in a singular manner, is
equal to zero at p = 0.] In the region of anomalous dis-
persion, the phase and the group velocities should have
opposite signs. This reveals one more unusual feature of

We still have &eedom to choose Z3. It has not yet
been used in the renormalization; the running coupling
has appeared as a necessary condition for renormalization
rather than as an explicit choice of some physical parame-
ters at some given four-momentum. The strategy behind
this choice must be the same as in the old-fashioned on-
mass-shell renormalization of the asymptotic state: the
on-mass-shell property means that the field propagation
is steady, despite background vacuum Ructuations. Se-
lecting this kind of boundary condition, we cannot de-
scribe the dye. amies which leads to the "undressing" of
the quark as required by the resonant condition of deep
inelastic scattering. Moreover, the imaginary part of the
self-energy must equal zero at the renormalization point.

Thus the object we now study is a field configuration
which has quite diferent properties &om those of a free
particle. This is evident, for example, from Eq. (4.14),
which indicates that the imaginary part of mi (p) is
strongly peaked near p = 0. This configuration is sin-
gled out by two requirements (boundary conditions): (i)
at the end of its evolution, it produces an o8'-shell quark
that can interact with the electron in a resonant way; (ii)
this quark stays bare (on shell) after the scattering.

In e-p deep inelastic scattering the second condition
does not look too realistic. The bare quark will imme-
diately fragment into a hadronic jet. In p-p collisions,
the electron is replaced by a gluon &om the second pro-
ton, but the final quark state must still propagate in the
physical vacuum and decays into hadrons as well. Only
in AA collisions do we expect the creation of a volume of
perturbative vacuum large enough to allow almost stable
&ee propagation.

The most important point is that the precollision dy-
namics of the field Buctuations is the same in all three
cases. This is guaranteed by the geometry of the high-
energy collision and the causality principle. However,
one should keep in mind that the types of fluctuations
studied by DIS are strictly selected by the trigger of the
specific measurement. Imposing other triggers will select
other types of Quctuations. It cannot be ruled out a pri-
ori that the pieces m2 and o2 that were neglected in the
LLA may become more significant.

To find an analogy between the precollision dynamics
of the proton constituents and the physics of continu-
ous media, we may try to associate components of gluon
self-energy with the electromagnetic susceptibility. If its
imaginary part is infinite then we have an ideally con-
ducting medium. (Remember that p is a frequency"
corresponding to the "time" 2:+.) A significant growth of
the imaginary part of the self-energy at the "resonance"

p = 0 should lead to anomalous dispersion —the real
part must drop to zero:
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the "undressing" process: the phases of the fields partic-
ipating in the assembly of the wave packet representing
an interacting quark (or gluon) travel in the "normal"
time direction (from the past to the future). These fields
leave "holes" in the sea. Only the act of measurement
(scattering) transforms the creation of these "holes" into
the process of multiple emission.

C. Several remarks about the DIS data and the
parametrization of the structure functions

The analysis of the evolution equations in this and pre-
vious sections had the goal of finding those elements of
the theory which are common for the two difFerent pro-
cesses, viz. , deep inelastic e-p scattering, and. high-energy
hadronic or nuclear collisions. These elements are the
sources. They enter the cross sections of hadronic pro-
cesses and the DIS structure functions on an equal foot-
ing. The only significant difFerence is that the longitudi-
nal components of the quark sources do not contribute
to the structure function E2 directly. They do contribute
to EL„but the importance of this function is commonly
considered to be secondary. The EL, function is difIicult
to obtain &om data. Though it is directly afFected by
the gluon distribution, the corresponding information is
almost never used in parametrization of the structure
functions.

Any known set of structure function parametrizations,
e.g. , Gluck-Reya-Vogt (GRV) [20], CTEQ [21], or MRS
[22], is equally good for the calculation of hadronic pro-
cesses in the domain where they fit the data properly.
Unfortunately, the DIS data are not available in a wide
enough region, and any of the sets usually requires cor-
rections when a new range of x or Q2 is measured.

The new low-x data &om HERA [27,28] are seri-
ously challenging the current parametrizations. The first
analysis of the 1993 ZEUS data [27] indicates that at
2:~~ ( 10 and 8.5 ( Q ( 30 GeV the data favor the
CTEQ2D' parametrization. For 30 ( Q2 ( 125 GeV2
the MRSD is better, while at larger Q and larger x~~
both distributions are equally good. Notice, however,
that the 1993 HERA data are already accounted for in
the MRS parametrization of 1994.

The 1993 ZEUS data seem to be in poor agreement
with the GRV(HO) calculations, but a systematic im-
provement of the correspondence is obtained when the
GRV calculations at x~z & 10 are modified to take
into account the c-quark mass and threshold efFects ac-
cording to Refs. [29,30]. In these papers, the heavy quark
was considered as a product of the process ep —+ cc~Y,
rather than as a constituent of the QCD evolution. At
Q &) m,, the latter is more reasonable.

A smoother description of the transient regime in the
vicinity of the threshold Q = m, was suggested in
Refs. [31,32]. In these calculations, various regions (be-
low and above the threshold) were treated in a difFerent
manner: with difFerent numbers of active fIavors, and dif-
ferent renormalization prescriptions. Special subtraction
schemes were introduced at the threshold.

Clearly, at very large Q2, all four (or five) quark flavors,

along with the gluons, uniformly participate in @CD evo-
lution. The definition of the heavy Qavor DIS structure
functions (or sources) should be identical to those of glu-
ons and light sea quarks. Only in this way can one consis-
tently introduce the notion of intrinsic charm and beauty,
and describe their excitations unambiguously. The con-
tribution of heavy fIavors should naturally die out when
we move in the direction of lower Q2 along the evolu-
tion scale. An inspection of the evolution equations (4.9)
and (4.10) extended to finite quark masses indicates that
they have a good chance of providing this kind of uniform
description (work in progress).

