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Deuteron formation in expanding nuclear matter from a strong coupling BCS
approach
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The process of deuteron formation in intermediate heavy ion reactions is approached within the
strong coupling BCS theory assuming that the 6nal stage of the reaction can be described as an
adiabatic expansion of a piece of nuclear matter. Since the gap equation in the S~- D~ channel goes
over into the deuteron Schrodinger equation in the low density limit, a smooth transition from the
super6uid Cooper pair phase to a Bose deuteron gas is found. For a Bxed entropy ranging from 0.5
to 2 units per particle the deuteron fraction, the chemical potential and temperature are reported as
a function of density. For densities down to p = 0.1 fm and lower, the deuteron-to-nucleon ratio
rapidly increases from a density threshold strongly depending on the entropy. Decreasing further
the density this ratio tends logarithmically to one. The possible relevance of these results for heavy
ion collisions and the shortcomings of the present approach are brieBy discussed.

PACS number(s): 21.65.+f, 74.20.Fg, 25.70.Mn

I. INTRODUCTION

Central heavy ion collisions at E/A in the 50 to
200 MeV range can roughly be described by the initial
buildup of compressed and hot nuclear matter and by
a sequential decompression. At low energies the system
may pass through the spinodal instability region and may
undergo a liquid-gas phase transition or, at higher ener-
gies, the temperature and the internal pressure involved
may be so high that the piece of nuclear matter just va-
porizes into the individual nucleons. In any case, how-
ever, the expanding gas cools down rather fast, allowing
for deuterons, as well as other &agments, to form again
in the final state. Actually the yields of deuterons in high
energy reactions always exhibit a surprisingly high pro-
duction rate [1]. Typically, e.g. , the ratio of deuterons to
protons is of the order of unity. At higher bombarding
energies (E/A ) 200 MeV) such abundances have been
successfully explained from a transport model [2], where
the deuteron pole in the n-p scattering matrix has been
explicitly isolated. Though pure phase space consider-
ations may account for a large &action of the deuteron
production rate [3], it still may be interesting to inves-
tigate the problem, for instance, of deuteron production
&om a slightly different point of view. We have in mind
the very idealized situation of a piece of hot nuclear mat-
ter expanding quasistationarily with total entropy kept
constant. The latter feature seems to be realized in heavy
ion reactions [4]. When lowering the density, the tem-
perature will then drop, and the combination of both ef-
fects will allow the appearance of deuterons (Mott tran-

sition) [5]. The phenomenological observation that the
main components of the outgoing &agments, in this en-
ergy region, are nucleons and deuterons and o. particles
indicates that nuclear matter has not enough time, dur-
ing the expanding phase, to get close to its slowest &ee
energy state. In fact, at low enough densities and temper-
atures, nuclear matter is expected to form a gas of alpha
particles. Therefore a mixture of nucleons and deuterons
is a metastable system, which spontaneously decays in a
gas of alpha particles. This metastable system, however,
is worth studying, since it is likely to have some relevance
in the final stage of heavy ion reactions. The characteris-
tic time of the expanding phase is, therefore, assumed to
be faster than the alpha formation rate, consistently with
phenomenology, and slow enough, as already mentioned,
to consider nuclear matter not too far &om thermal equi-
librium.

In this work we will be mainly concerned with the
deuteron formation. An aspect we will partially develop
is that nuclear matter at low density, below a certain
critical temperature T, may show strong n-p pairing in
the deuteron channel. This has been revealed in several
recent studies [5—8] and, in fact, it can be anticipated
since the NN force in the deuteron channel is more at-
tractive than in the usual p-p or n-n pairing channels.
At higher bombarding energies the entropy production
is typically several units and this is probably too high
for the superHuid phase to occur, but at lower energies
(E/A & 100 MeV) the entropy per nucleon S/A ( 1 [9]
and this may well allow the approach of deuteron pair
condensation. The reason why such a pair condensate
may be relevant for the deuteron production an qualita-
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tively be explained, at least, within the BCS approach
to super8uidity. In this approach it has been shown [10]
that in the low density limit the BCS equation for the
pairing condensate goes over ioto the Schrodinger equa-
tion for the deuteron. In a first attempt we will try to get
some insight into the physics of this process in adopting
a mean field strong coupling BCS approach. We know
about the weakness of this approach, which completely
leaves aside the inHuence of Huctuations, that, in this
type of situation, may be crucial, both with respect to
the finiteness of the system and with respect to a possible
crossover from BCS superconductivity to Bose-Einstein
condensation of the deuterons. Indeed, in the limit of in-
terparticle distance much larger than the deuteron radius
ao, i.e. , k~ao && 1, the deuterons behave essentially as a
gas of bosons, which can undergo the usual condensation
phenomenon. We may deal with this difEicult problem
in the future. Here we will stay within the pure BCS
approach.

