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The extent to which information about Quctuations in hadron-nucleon total cross sections in
the frozen approximation can be extracted from very high energy hadron-nucleus total cross section
measurements for a range of heavy nuclei is discussed. The corrections to the predictions of Glauber
theory due to these Quctuations are calculated for several models for the distribution functions,
and differences of the order of 50 mb are found for heavy nuclei. The generating function for the
moments of the hadron-nucleon cross section distributions can be approximately determined from
the derivatives of the hadron-nucleus total cross sections with respect to the nuclear geometric cross
section. The argument of the generating function, however, it limited to the maximum value of a
dimensionless thickness function obtained at zero impact parameter for the heaviest nuclear targets:
about 1.8 for pions and 3.0 for nucleons.

PACS number(s): 18.85.Lg, 11.80.La, 25.80.Dj, 25.40.—h

I. INTR.ODUCTION

There has recently been a revival of interest in the
use of the cross section distribution function to describe
certain features of hadronic collisions [1—3]. The gen-
eral approach, which goes back to the work of Good and
Walker [4] in 1960, begins with the composite nature of
hadrons and assumes that at high energies the internal
degrees of freedom are "frozen" during the collision [5].
Many features of high energy reactions can then be dis-
cussed, at least approximately, in terms of a single dis-
tribution function which gives the probability that the
initial hadron is in one of the configurations which in-
teracts with a given total cross section. Discussions of
this distribution function for incident pions and nucle-
ons interacting with nucleons, including estimates of the
second and third moments, are given in Refs. [1] and
[2]. The discussion below tries to answer the question
of whether more information about these distributions,
and thus more information about the composite nature
of the hadrons, can be obtained by a careful study of
hadron-nucleus total cross sections.

The answer to this question is closely related to the
importance of inelastic intermediate states in hadron-
nucleus scat tering, which has been discussed exten-
sively [3]. In particular the systematic experimental
study of Murthy et aL [6] confirmed earlier theoretical
estimates of these eKects, including their energy depen-
dence. Here a similar discussion is presented in the lan-
guage of the cross section distribution function. This
approach is valid only in the high energy limit, where
the frozen approximation has a chance of being valid,
but has the advantage of including all orders of inelas-
tic scattering, which might well be important for heavy
nuclei.

Section II gives a brief review of how the distribution
function is defined, and what is known about it. Then
Sec. III summarizes the approximations and assumptions

which are necessary to obtain a simple formula [3,7] for
the total hadron-nucleus cross section in terms of the gen-
erating function for the reduced distribution function, the
argument being a reduced nuclear thickness function. In
Sec. IV the limiting case of uniform nuclear density is
discussed. It is shown that in this case the generating
function of the distribution function is just the derivative
of the total cross section with respect to twice the cross
sectional area of the nucleus. This result shows clearly
that the amount of information we can hope to obtain
from nuclear cross sections is limited because the argu-
ment of the generating function is proportional to the
nuclear thickness function, and thus limited by the lim-
ited sizes of stable nuclei. This discussion is extended to
the more realistic case of %'oods-Saxon nuclear densities
in Sec. V. For these densities the derivatives mentioned
seem to approach the generating functions from above
for large nuclei. In addition the numerical results of this
section give some idea of the sensitivity of these quan-
tities to reasonable changes in the distribution function,
and thus an estimate of the experimental accuracy re-
quired to distinguish among diferent possibilities. These
results are discussed in Sec. VI, along with suggestions
for further investigations in this area.

II. CB.OSS SECTION DISTB.IBUTION
FU NCTION

At high energy it is assumed that the internal config-
uration, here labeled by a Greek letter n, P, etc. , of a
hadron interacting with a target is frozen during the in-
teraction so that the transition amplitudes are diagonal
in these states:

where E ~ is the transition operator in the space of the in-
ternal degrees of freedom of the incident hadron. The am-
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plitudes for transitions between ordinary hadronic mass
eigenstates i and j on a given target are then
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leading to the moments

where i and j must represent states with the same Qavor
quantum numbers, so j must be either i or a state which
can be diffractively excited &om it. Using the same nor-
malization as Blattel et al. [1,2] the total cross section for
hadron i incident on the target is

~' = 4~™&~
I +-p I ~& = ).~-1&~

I ~) I

'

where o. is the total cross section for the hadron in con-
6guration o. to interact with the target.

If the cross section distribution function P; is defined

(n+ m) !
n! (n+m)

Blattel et al. [1,2] suggest several different forms for the
pion-nucleon and nucleon-nucleon cross section distribu-
tion functions, all of which fall off with x more rapidly
than the f 's. Based on the expected behavior of the
pion and nucleon internal wave functions they also as-
sume that f(0) vanishes for nucleons, but not for pions.
The behavior at large x, however, is more problematic.
The main object of this paper is to see if a careful and sys-
tematic study of hadron-nucleus total cross section can
shed any new light on these distribution functions.
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b ((r —(r ), (4) III. HADRON-NUCLEUS CROSS SECTIONS

this becomes

a; = (i~v~~x) = f p~(a)~da; (5)

i.e., o; is just the average of o. over the distribution P;.
The same distribution can also be used to calculate the
forward total differential cross section for diffractive scat-
tering, if the transition amplitudes are assumed to be
pure imaginary, for then