We do not discuss the theory of hadronic and nuclear
shadowing and the corresponding data. There were sev-
eral attempts to incorporate these data into the calcula-
tions of charm production [33,34]. However, the current
status of nuclear shadowing theory remains controversial.

V. DISTRIBUTIONS OF QUARKS AND GLUONS
IN LEADING ORDER

A. Production of light guarks to leading order

We return to the initial formulas (2.8) and (2.10), and
rewrite the former in the momentum representation:

de Tr[iPZ~', (p)]
dpd4x (27r) s2po (5 1)

The lowest order of our theory assumes that: (i) the exact

l
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FIG. 1. Bern diagrams for one-quark and one-gluon pro-
duction. The bold cross labels the line corresponding to
the "detected" particle with momentum p. The dashed line
crosses the field correlators representing densities of the ini-
tial (bold) or final (thin) states. Numbers near the vertices
indicate the type of ordering in the field cerrelators. The
processes: (a) qg -+ q; (b) gg ~ g; (c) qq + g.

In this and the following sections we present results of
an explicit calculation of the single-particle distribution
of light quarks and gluons produced at the earliest stage
of an AA collision. In this section we calculate cross
sections to the lowest order. It is general practice to
associate the corresponding processes with the excitation
of sea quarks and gluons. There are three processes of
this type. Their graphs are shown in Fig. 1. In Sec. VI
we will derive a complete set of equations for the first
order processes, and discuss how one avoids difIiculties
that accompany calculations based on the factorization
theorem [35].
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vertex operator must be replaced by the bare one, which
leads to

de g d A:

dpd4x 2(2m. )s (2vr)4

x Trgt p"Goi(p+ k)t p"Die „„(k)];(5.2)

and (ii) in Croi and Die, possible contributions of the
out states of quarks and gluons in the continuum are ex-
cluded. These contributions are described by the higher
orders of perturbation theory. Thus, we naturally arrive
at Eq. (2.1O),

0 d
p dpd4x

g2 d4kd4q

2(2')s (2vr)4

x (Tr Qt p"C oi (q) t p"DD, „„(k)]
+K&) ++ (B)l) (5.3)

where the quark and gluon correlators must be taken in
the following form:

G(J) G+(J) C(J)y(J) C (&)
01 01 ret 01

D(J) D+(J) D(~) II(J)D(~)
01 01 ret 01 B'av (J = A, B), (5.4)

n"„=(l, o„—I), n~ = (l, o„1), 2 2n~ ——n~ ——0.

(5.5)

They de6ne the light-cone components of the Lorentz
vectors:

with 001 and D01 representing the quark and gluon+(J) *(J)

distributions, respectively, at some arbitrary scale Qo.
For computations, we shall use a standard CTEQ
parametrization of the nucleon structure functions [21]
q(2:, q~ ) and G(x, k~ ). These were obtained by fitting the
data with the solutions of the GLAP evolution equations.
For nuclei, we shall also use the semiempirical formula
6tted to nuclear shadowing data.

We proceed in the laboratory kame, which is the infi-
nite momentum kame for both proton A and proton B.
The directions of their light-cone propagation are fixed
by the two null-plane vectors n& and n&.

Any term coming &om the nucleus A carries a b'(k ),
and any term coming from the nuclei B carries a h(q+).
This drastically simplifies the calculation. The first two
terms &om Eq. (5.6) are calculated explicitly, yielding

drrq (V, II)
dJtdy

q
~)P, q, i~ G, ~(P, e

&v

+(y ~ —y), (5.7)

drrq (g, Z) 16vr2oe (pie & 2), (pge"
')

x 1+ ' +(yw —y)),8XgX~
(5.s)

do. ~~ l(Z, II)
dptdy

Sam dk'dq'(k' + q') (1+ q,'/»~*a)
g[(4 + m)

' —pg] [p~
—(k~ —m)']

, qa I

G'
I

k~
I
+ (y ~ —», /'P -" .i (P "

k
s ) 4 s )

(5.9)

where all terms which are at least as small as the longi-
tudina1. structure function Fl, of the DIS are neglected.
The square root in the denominator comes &om the an-
gular integration over the orientations of the transverse
momenta:

d k(d qp8~ ~(kg + qg —p&)F(k&, qp)

where y is the longitudinal rapidity of the final state
quark, x~ ~ = pie+&/~s, and the substitute term (y m
—y) accouiits for the symmetry (A ++ B). We have
also defined G'(x, p~) = dG(x, p~)/dpi' and q'(x, p&)
dq(x, p, )/dp, . The main contribution to the cross sec-
tion comes from the third term in Eq. (5.6):

nba=a =a =a +a, n~b=b =b+ ——b —b.
We split the total cross section into three parts:

~&'& = o~'l (V 11) + ~~'l (P Z) + ~~'l (11 Z). (5.6)

dki2dq~2E(k~, q~)

4S(k„q„p,)

The term o~ l (Q, Q) is naturally absent, as energy-
momentum conservation prevents fusion of the two on-
mass-shell particles into one on-mass-shell quark.

Unlike the case of DIS, both the invariants &om quark
(oi and o2) and gluon (wi and io2) self-energies con-
tribute to the cross section of quark production. In order
not to exceed the accuracy of the leading logarithmic
approximation of the GLAP evolution of structure func-
tions, we shall omit o2 and m2. They are of the next
order by a formal count of the a, powers, and are not
under direct control of DIS data.

where S(ki, qq, pq) is the area of the triangle with sides
kt) qt) and pt)

4S(k„q„p,) = [(k, + q, )' —p,'][p,' —(k —q )'],

(5.11)

and the integration domain is restricted. by the triangle
inequalities

4+ qa & p~, ~4 —
q~~ & p~

(5.12)
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B. Production of gluons to leading order

4-(p u) [
—~IIoi'""(p)]

dpd x (2m) 2p
(5.13)

where the projector d„„(p,u)

(J u)
s "s
(pu)"

d""(p, u)u„=0, p' = 0, (5.14)
I

For the case of gluon production, we start &om
Eq. (2.11), and, as for Eq. (5.1), rewrite it in the mo-
mentum representation:

is a sum over the two physical gluon polarizations in the
laboratory &arne with the time axis along the four-vector
ui' = (1,0, 0, 0). For this gluon we choose the timelike
axial gauge u"B„=0, u = 1. This particular choice of
the gauge for the final state gluon should be considered
as an example only. The gauge independence of the cross
sections with the oK-mass-shell initial states of the gluons
is a nontrivial question which will be discussed later in a
separate paper. Practically, the problem is solved by the
choice of an exotic gauge condition, A = 0, where A is
the component of the gluon field along the normal to the
hypersurface v = const.