II. STRONG COUPLING BRUECKNER-BCS
APPROACH

Proton-neutron pairing in nuclear matter has only
been investigated very recently [5—7]. Using realistic bare
forces in the gap equation and a Brueckner —Hartree-Fock
G-matrix approach for the normal mean field, astonish-
ing high values for the gap in the deuteron channel have
been found in symmetric nuclear matter. Since the at-
traction in the deuteron channel, i.e., SD T = 0 chan-
nel, is stronger than in the T = 1 neutron-neutron or
proton-proton channels, this may actually not be a com-
plete surprise. However, the in-medium renormalization
(screening) of the bare n @force i-s certainly an unsolved
problem, in spite of the fact that the use of bare n-n and
p-p forces yields quite reasonable values for the gap L in
the scalar isovector channel T = 1 [11].Bearing this dif-
ficulty in mind, we nonetheless go on using the bare Paris
force as the n-p interaction in the S-D pairing channel,
which in the mostly interesting low density regime may
eventually not be a quite unreasonable choice.

For the normal mean Geld we use, as in an early pa-
per [11), the one Rom the Brueckner —HF approach. The
equations to be solved are therefore of the form schemat-
ically shown in Fig. 1. The intermediate two particle
propagator g (the two lines in the figure) reads

)
(1 —fa)(1 —fi ) (1)
(d —E'g —6y~ + 177

where fj, is the Fermi function, calculated at the sin-
gle particle energy eI„the latter being obtained fLom the
Brueckner —HF self-consistent potential, schematically in-
dicated in the lower part of Fig. 1.

The gap equation reads

a„=—) v„„"tanh
j2EI, ( 2 )

with Eg = g(eA, —p)2+ A&. As usual the density is
obtained fLom

Self consistent BHF
equations

, VNN
I

'v„Pc'i
v/8

FIG. 1. Diagrammatic representation of the self-consistent
BHF equations. The first line is the Brueckner-
Bethe-Goldstone equation; the second line showers the BHF
mean field, i.e., the single-particle potential at the one-hole
line level of approximation.

N 1P= —= — AA )V V

1 ( ~„—p PE„I
ng = — 1 — tanh

2 ( Eg 2 j

and the anomalous density is given by

= —"tanhi
2Ei, ( 2 ) (4)

The expression for the entropy is

S=—) (f(EI,) ln f(EI,) + [1—f(Eg)]in[1 —f(Eg)]) .

(5)

Equations (2)—(4) are schematic. A more detailed ac-
count and derivation is given in the Appendix. The cou-
pled set of nonlinear Eqs. (2) and (3) is solved, for a
given total density p, adopting a separable form of the
Paris potential [12]. The same numerical method of Ref.
[7] is used in solving the gap equation for Al, . In the
present work, however, the chemical potential p, has been
also determined from the set of Eqs. (2) and (3). Once
the solution for the gap function Lg and the chemical po-
tential p are found, the quantities e and S are calculated
f'rom Eqs. (4) and (5), respectively.

III. RESULTS

A. Pairing at sera temperature

First, we discuss the results for the Sq- Di pairing
gap in symmetric nuclear matter at zero temperature,
as a function of the Fermi momentum k~. In Fig. 2
is reported the total pairing gap, as defined in Ref. [7],
at the Fermi momentum, in a range of densities around
and below the saturation value, together with the cor-
responding S and D components. In comparison with
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the previous calculations of Ref. [7], a substantial reduc-
tion of the pairing gap is obtained, as a consequence of
including, in the self-consistent procedure, the calcula-
tion of the chemical potential p. It turns out, in fact,
that the self-consistent value of chemical potential, due
to the strong pairing gap, can be slightly difFerent &om
the previously assumed weak coupling value p = eI,
Even if the deviations from the weak coupling values are
small, they afFect appreciably the results, since the pair-
ing gap depends very sensitively (exponentially) on p, .
For comparison displayed in the same figure is also the
total pairing gap obtained neglecting the Brueckner —HF
mean field, assuming for the single particle spectrum the