To the same approximation as in Eq. (5.2), we may
write the gluon polarization tensor (temporarily omitting
the fermion contribution) as

d4kd4
IIoi (p) = —igo b(k+ q —p)V",~~ (k+ q, —q, k)D—o, ~„,(k)V~, ,~~( k ——q, q, k)

xDio ~, ~(q) + (A ++ B). (5.i5)

The gluon distribution of each nucleus consists of the two
familiar terms given by Eq. (5.4). Again, we shall keep
only the leading terms in the gluon sources which are
under the control of the data:

pdd'

[d(k, n~)11 (k)d(k, n&)]~„,= — d""(k, ii~)is, (k).

T(k, q) =k, +q,
(k~ + qi)'

s(x~ + xB)

k2 k2 2

sx~ sx~ s x~xI32 2 2

The trace T(k, q) is conveniently written in the following
way:

(5.16) 2k2q2 q2

s(x~ + xB)' sx'„
k2

+
sx~

(5.20)

~~'l = ~~'l(g 11) + ~~ol(II il). (5.i7)

The first term comes &om the interaction of the "source"
with the field from the "initial" distribution:

d~,"(g,rr)

dp~ dy

p
2 e 2v

s xA+xB
(5.18)

The second term comes &om the interaction of the two
soul ces:

d ~"(II, II)
dp~2dy

24vrao dki2dq~2T(ks, qe)

sp,' 4S(k„q„p,)

A similar expression may be written down for nucleus
B. Calculation of the trace over all of the multiple color
and vector indices results in an overall factor of 24 x
32 x T(k, q). The trace T(k, q) is given below. As in
Eq. (5.6) we have two types of contributions to the total
cross section:

The integrand of Eq. (5.19) is symmetric with respect to
interchange of kq and qq. Hence the contribution from the
interchange term (A E+ B) is the same, and the factor of
2 is already included in Eq. (5.19).

Equations (5.9) and (5.19) seem to have two problems.
The first is an apparent in&ared divergence of the total
cross section due to the kinematic factor p~ . However,
one can easily see that this factor disappears when the
integration variables kq and qq are rescaled by pq. After
such a rescaling, any remaining issues concerning low-

pq behavior have to do with the sources (or structure
functions), which are controlled by the data.

The second problem seems to come from the high posi-
tive powers of transverse momenta of the incoming quark
and gluon fields. These can be seen in Eqs. (5.9), (5.19),
and (5.20), and appear in the same form in the next per-
turbation order. This kind. of behavior is inherent to ma-
trix elements of processes with off-mass-shell quark and
gluon initial states.

The growth of the matrix element at high transverse
momenta is quite physical, and may be of interest at very
small x. Indeed, wave packets with small x are smooth
and extended in the longitudinal direction. If we require
that large kq and qq add to form small pq, then the ini-
tial geometry of the momenta is almost collinear and the
incoming fields efFectively overlap. We thus encounter
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a type of collinear singularity which may be shielded
only by an appropriate behavior of the structure func-
tions. This is not guaranteed by the structure functions
of the LLA, which evolved &om the low scale via the
GLAP equations. However, it is naturally provided by
the BFKL equation, which leads to the asymptotic be-
havior (A14) also known as the random walk in trans-
verse momentum [14]. This asyinptotic behavior implies
a Gxed coupling constant at small x. The way the BFKL
equation has been derived in Appendix A leads to a re-
placement of the original Gxed coupling o,, by the run-
ning coupling n, (p~). The BFKL equation with a run-
ning coupling constant has been conjectured in a recent
paper [36], in which its solution was found numerically.
Graphically, it seems to reveal a suFicient cutofF of the
dG/dp~2 at high @~2.

We emphasize that our approach relies on the mea-
sured DIS data. However, in the domain of very low z
only very preliminary data exist at the present time.

oda(a, b + p, c)
x~ xgp

a, b c&X p

x + ~ (& Q )+ha (&b, Q ), (6.1)

which heavily relies on the parton model, and implicitly
imparts the status of an observable to at least one addi-
tional Gnal state particle. The 2 ~ 2 processes have the
lowest order in this approach, and the Q dependence of
the structure functions EzJ defines the so-called factor-
ization scale, rather than refiecting its full QCD evolu-
tion. As was already mentioned in Sec. IV, the reason

I

VI. FIRST ORDER CORRECTIONS TO THE
QUARK DISTRIBUTION

In the previous section we have calculated the lowest
(Born) contribution (of n, order) to quark and gluon
production corresponding to the "excitation" of a single
quark or gluon &om the sea. Now we intend to show that
the next order terms of our kinetic perturbation expan-
sion describe the more usual "creation" processes. They
do it in a very special way such that no in&ared divergen-
cies appear in the calculation of the total cross section.
This may be the most important result of the present
calculation. Furthermore, this requires no special proof:
because the perturbation series for the probabilities was
initially resumed in the new expansion, it does not gen-
erate any terms a8'ected by the initial state collinear sin-
gularities. These are absorbed into the deGnition of the
sources (structure functions), and thus solve the problem
of divergence in an experimental way.

This is in striking contrast to all known calculations
based on the factorization theorem. Such calculations
always start from a master formula, such as

o do(AB m p. A)
dp

structure functions are treated mistrustfully in this ap-
proach is connected with the out-of-light-cone behavior
of Feynman's propagators for the incoming partons.

Quite naturally, apart from all other amplitudes, the
2 —+ 2 cross section includes those corresponding to the
emission of a second particle c g X IIrom the initial state.
The squared moduli of these partial amplitudes duplicate
those already included in the deGnition of the structure
functions at lower factorization scales.

The new approach does not distinguish any states ab-
sorbed into the set X. At the same time, it restores the
proper status of the retarded propagation for the incom-
ing Gelds. As a result, it excludes a priori any double
counting of processes.

The Grst order corrections to the quark or gluon pro-
duction can be divided into two major categories: the
self-energy-like and the vertexlike. These names reQect
only the topology of the new diagrams.

A. Self-energy-like terms

The sequence of the o.,-order diagrams in the self-
energy-type term emerges &om the possibility that either
the quark or gluon field correlator in Eq. (5.2) represents
a field in the continuum of out states,

de gp d k

dpd4x 2(2vr) s (2vr) 4

x(Trait 7"G¹(p+ k)t p"D, „„(k)]
+T gt ~"G.i(p+ k)t'~"D», .„(k)D (6 2)

This immediately means that the remaining exact corre-
lators Gp~ and D~p carry information about both nucleus
A and nucleus B. In other words, these Gelds were cre-
ated during the course of the collision between the two
nuclei. The only terms of the subsequent expansion of
the quark and gluon correlators that survive in this case
are

Dyp = —D tIIypD d and Crpi = —Cr ~Zp1Cr

(6.S)

The superscript "g" indicates that we consider propa-
gation after collision of the nuclei, and in case we need
radiative corrections to this propagation we must con-
sider them against the background of the distribution of
quarks and gluons created in the collision itself.

The intensities II and Z of the Geld sources created by
the two nuclei were already calculated in the previous sec-
tion, but now these Gelds are o8' mass shell, and the terms
with products of two *-labeled correlators from Eqs. (5.4)
should be added. These are just the lowest-order terms
of the master formula (6.1) of the QCD parton model,
with a fixed factorization scale Qe2, and correspond to
processes of the type 2 —+ 2, where parameters of the
second. emitted particle are completely integrated over.
Thus the complete formula will be

p' ,' = ', , (Tr(gt p"G„(p+ k)t'p"[D...(k)II,", (k)D. „(k)]'„„)
+Tr(gt ~"[G¹,(k)Z,", (k)G „(k)]t'p"D„„(k—p))), (6.4)



1014 A. MAKHLIN S2

where the following chain of substitutions is supposed:

4

~oi (p) = &go, ~(k+ q —p)(t ~"[&oi'(k) —G-~(k)~o (k)G-~ (k)lt'~"

x[D~~'(q) —D„,(q)II~~(q)D~q (q)]s „„+(A++ B)) (6.5)

for the "collective" quark source, and

4 4

II(), (p) = —~go (V[DE*(k) —D„g(k)II'(k)D g„(k)]V [D,()'(q) —D...(q)II, ()(q)D g (q)]

+T t~[&oi*(k) —&-t(k) ~oi(k) G-~-(k)]t~[Pio*(q) —G-t (q) ~io(q) &-d-(q)])b(k + q —p) (6 6)

for the "collective" gluon source. Here V's stand for the
three-gluon vertex with all arguments dropped.

Three of the six graphs of this type are given in Fig. 2.
The first corresponds to the 8-channel part of the Comp-
ton process. The other two are of an annihilation type.
They can all be represented as squared moduli of the cor-
responding amplitudes. The t-channel partners of these
diagrams are not generated by this perturbative expan-
sion. If they were, they would duplicate processes already
included in the definition of the sources. The three omit-
ted graphs correspond to the interchange (A ++ B)

B. First order terms from the "vertexlike"
corrections

expected contour indices, the correction ~~ll'&B s((, y; g)
to the bare vertex with the contour index B acquires an
additional factor (—1)B+s. This rule works in the same
way for the three-gluon vertex, which is too cumbersome
to be written down separately.

The sum over the contour indices naturally divides into
two groups: those with B = S and those with B g S.
We delay discussion of the first group which is responsible
for those types of radiative corrections which may lead
to vertex form factors. The second group, which we will
discuss below, describes contributions of the higher-order
real processes, like emission of a second uncontrolled jet.

The one-loop vertex-type correction to single light
quark production contains four terms, two from the first
term in Eq. (6.9) and two from the second one:

The general expressions for the one-particle quark
and gluon distributions [Eqs. (2.10) and (2.13)] contain
dressed quark-gluon and three-gluon vertices

(( .
) ( 1)B+s+g~[G '(& y)]so

&9~9
g, b8"„(gJ)

bD bc;vP

(( ) (,)
... &[D (~,.)].. („)bc f,RSB

g, bB~(yB)

Because of their additional matrix structure they contain
some unusual elements which should be determined now.
It can be done easily by using the formal solution of the
matrix Schwinger-Dyson equations:

[G ]AB —[+ ]AB ~AB ~

[D ]AB [D ]AB +AB ~ (6.8)

Functional derivatives of the bare field correlators give us
the bare vertices, and those of self-energies give the cor-
rections. Using the one-loop formulas for the self-energies
it is straightforward to find the first order corrections to
the vertices:

where

(6.11)

Xq ——t p"Gpg(k) t"p G gp(k + q —p) t'p~G pg(q)

xt & Doo, (p k)Dii, (p q)

Xg ——t p"G pp (p —k) t"p G pi (p —k —q)
xt'p Cqq(p q)t p"Dos, ~p(k)Do&, (q)

Xs —t p"Goo(p —k)t p Goy(q)t p Do~ (k)

xDoz, & (k+ q p)D&x, y (I' q)

xV, ~~, (—k, k+ q —p, p —q),

X4 ——t p"Goy(k)t'p Ggg(p —q)t p Doo
„

(p —k)

x Do~, ~.(» —k —q) Dti', y. (q)

XV)gl I(kp&k+q»&q)

"I'"",.(& y ~) = -'g.'(-1)""{~'t& .(&, C)~"t"

«sB((, y)~ t'DsB"(y &)

+p~t GBB((,y)p t DBs s(y, ()
V."'(0D" '(& &)). (6.9)

Equation (6.9) contains an additional rule: besides the

JMd~OO l7)
0 S

4+tgf
(b)

0
(c)

FIG. 2. Self-energy-type 6rst order diagrams for one-quark
production. Notation the same as in Fig. 1. Arrows label the
retarded and advanced propagators and show the latest time.
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0 1

Xo
&v 1 0

A

(S1) (s2) (83)

FIG. 3. Four topologies of the vertex-type diagrams for
one-quark production.