A A:&ee one, eI, ——
2 . The reduction of the gap is mainly

due to the efFective mass m* introduced by the mean
field. Since m'/m & 1, the kinetic energy increases and
the density of state decreases, lowering the effective in-
teraction at the Fermi energy, a well-known effect in su-
per8uidity and superconductivity. On the other hand it
is known [13] that the so-called E inass again increases
m* at e~ to values around one. A consistent treatment
of such effects, together with screening effects, would cer-
tainly be a very interesting investigation. Here we will
re&ain &om such considerations and stick to the k mass
only [13]. In spite of the reduction due to m*/m & 1 the
gap values around saturation of 3—5 MeV still appear
quite large.

Since the deuteron exists in free space as a bound state
and the Pauli principle in nuclear matter in the deuteron
channel acts somewhat differently &om the n-n and p-p
channels, we investigated whether the n-p superBuidity

FIG. 2. (Left) Pairing gap vs Fermi momentum for sym-
metric nuclear matter in the 8-D channel. The values indi-
cated by the crosses and the circles correspond to the use of
the free single particle spectrum and the BHF mean field, re-
spectively. (Right) Comparison between the contribution of
the S wave (squares) and of the D wave (stars) to the total
gap. It has to be noticed that the total gap is not the sum of
both components IEq. (A17)].

p'—v.„+(1 —2n„)
d3k

vpyKA, = 2pKp . (2')

Indeed this equation looks very much like the deuteron
Schrodinger equation into which it turns for a diluted
system, i.e., when the chemical potential becomes neg-
ative. The results of Fig. 3 confirm that, within the
BCS theory, the transition &om the superfiuid phase to
the deuteron gas is a smooth one, also in the case the
Brueckner —HF mean field is included (see also Ref. [15]
on this point).

The transition &om the superQuid phase to the
deuteron gas is better illustrated by considering the pair-
ing abnormal density ~g, or its Fourier transform in co-
ordinate space P(r), which should smoothly merge into
the deuteron wave function in the low density limit. This
is displayed in Fig. 4, where the two components of P(r)
are drawn at different densities. For the lowest density at
p = 0.0075 fm a comparison is made with the deuteron

in nuclear matter still survives when the n-p attraction is
artificially lowered such that the bound state in &ee space
disappears. We found that even in that case superfluidity
exists being as usual triggered by the sharp Fermi surface.

The supermultiplet SU(4) invariance of symznetric nu-
clear matter implies an alpha-like structure of the ground
state, but it has to be noticed that this structure is not
in contrast or in competition with superfluidity, neither
for the isoscalar nor for the isovector channels. In fact,
genuine three- or four-body correlations are expected to
be small in nuclear matter, the main components be-
ing the products of two-body correlations. Similar re-
marks apply to the case of symmetric medium-light nu-
clei, where the observed alpha structure is essentially a
mean field effect [14], and therefore it has nothing to do
with nucleon-nucleon correlations. The large S-D pair-
ing gap indicates, therefore, a genuine superfiuid phase of
nuclear Inatter, at least in the density range not too far
from saturation. Figure 3 (left) displays the correspond-
ing chemical potentials as a function of density, both with
and without the mean field contributing. The difference
between the two values is quite close to the value U(k~)
of the single particle potential at the Fermi momentum.
In the present work we pay much attention to the low
density region. There the mean field becomes smaller
and smaller and the two chemical potentials tend to the
same limit. As shown in Fig. 3 (right-hand side), this
limit is nothing but one half of the deuteron binding en-
ergy, pp —ED/2 = —1.1 MeV, in agreement with the
considerations developed in Ref. [10]. In that reference
it was shown that in the low density limit the BCS gap
equation coincides with the Schrodinger equation for the
deuteron. In this case, in fact, the chemical potential p
turns negative, and the pairing gap becomes very small
with respect to I@I and can be dropped out in the ex-
pression for the quasiparticle energy, i.e., Ei, = I&i, —p, I.
Then it is easy to see that the gap equation (1) goes over
into the Schrodinger equation, with the eigenvalue equal
to 2p, which therefore must coincide with the deuteron
binding energy. To this end Eqs. (2), (3), and (4) can be
combined to give
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wave function. One can observe a large overlap between
P(r) and the deuteron wave function, which indicates
that already at this density the BCS solution is hardly
distinguishable Rom a gas of deuterons, despite the fact
that the chemical potential is about +1 MeV still away
&om the deuteron limit value, and the value of the gap 4
is still a few MeV. At increasing densities the inner part
of P(r) is not so much affected, while he large r behavior

changes drastically. At large distance, oscillations in P(r)
appear, in accordance with the expected long range (off
diagonal) order of the superHuid phase.

Prom the results of the present section one can then
conclude that the BCS theory describes, in the low den-
sity limit, a smooth transition from the S-D superBuid
phase of symmetric nuclear matter to the Bose conden-
sate phase of an ideal deuteron gas. In the BCS language
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it corresponds to a transition kom the weak to the strong
coupling limit. The Cooper pairs, each one of which has
zero momentum, merge naturally into the zero momen-
tum condensate of deuterons. If this simple picture is still
valid, when going beyond the BS treatment, it is still an
open question.

B. Finite temperature and thermodynamics

One of the main problems of the BCS theory at fi-
nite temperature is the implicit assumption that the only
thermal excitations of the system are due to the pair-
breaking mode. The thermal center-of-mass motion of
the pairs, and therefore, of the deuterons, is entirely ne-
glected. The inclusion of the thermal pair motion [16]can
modify quite a lot the low density and low teinperature
behavior of the system, where the critical temperature,
in the strong coupling limit, can dier &om the corre-
sponding BCS value. As an illustration we report in Fig.
5 the entropy per particle at the temperature T = 1 MeV
as a function of density (i) as calculated &om BCS, Eq.
(5), and (ii) as obtained assuming a deuteron Bose gas
at the same density and p, . As one can see, according to
the results of Sec. IIIA, in the density range where it is
meaningful to speak of a deuteron gas, the entropy due
to boson thermal motion is comparable to the one of pair
breaking. Therefore, the inclusion of thermal motion of
the pairs in the theory is supposed to be a very important
but theoretically difBcult step with which we may deal in
a future publication. At the moment we will ignore this
complication and stick to the pure thermal BCS mean
Geld description.

As mentioned in the introduction, in heated expanding
nuclear matter formed in heavy ion reactions the ratio of
the number of deuterons vs the total number of nucleons

1 ~ 00

as a function of the density of the system is of inter-
est. This ratio, according to standard BCS theory [17],
is given by

ps h2 1—= 1 — P dkk 1 —tanh
i i, (6)

where m* is the efFective mass. As we mentioned already
we suppose here that the expansion process occurs, since
it is in an open system, isentropically, an assumption
which has been confirmed to hold approximately true in
BUU type transport calculations [9]. In this pilot study
we also neglect any dynamical e6ect and mimic the ex-
pansion quasistatically. We therefore show in Fig. 6 the
ratio of Eq. (6), for fixed values of the entropy per par-
ticle, as a function of the total density.

For each value of the entropy S/A there is a well-
defined value of the density p &om where on the existence
of the Cooper pairs sets in and the number of deuterons
steeply rises as the density is lowered further. As the den-
sity increases, for a fixed value of the entropy, the tem-
perature increases, and the critical temperature for the
superQuid phase is readily reached. In the same Ggure
is drawn also the line (dashed line) through the points
where the condition p = U(k~) is fulfilled. The corre-
sponding densities can be considered the critical ones for
which deuterons start to be formed (Mott transition).
If the single particle mean Geld is neglected, these points
mark the densities for which the chemical potential turns
negative, i.e. , two particle bound states appear. The up-
rising trend of N, /N in the final stage of the expansion
is due to the fact that the final infinitely diluted stage is
always at zero temperature where, within the pure BCS
theory, everything is paired (N, /N = 1). This behav-
ior can be seen more clearly in the blowup of Fig. 6
(right) for low densities. The approach towards the value
Ns/N = 1 is not yet so apparent even at the lowest val-
ues of the density for which the numerical accuracy of
the calculation is still reliable. For too low densities, it is
difBcult numerically to solve the gap equation for a well-
defined value of the entropy. The asymptotic behavior of
Ns/N or p -+ 0 is actually extremely slow. As shown in
the Appendix one has

0.50— T=1MeV
NO MEAN FIELD ps ~ Eo

l i t'2p~~&—- 1 —S„ ln
p po ( pc

(7)
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FIG. 5. Entropy per nucleon vs density from BCS theory
at T = 1 Mev. For comparison is also reported S~ of an ideal
Bose gas (dashed line).

where Eo is the quasiparticle energy at zero momentum
and p is a reference density whose explicit expression is
given in the Appendix.