B I

(v1)
I

A

0 ~uus~1
~ —B

(v3)

A

These four terms are depicted in Fig. 3. There are three
cut lines in each diagram, and they can be "distributed"
in six difFerent ways between the two colliding nuclei and
the additional out state excited in the continuum. After
that we can convert every term of this expansion into
a product of two scattering amplitudes. This is done
in Fig. 4 (up to a trivial interchange A ++ B). It is
clearly seen that amongst this group of graphs there are
none which would represent the squared moduli of any
amplitude, but all allowed interference terms between all
the processes which produce a quark and something else
are included.

Recalling the previous discussion of the self-energy-
type terms, we see that our perturbative expansion does
not generate any diagrams which would repeat those
present in the definition of the sources (via their ladder
expansion). These missing patterns are not IR safe, and
were regularized and renormalized in the course of their
definition via the DIS cross section.

We shall now show that no further infrared problems
appear. We demonstrate this using the definite subpro-
cess of a detected quark with momentum p accompanied
by an uncontrolled antiquark in the out state. They were
both created in a collision of two gluons, gAg~ ~ qq.

B

(v&)

B
I

(V7 )

I

(vs)

I
B

(v9) (v10) (v11) (v1a)

FIG. 4. Twelve vertex-type diagrams for one-quark pro-
duction in first order.

C. Infrared safety in the cx, order

In&ared finiteness of the self-energy-type diagrams of
Fig. 2 is intuitively understandable, since the interme-
diate s-channel gluon or quark carries a large timelike
momentum. We may expect IR problems only in the
vertex-type diagrams, like (Vl) of Fig. 4, where the in-
termediate fermion is in the t channel. The corresponding
distribution of a single quark is given by the expression,

p = Trpt p"Cpp(p —k)t p Cpz(p —k —q)t'p Czz(p —q)t p"]
dpd4x 2 2vr s 2' s

D (k) —D(„(k)II (k) D „(k) (6.12)

P = Pt& k+ = ~s», q = ~sx~.
The most troublesome element in all following calcula-
tions is the trace over spinor and vector indices,

T = T IA" (8 —I()~ (8 —8 —k)~'(8 —P)~ ]

xdp„(k,n~)d „(q,nag). (6.13)
l

where retarded and advanced functions carry a super-
script indicating which nucleus was the source of field.
The natural variables for subsequent calculations are
quark rapidity and momentum fractions defined via ~(&) —~(~)(g g) + ~(~)(g ll) + ~(~) (Il ll) (6.14)

The first term corresponds to the first nonvanishing or-
der of the master formula of the parton model, which
factorizes the "hard" @CD cross section and structure
functions evaluated at some (sufficiently high) scale Qp.
Two mass-shell b functions make the calculations rela-
tively simple, and the result reads as follows:

As in the lowest order, we can single out diferent types of
terms contributing to the cross section in the first order:

d (g, g)
dItdy

'7t Ckp dXAdX+2 1
1—

12s2 o

8 G(» Qo)&(» Qo)sxAx~

p~ y „

( p~(»e "+»e") ()
I
»-

)
(6.15)
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We see that this term remains finite when pq ~ 0 and
is strongly suppressed, both by the second power of s in
the denominator and the smallness of o..

To facilitate the following analysis, let us trace how the
structure emerges. We may expect an in&ared divergence
&om the poles of the product of the two t-channel prop-
agators in Eq. (6.12), Goo (p —k) Gyp (p —q) . Since they
are unshielded by finite masses or virtualities, the factor
(p, sz~z~) appears. One power of s comes from the
definition of cross section, and one more &om the final
state phase space. The combined spinor-vector trace in
(6.14) gives a factor p& s. As a result, no large logarithm,
which could partially compensate for the smallness of
the coupling constant, appears in the total cross section.
Eventually, we may expect only a weak scale dependence
of the total cross section.

The "box diagram, " which is an unavoidable partner
of o~ (g, g) m the approach based on the factorization(i) ~

theorem, is IR divergent, but it has no analog in our
perturbation expansion. Nevertheless, we considered it
useful to calculate it in Appendix B, in order to com-
pare its structure with that emerging &om the present
calculations.

The mixed term o~ (g, II), and the term 0.
~ (II, II)

(contributed to by two "sources") are more complicated
because one or both of the incoming fields interact with
their sources and hence are oK the mass shell. This means
that at least one of the mass-shell b functions is no longer
present, and traces become unwieldy. We will not present
their explicit form here, as these terms are not expected
to be large. Indeed, after the box diagram has been ex-
tracted, one retains only interference terms. These are
usually small, unless they are afFected by singular in-
&ared behavior. A sufBcient qualitative analysis of this
behavior can be done without explicit calculations. It
is enough to notice that the trace T(p, k, q) in the nu-
merator of the integrand of Eq. (6.12) is, in general, a
polynomial of fourth order with respect to pz/~s. When
the momenta of both structure functions are put on mass
shell, the only powers that survive are pz/s and p~4/s2.
This leads to an immediate cancellation of the two un-
shielded infrared poles of the propagators. In the integral
for o~ (II, II) both poles are shielded by gluon virtuali-(1)

ties, and in&ared divergence cannot appear at all. In the
integral for o~ (g, II) only one pole is shielded, while the
second produces an unpleasant p~ behavior. However,
this does not lead to an in&ared divergence of the cross
section, since the same power p& is implicitly present in
the di6'erential dp~ on the LHS.