Equation (7) is valid in the limit p « p, /2S& and
T « [yp~. It has to be noticed that the ratio pg/p reaches
1 with an infinite slope at p = 0.

On the other hand, since the entropy is kept constant,
also T tends to zero as p ~ 0, with a trend similar to
the one of Eq. (7), as explicitly shown in the Appendix.
We therefore show in Fig. 7 the behavior of N, /N as a
function of the temperature for various Fermi momenta.
Clearly N, /N(T = 0) = 1 for all values of p, . Finally, in
Fig. 8 the entropy S~ vs temperature for various values
of the chemical potential is displayed. We see that at con-
stant temperature the entropy increases with decreasing
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FIG. 9. Equation of state of nuclear matter for the Skyrme
force SkIII. Three isentropics have ben plotted with some val-
ues of temperature.

values of the entropy per particle are considered, S = 0,
1, and 2, and along the curves few values of the tem-
perature T are also reported. This equation of state is
similar to the one reported in Ref. [19]. One can see that
nuclear matter cools down quite fast in the decompres-
sion phase. If nuclear matter is initially compressed at
a density p/po 1.5, even with an entropy as low as
S = 1 it will be able to expand into the vapor phase.
At a density p/po 0.04 the temperature becomes so
low that deuteron formation can set in, according to the
conclusions of the preceding paragraph.

Of course, once the system enters the spinodal zone,
instability can occur, and fragments of intermediate mass

can be formed [20]. This process of &agment formation
does not necessarily forbid the deuteron production by
the mechanism outlined in this paper. That these two
processes may coexist can be seen in the computer siln-
ulation of Fig. 10, where, in the final state of the ex-
panding nucleus, one clearly sees emerging some &ag-
ments embedded in a background of very low density nu-
clear matter, the latter being the environment of Cooper
pairs. The &agments themselves can be also a source
of deuteron emission, and therefore it is not simple ex-
perimentally to disentangle the two possible mechanisms.
Recently [21], however, it has been found that above 50
MeV/u an appreciable &action of the multi&agmentation
cross section can go in events where only light particles
(Z ( 2) are present, the so-called vaporization events.
In this set of events the alpha particles are the domi-
nant component, but the &action of deuterons steeply
increases at increasing beam energy and reaches values
compatible with the ones reported in Fig. 6, a fact which
could be an indication of the relevance of the mechanisms
for deuteron formation outlined in this paper.

As can be seen &om Fig. 9, for entropies & 1.0 the
temperatures at the lowest densities increase steeply, and
therefore the deuteron formation should be strongly hin-
dered. The precise value of the entropy production in
heavy ion collisions is not well known; however, it is gen-
erally believed that S~ 1.0 is a typical value for the
rations we have in mind [22].

IV. SUMMARY AND CONCLUSIONS

In this work we considered the possibility of deuteron
formation in an isentropically expanding piece of nuclear

O. QQ fry, &c &I-O. QQ f rn Yc
FIG. 10. Results from a BUU calcula-

tion for central collision of Ca+ Ca at
E/A = 100 MeV (we are grateful to E.
Suraud for providing the figure).
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matter. The scenario we have in mind is that in a cen-
tral collision of two heavy ions a compressed and hot blob
of nuclear matter is formed which subsequently expands
into the gaseous phase. A scenario of this type is depicted
in Fig. 10 where a typical result &om a BUU calculation
is shown. The constancy of entropy is supported by the
fact that we are dealing with an open system and also
&om numerical investigation using the transport equa-
tion. In the gas phase the pairing phenomenon of BCS
theory may occur. Since deuterons also exist in &ee space
there then may appear a crossover of the pairing &om
positive to negative chemical potentials (Mott transition)
&om where on the deuterons exist in the gas environment
as bound particles.