In Appendix B we consider in full the s-channel pro-
duction of light quarks &om the process gg ~ qq. The
mathematical details behind the above qualitative anal-
ysis can be found there. Here we shall discuss only the
main physical issues.

The higher powers of p& in the trace (6.13) lead to an
increase in the differential cross section at high p& over
the lowest-order result. This is in compliance with the
observation that the first order terms bring more than
a simple quantitative correction to the lowest order. It
is precisely the emission of two back-to-back jets which

makes possible the existence of a high-pq particle in the
final state.

VII. CONCLUSION

We have considered a new approach to computing the
distributions of quarks and. gluons created in the first
hard interaction of two heavy ions at high energies. We
essentially employed an initial resummation of the per-
turbation series for the probabilities [5]. It allowed us
to describe two diferent high-energy processes, viz. , e-p
scattering and nuclear interactions, in the same terms, as
two versions of the same phenomenon —deeply inelastic
scattering of composite systems.

It is shown that these calculations can be performed
without reference to parton phenomenology. We have
introduced the concept of a source as the main subject of
QCD evolution, and have shown that the equations which
describe the dynamics of the sources are independent of
the type of high-energy process, and independent of the
particular choice of the final interaction.

The additional benefit of the new approach is that
it explicitly displays the causal structure of the QCD
evolution equations; furthermore, it shows their phys-
ical meaning as the spectral analysis of the composite
system, as performed by the interaction, which results
in the bare quark or gluon production. The evolution
equations for the sources allow for a smooth transition
between the regimes described by the GLAP and BFKL
equations. The by-product of this study is a new form
of fusion term in the GLR-type equation, which might
lead to stronger low-x saturation of the sources than any
terms considered previously.

One of the most important results of this study is the
new type of perturbation expansion, which, unlike the
factorization technique, does not lead to double counting
of processes. The diagrams already included in the defi-
nition of the sources, and controlled in aggregate by the
DIS data, do not appear again in higher orders of the new
perturbative expansion. The diagrams which do appear
are free from initial state infrared (collinear) singularities
and do not require artificial cutouts. The leading parts of
these diagrams do not depend upon the initial factoriza-
tion scale either. The price one pays for the eKciency
of these calculations is that one requires the full x and
Q dependence of the sources (or structure functions)
extracted from the data.

We are now in a position to calculate the single-particle
distributions of the quarks and gluons after the first
0.1 fm of the heavy ion collision.
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APPENDIX A: THE FULL FORM OF THE
EVOLUTION EQUATIONS

1. Trivial corrections

The siznplest corrections arise &om Eqs. (4.3) and
(4.4), as a residue of the original spinor and tensor form
after LLA terms have been extracted. To make them
more visible, let us split oi(p) and ioi(p) into a leading
(o.Ii and iIIi) part, corresponding to the LLA, and sub-
leading parts (o'i', ioi', ...):

oi(p) = oi(p) + oi'(p) + oi"(p)
~i(p) = ~i(p) + ~i'(p) + ~i"(p). (A1)

The mathematical steps follow those of the perturbation
calculations described in Sec. III. Now it is only a lengthy
exercise to obtain the resulting equations. Spinor com-
ponents of the quark source may be expanded as follows:

—p2k+ (p+ l k+oi(k)

In the main body of the paper, we explicitly studied
only that part of the evolution equations which eventu-
ally results in the GLAP equations. The latter are also
known as the leading logarithmic approximation (LLA).
Corrections to Eqs. (4.3) and (4.4) are of various ori-
gins. Unfortunately, we cannot count these corrections
in the traditional way, which relies on the firm hierarchy
of twists in OPE-based calculations. For the moment, by
"next approximation" we shall mean some kind of struc-
tural expansion based on the complexity of the processes
taken into consideration. Surprisingly, it does not lead
far &om the commonly used scheme.

In what follows, we study two types of corrections.
First, we consider the terms missing in the analysis of the
simplest (by their structure) equations, (4.3) and (4.4).
In the next two subsections we study the low-x region
which results in the BFKL equation [13] as the limit of
new evolution equations. More complicated corrections
lead to an equation resembling the GLR equation [14,15],
but with some signi6cant difFerences.

k+ k+o i(k)d'k~"p+ ~
SR(k)SA(k)

( p+ l i+iIIi (k)
k+) WR(k)WA(k)

(A5)

where we have denoted

2 2

&~p =
(2 ).k+6+[(k —p)']

—(p~ —k~)'].

—p2k+ (p+ ) k+o.i(k)
~i(p) — d»~p, ~ Pg. l „+~ R(k)sA(„)

The meaning of this decomposition becomes clear if
we Inultiply it by the kinematic factor p+ and sand-
wich it between retarded and advanced propagators [see
Eq. (4.13)]. The joint left-hand side of Eqs. (A2)—(A4)
becomes the derivative with respect to Q2 of the quark
structure function of DIS. The RHS of Eq. (A2) then
leads to the GLAP part of the evolution. The factor p
in it is responsible for the logarithmic behavior. Now it is
easy to see that the RHS of (A3) will result in a term with
I/Q2 behavior. It simulates the next twist contribution,
even though the second twist is not included explicitly in
the density matrix as an efI'ect of next order correlations.

The RHS of (A4) represents a secondary influence of
the longitudinal components of the spinor and gluon
sources. These components are defined by (A5) and (As),
and are of next order by a formal count of the n, pow-
ers. a'2 directly contributes to the longitudinal structure
function given by Eq. (4.15). It also appears in the Born
term of the quark excitation process, but we leave it aside
for now since it is poorly controlled by the data.