Our approach though strongly simpli6ed allows for the
first time to follow in a continuous way deuteron for-
mation in the medium &om high to &eeze-out densities.
However it still suKers &om several shortcomings. First,
we neglect dynamic eKects and treat the expansion qua-
sistatically; it is clearly in contradiction with Fig. 10
where we see that the expansion is actually rather fast.
Dynamic eKects are planned to be included in forthcom-
ing investigation (BUU plus BCS). On the theoretical
side the BCS approach is also deficient: Its main draw-
back is that it is implicitly assumed that even at finite
temperature the deuterons in the gas are at rest. This is
clearly in contradiction with basic physics. One should
however keep in mind that the inclusion of thermal mo-
tion of the pairs into BCS theory is a highly nontrivial
theoretical problem [16]. We also intend to investigate
this problem in the near future via a coupling of the
present approach with a quasiparticle RPA calculation

[15,23]. A further problem which we will address in a
future work is to estimate the influence of pairing on
the s.p. properties of nuclear matter. This would be
particularly sizable at low density, as we can see &om
the comparison in Fig. 11 between the low density EOS
in the Brueckner —Hartree-Fock limit and the one cor-
rected by the pairing condensation energy. In spite of
these shortcomings our work reveals interesting qualita-
tive trends. It is seen that only in the extremely low
density phase where the interparticle distance reaches
2—3 times the deuteron diameter the chemical potential
turns negative. At these densities even if the initial re-
action was very energetic and consequently the entropy
and temperature very high, the temperature has dropped
very much and the formation of deuterons becomes pos-
sible. Our results (Fig. 6) indeed indicate that the num-
ber of deuterons may strongly increase in the late stage
of the reaction. However, even at higher densities, say
po/3 to po/5, which are usually considered for deuteron
formation in the coalescence model, we still get an ap-
preciable amount of deuterons (see Fig. 6) present in
the form of deuteron condensate if the entropy has typ-
ical values S~ 1.0. Our scenario is opposite to the
usual, where in most cases the deuterons are supposed
to be formed through particle emission through the sur-
face of a source (a big cluster) and subsequent final state
interaction. Our study hints to the possibility that the
pairing formation of deuterons may coexist with the lat-
ter process. Experimentally the existence of a deuteron
Bose condensate should give signatures in the deuteron
singles distributions as well as, more importantly, in the
deuteron-deuteron correlation functions. The detailed
balance between both production mechanisms is, how-
ever, a very difBcult question and needs more work in
the future.
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APPENDIX: EXTENSION OF BCS THEORY TO
THE JST PAIRING

—io.o I I j I I I
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FIG. 11. Low density equation of state in the pure Brueck-
ner —Hartree-Fock limit (solid line) and the same corrected by
the pairing condensation energy in the BCS approximation
(dashed line).

We derive the BCS equations extended to arbitrary
JST paring states in the &amework of the Gorkov ap-
proach to superfluity. This extension has also been per-
formed on the basis of the generalized Bogolyubov trans-
formations [8]. In both cases one assumes that superfluid
pairing states belonging to diferent JST channels are un-
coupled.

We start &om the model Hamiltonian defined in the
grand canonical ensemble as follows:
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H = ) e&a a& + —) ) [b, , (k)a &,ap
k,n cx,a'

+b, (k)at at
„

, ], (Al)

which is equivalent to singling out the pairing correlations
in the two-body Green's function. The gap function is
de6ned as

(k) = ) ) (ka, kn'—~V[k'P, k'P'—)(a g,p, ag, p) .
PP'

The angular brackets must be interpreted as ensemble av-
erages in the grand canonical ensemble. The greek labels
indicate s.p. spin and isospin, i = ey —p, p being the
chemical potential and eg the single particle spectrum.
The latter is calculated in the Brueckner —Hartree-Pock
approximation &om the same NN realistic potential giv-
ing the pair interaction VN~. The interaction V~~ to be
used in the gap equations is, in principle, an effective in-
teraction, which should be calculated in the &amework
of many-body theory. It has to be noticed however that
a Brueckner G matrix cannot be used for V~~, since the
gap equation already sums up ladder diagrams, and thus
this would introduce a double counting [24]. The main
physical many-body e8'ect is the "screening" of the NN
potential due to the induced interaction [25].