All of the above comments apply equally to the com-
ponents of the gluon source, which can be decomposed
following the same principle:

+P (p+ l k+~, (k)+ qs k+ I WR(k)WA(k)

(p+ ) k+ i(k)
oi'(p) = d'k&i pk' Pqq l k+ I SR(k—)SA(k)

(p+ ) k+~, (k)
k+ W (k)W (k)

(A2)

(A3)

+&aa
(p+ ) k+ioi(k)

l k+ WiR (k) WA (k)

(p+ & k+oi(k)"(p)= dkA„k P

+Pug
(p+ ) k+iIIi(k)" lk+) W"(k)W"(k)

(A6)

(A7)

III d4k~ + ~ 2( )
s, (k)s, (k)

a/, "(p) = f d4kEg~k+ C~
~

1—

( p+ ) k2iIIg (k)
k+) W (k)W (k)

(A4) —22V
(p+ 1) k2iII2(k)

2) WR(k)W2A(k)
(AS)
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~~(p)
p2

a+ f+4K.
~

1—

p+ ) k+og(k)
a+ y~ s"(a)s" (a)

(A9)
p+ ) k+mg(k)
2a+ ~ WR(k) W,"(k)

~(p )f(x p~) = n, (p~2) 2
'

dy d2k,p'

xs[(p+ —a+)p- —(p, —k, )']
-I'

WR( )W"( )
Pgg l

—
I f(»k~).

2. Th.e BFKI equation

As has been shown in Sec. IV, the new evolution equa-
tions for the sources, even in their reduced form (4.3)
and (4.4), are practically the equations for the deriva-
tives of the structure functions, rather than for the DIS
structure functions themselves. The former were first in-
troduced by Lipatov as the "unintegrated structure func-
tions, " and they relate to the latter in the following way:

f( 2) 2d *G(x pe)
pt

(A10)

Thus, up to an insignificant normalization factor, we may
write

A preliminary examination of the additional terms
in the evolution equations reveals that they have the
same singular infrared behavior as GLAP equations, and
should be regularized and renormalized. The way to do
this is not yet clear, since conservation of momentum
seemingly fails to control all necessary subtractions. A
complete study of these equations is a separate subject.
In this paper, we have considered the explicit form of the
DIS structure functions as granted.

(A13)

We have retained all terms that contribute to the
LLA. We notice that at real momenta the denominator
WP(p)WP(p) is strictly positive both before and after
any integration, without additional weight. Thus the full
integral is not singular. The next steps are as follows.

Step 2. For x (( 1, approximate the splitting kernel
as Pgg(x/y) - (y/x)

Step 2. Integrate both sides of the equation over p
considering the retarded and advanced propagators in the
integrand on the RHS as bare. In this way the singular
in&ared behavior of the integrand is unshielded. Inte-
grate over the azimuthal angle.

Step 9. Expand the propagators on the LHS up to the
first order in radiative corrections. Retain only the vac-
uurn correlator and move it to the RHS in order to shield
the singularity that resulted from the approximation.

Step g. Differentiate both sides of the equation with
respect to x.

This procedure will result in the BI"KLequation (A12),
up to the insignificant last term in the integrand and sig-
nificant replacement of the fixed coupling by the running
one. The latter is prescribed for us by the renormaliza-
tion scheme described in Sec. IVB. Unlike the OPE-
based approach, this scheme has no limitations at small
X.

~x' p~ ~i"(p)
~(P )f(*P~) = W~(')W'~( ). (A11)

The asymptotic behavior of the solution with the fixed
coupling constant is well known. Its exponential part,

In the limit of low x, the function f (x, p~ ) was proven to
obey the so-called BFKL equation,

Bf(x, p2) 3n.
t9x

dk2 f(x, k, ) —f(x, p, )

f(* p~)
/4k4 —p4

(A12)

This equation was originally obtained by considering the
amplitude of the process 2 ~ 2 + n and summing the
leading log(1/x) terms [13].

Evolution equations like (4.4) were derived immedi-
ately as integral equations. At high Q and not too low
x, they allow for simplifications which lead to the GLAP
equations. This means that the necessary resummation
of the leading ln Q2 was done from the very beginning.
Next, our intention is to determine what simplifications
should be done to obtain the BFKL equation. These sim-
plifications are electively equivalent to a reduction in the
number of diagrams already accounted for in the integral
equat~o~.

In the notation of Eq. (A10), our Eq. (4.10) for the
transverse gluon source reads

(A14)

provides a decrease of f (x, p&) at high p, that is faster
than any negative power of p~.

The BFKL equation modified by the standard running
coupling was recently conjectured in Ref. [36], and stud-
ied numerically. Visually, the plots reveal a suKciently
steep behavior at high k~, but further analytic analysis
is required to draw a firm conclusion. A less trivial mod-
ification of the BFKL equation was recently suggested in
Ref. [37].

We postpone any discussion of the accuracy of the
above approximation, and satisfy ourselves with the most
important fact that the evolution equations contain both
GLAP and BFKL regimes of evolution as the limits.
Thus we may hope to describe a smooth transition be-
tween them. From a pragmatic point of view, the above
asymptotic behavior guarantees the convergence of the
integrals that appear in a calculation of the cross sec-
tions of quark and gluon. production (see Secs. V and
VI).

3. Gluon shadawing

More complex corrections to the GLAP evolution cor-
respond to the replacement of the g-labeled correlators
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in Eqs. (4.3) and (4.4) by correlators with sources, viz. ,
the second terms in Eqs. (4.1) and (4.2). This means
that, instead of the final state correlators describing the
emission, we include the initial state correlators. This
replacement accounts for possible fusion of the partons.
Fusion is expected to be most important for gluons at
low x. So only the purely gluonic component will be
considered here.

Terms responsible for fusion of two gluon 6elds have
the form

I
A

~+QQC' ~
.PF' ( '%,

I

m~AO&~
I

B

I
AMgQQ) ~~

, .(I' i
'%

I

l

~AH'
mVAQ~m

I
B

FIG. 5. Two infrared-divergent "box" diagrams which are
not generated by our perturbation theory.

d4kd4
Ar„,IIo~'""(p) = ig h(k + q —p)V",~ (k + q, —q, —k)

x [D„t(k)11&o(k)Dz (k)]ff, Vb",",
&, ( k —q—, q, kk) [D„t(q)II&o(q)D z (q)]„",. (A15)

This equation is identical to Eq. (5.15) describing gluon fusion in a nuclear collision, except that here both gluons are
taken Rom the same nucleus. We shall use the standard approximation, i.e., bare tree propagators and. bare vertices.
The longitudinal gluon function m2 will be neglected also. Routine calculations similar to those performed in Sec. V
then yield

X2

XQX2

XlX2
X2

&r-G'(» p~) =-3~a, (2~)',
2p, R

- 2

dxg dx2 dk2dq2
X] +X2 X

4S k. , q. , p.

G'(x, k, )G'(z, q, ),
Xl X2 X

(A16)

where G'(x, p&) = dG'(z, p~)/dp, and S(kq, qq, p~) is the
area of a triangle with the sides kt, qt, and pt. The ini-
tial normalization factor (Vj bP+) ~, which was conve-
nient for calculation of cross sections, has been replaced
in Eq. (A16) by (vrR ) ~, which corresponds to a normal-
ization per unit transverse area of a nucleus with radius
R.

Equation (A16), by its structure, is very similar to the
well known Gribov-Levin-Ryskin (GLR) equation [14],
and one derived later by Mueller and Qui [15]. It clearly
reveals the same tendency to saturate the rate of the
field source QCD evolution at low x. However, it seems
to have several di6'erences. The most signi6cant is that
the power of n, in Eq. (A16) is less than in Refs. [14] and
[15]. The formal reason is the simpler form of the vertex

I

I

of the "three-ladder interaction" that is prescribed for us

by the general structure of the evolution equations (4.3)
and (4.4). The other difFerences are of dynamic origin
and will be discussed elsewhere.

APPENDIX B: SOME ESTIMATES OF THE
FIRST ORDER TERMS

1. The "box" diagram

Two box-type diagrams appear in the calculation of
the quark production cross section, if we use the mas-
ter formula (6.1). They are depicted in Fig. 5, and the
corresponding analytic formula is

d4kd4
, [T Pt q"G ...(p —q) t"q C ~, (p —k —q) t q'

dpd4x 27r s 27r s

x C g„(p—q)tsar" D(, l"'(k)D(, l„„(q)+ (A m B)].

Routine calculations result in the following expression for the difFerential cross section:

(be~) (g g)
dpt dg

27t (xo dx+dx$3 pt y g pt y0 x~ — e" 8 x~ — e
3spt, o &AxB ( v s ) ( ~8 )

G(~A, Qo)G(~~) Qo)»~*a — (~~e " + *Be")
pt (3 &A&H) 4pt, 2 2 pg

SX~X~ Sx~x~ s (B2)

The factor p~ appears in the same way as in. Eq. (5.9) for the Born term. However, previously it could be efFectively
absorbed into the structure functions, which is not the case now. Indeed, Eq. (B2) has no additional integration over
momenta which could be rescaled by pt. We expect at least a logarithmic divergence of the total cross section as
a result. This divergence may be strengthened by the low-x behavior of the structure functions because of the pt
dependence of the low limits of integration over x~ and x~ in Eq. (B2).
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2. Inclusive production of quarks in a channel

The analytic expression for the diagram (S2) of Fig. 3, corresponding to the subprocess gg -+ qq, is

Tr~t ~ G@ (p —k —q)t ~"D„
„„

(k + q)D
„

(k + q)

x~V.".', (-k —q, k, q)D,'", ',.(k)V,'.-,,', (k+ q, -k, —q)D,', '.~ (q) + (& ~ &)). (B3)

The most difBcult problem here is to calculate the trace
over spinor and vector indices. The complete expression
is very unwieldy, and we will therefore satisfy ourselves
with

Trace = 12 x 16p, sxAxa[1+ O(pt/~s)],

where the factor 12 comes &om the color algebra. As
previously, we have three contributions to this process,

~'l(g, g) + ~~'i(g, 11) + ~'i(ll, 11). (B4)

The first term corresponds to the factorization of the
parton's structure functions and the "hard" cross section
at a given scale,

«~'(g g)
dptdg 28 0

rxel za-
l

xb x~x~

dzgdza
xA

z~xa
"' e "l G(» Qo)G(xa Qo)s )

(x~e " + zae") . (B5)pt
~s

p~

+s )

This term, explicitly dependent on the factorization
scale, is kinematically suppressed by three powers of s
Two of these come &om the kinematics of intermediate
gluons, and the third from the phase volume which is
confined to a line in the (x~, xa) plane.

The second term in Eq. (B4) describes the interaction
of a parton with the source,

d~,"'(g, II)
dptdg

3O,0Pt 8x+16~2 0 0

ktdktx
~~ 4S(k~, pg,

pa „l r

) E

() (sx' x' —k')' (B6)

where we have introduced the notation

= (k —p )(k —p ) = s
l

x~ — e"
l l

xa — e
p~

v

This second term still keeps its dependence on the factorization scale. Because of finite virtuality of one of the
incoming fields, the phase volume of the process is larger and consequently one of the powers s disappears.

The last term in Eq. (B4) accounts for the interaction of two sources,

do~~ l(II, II)
dpt dg

3~op,
' ' ' r pi „)r pt."xae

I
z~ — e"

l

0
l

*a-
327i' o o ( s )

lgdlg 2 G'[ ~x) (I, + ft) /4]G'[xa, (I~ —f, ) /4]
S(l„p,~() (sx~xa —lt)

(B7)

Here, both incoming fields are virtual, and the s-channel
propagators are smoothed by the total transverse mo-
mentum of the initial fields. The internal integral over
d f represents the two-dimensional Fourier transform of
the product of the densities (in coordinate space) of two
sources. Hence this term is proportional to the degree of
geometrical overlap between the colliding nuclei. It does
not depend on a factorization scale, and is expected to

be the dominant term.
All three terms appear free of any problems at low

pt, but a reliable knowledge of the low-x behavior of the
sources may be important for quantitative computations.
The presence of a factor pt, which is purely kinematic
in its origin, guarantees that at high pt the first order
differential cross section will be larger than the Born cross
section in this region.
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