Starting &om the model Hamiltonian de6ned by Eq.
(Al) the equations of motion for the s.p. propagators at
Gnite temperature can be easily derived within the imag-
inary time formalism. We obtain the Gorkov equations
for the propagator G(k, u„)and the anomalous propaga-
tor F(k, u ) which can be written as

b, At = Idet(A), (A7)

where I is the identity matrix and det(b, ) is the deter-
minant of 4 in spin space. This property enables us to
solve algebraically the two coupled equations of motion,
and we obtain for the two propagators the usual form

ZM~ + CIG (k, „)— b (u2+ E
k

(A8)

, (k)Ft, (k, (u„)= + E

2&x' E2)' (A10)

4G (k, O
—

) = — 1 — "tanh
~

E
(All)

Applying the self-consistent Eq. (A2) we get from Eq.
(A10) the gap equation in the standard form

(A12)

where E- = i- + D- is the quasiparticle energy, being
Il: k A:

D2 = det(b). From these explicit expressions we can
A:

calculate by the usual procedure of summing up over the
Matsubara &equencies the two propagators

(i~„—eg) G (k, (u„)

= ) E (k)Ft„,(k, cu„)+M, (A3)

and summing up over all s.p. states in Eq. (All) we get
the condition on the average number of particles

(A13)

(ibad„+er)Ft, (k, (u„)= ) b t „(k)G (k, (u„),

(A4)

where cu = (2n+ 1)vr/Ph, are the Matsubara frequencies
for fermions. If the ground state is assumed to be time-
reversal invariant, one can easily check the properties

Equations (A12) and (A13) are the basic ingredients for
numerical investigation of the superfIuidity in nuclear
matter. For a 6xed density and temperature these two
coupled equations provide for the corresponding chemi-
cal potential and the gap function. If only S-D pairing
is present, the gap function is expanded according to

(k) = —(-1) + At, (k),

b, (k) = —(—1) + At, , (k),

(A5)

(A6)
(A14)

t'1 1
(k) = ) G

~

—o., —o')lo + o.'
(
C(lcr + o', Im( lm

+or + o') Y~ (k)A~M(k),

for diagonal and nondiagonal matrix elements in the
isospin space, respectively. It follows that the gap func-
tion has the structure of a "unitary triplet" state, much
the same way as the two phases of superQuid He, namely,
considering the gap function as a 2 x 2 matrix in spin
space A, one has

where M = o. + o' + m is the projection of the total
angular momentum J = 1 of the pair, and 1=0, 2. The
C's are the Clebsh-Gordan coupling coef6cients and the
Y's are the spherical harmonics. The isospin indices and
the coupling at T = 0 have been omitted. Inserting the
expansion Eq. (A14) in Eq. (A12), one gets a set of
coupled equations for the quantities E~~(k), which is the
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generalized gap equation for the coupled channels l = 0
and l = 2. These equations can be simpli6ed by using an
angular average of D(k) in the energy denominator

d(k)' = —f dko(k)~ . (A15)

a, (k) =-) 5 V„.(k, k')
A. " k'

(A16)

where Vj~ is the interaction in the partial wave represen-
tation. Equation (A15) gives

It has been shown (see Fig. 3 in Ref. [11])that, in the case
of P2 superBuidity, this is an excellent approximation,
which introduces an error of at most few percent. In
the present case it should work even better, since the
energy denominator is positive definite and has a weaker
angular dependence. Then the gap components b,~M(k)
turn out to be independent of M. The state of equations
reduces to two coupled equations for the S and D gap
components Lo and L2, respectively. They read

where U, (U ) is, to the leading order, the expecta-
tion value of the Hamiltonian in the superfluid (nor-
mal) ground state; p, (p„)and n'(n-) are the chemical
potential and the occupation numbers, respectively, of
superfluid (normal) state. According to the discussion
made in Sec. III it is instructive to perform the dilute
gas limit. In this case we can expand LE in powers of

&& = & ).I&-I'+ 2).(p —2 -)I&-I'.

Taking into account that N = P& Igs[ to the lowest
order the energy shift per nucleon is exactly equal to the
nuclear binding energy in the deuteron.

According to the discussion of Sec. IIIB it is interest-
ing to investigate the low density and temperature limit
of the deuteron production along an isentropic line. This
can be done combining both the asymptotic expressions
for pg and for the entropy which can be found in the
textbooks [17]

d(k)' = —(&o+ &')

which indicates that the set of equations (A16) is non-
linear. At zero temperature the energy shift due to pair
correlations in the BCS limit is given by

1 f kT) pc —& gsT'
1/z —e

2 EEo)

ps (kr—-1+
I

p (po )

(A19)

(A20)

AE = (U, +. p, N') —(U„+p,„N)
d(k)2

EA. A — —cA A )k 2E k)
k,a

(AIS)
where p, = (2m'Eo/5 Ipo[vr) ~2. Eliminating the tem-
perature between Eqs. (A19) and (A20), one ends up
with Eq. (7) of the text.
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