In Glauber theory, which itself uses the &ozen approx-
imation for the nucleons in the nucleus, the total cross
section for scattering of a hadron i &om a nucleus A can
be written as

(12)

where

= ~). I &i I
+.p I'& I'

f=o jgi

For scattering in the high energy regime discussed by
Blattel et al. [1,2], (o) = 24 mb for pions on nucleons
while (o) = 40 mb for nucleons on nucleons. Exper-
imental results on high energy forward diffraction dis-
sociation on nucleons gives &(r2& =1.25(o)2 for nucleons,
while &(r2) = (1.4—1.5) &(r)

2 for pions. It is also possible to
put constraints on the third moments of the distributions
using diffraction dissociation on deuterons, but only by
making fairly strong assumptions about the transitions
between excited states.

For the developments below it is convenient to intro-
duce reduced distribution functions

I;(A, b) = i —(AI [1-~;.(b)] IA),

with p; the analog of I' for the scattering of the hadron
i &om the nth nucleon in the nucleus. In "standard"
Glauber theory, where the internal degrees of &eedom of
the hadron are ignored, p; is just a numerical function
of b and r, the position of the ath nucleon (except for
possible spin and isospin dependence, which we ignore
here). In general, however, p should be interpreted as an
operator in the internal space of the hadron, and

r;(A, b) = i —(A I (' I [1 —~-.(b)] I
') I A) (14)

I

This expression can be simplified considerably if a
number of assumptions are made. First, if the nuclear
wave function is completely uncorrelated

f'(*) = ( & &'(& & ) I', (A, b) = 1 —&'
I [1 —(A

I p (b) I A)] I ). (15)

so that

(*")' =- f « f~(*) *" = (~")* / (~),"

The simple Poisson-like distributions

f„(x) = [(n+ 1)"+' / n!]x" exp [—(n+ 1)x] (9)

will be used below'for illustrative purposes because they
lead to analytic formulas in some cases. The generating
function, for example, is

Then, if the range of p is much less than the nuclear
size,

o - A
r;(A, b) = 1 —

&i I
1 — PT(b)

I i),
2

where T(b), the thickness function, is the integral of the
nuclear density along a straight line at impact parameter
6 and o p ls twice the integral of p p over impact param-
eter space. In general p p and o.

p are both operators in
the internal space of the hadron taking complex values,
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but if the imaginary part is ignored then 0.
p is exactly

the operator described by the distribution function P,
introduced in Sec. II. Finally, if A is large and cr ~T(b)
takes only small values, then [3,7]

I'; (A, b) = 1 —(i
l

exp — T (b) Aj l i)
2

1 —(i
l

exp [ t (A—, b)x p] l i),

then, one could check the assumptions of Refs. [1] and
[2] that f;(0) vanishes for nucleons, but not for pions.
Unfortunately, as noted above, the range of t is limited
by the limit on the sizes of stable nuclei to values less
than 3.

For many purposes it is useful to decompose Eq. (12),
together with Eq. (17), as

where

t(A, b) = AT(A, b)(o) / 2

is the dimensionless reduced thickness function, and

Xop = 0 op O

where

is the Glauber result, and
~19~

d b G'i i [t(A, b)]

(23)

(24)

is the dirnensionless reduced cross section operator. In
other words, I'; is determined by d'b G~ l [t(A, b)] (25)

(i
l

exp ( t x p)
—

l
i) dx f;(x) exp ( t x), —(20)

the generating function for the reduced distribution func-
tion f;(x)

The reduced thickness function t(A, b) is expected to
be largest for b = 0 and to increase nearly monotonically
with A. For the largest stable nuclei (A = 238, say),
t 3.0 for incident nucleons and 1.8 for pions. We can
therefore not hope to get information on the generating
function for t greater than these values from nuclear total
cross sections.

If f;(x) does not converge rapidly enough at large
x then the short-range and exponential approximations
may be invalid. The short-range approximation is essen-
tial if the nuclear cross sections are to be expressed in
terms of f, (x), but the exponential approximation is to
some extent just a convenience: a version of most of the
results below could be obtained without it. For small t

i lexp( txr) li) =—1 —t+t &i lx Ii)/
(21)

f;(0) f,
'

(0)(i l exp( txo ) li) + + ' (22)Dp t2

provided the series converges. (It does converge for all
t for all the examples of Refs. [1] and [2], but for the
Poisson-like distributions the radius of convergence in
n + 1.) Since (i l

x
l

i) is about 1.4 to 1.5 for pions
and 1.25 for nucleons, and some constraints on (i

l
x

l i)
can be obtained from forward difFractive cross sections
on deuterons, the generating function is already fairly
well determined for small t. Nuclear cross sections will
provide new information only if they can be used to con-
strain the generating function for values of t larger than
about 1.

The behavior of the generating function for very large t
is determined by the behavior of the distribution function
near x =0:

is the decrease due to the dispersion in the hadron-
nucleon total cross section. (It is easy to show that G~Dl
cannot be negative and vanishes only if there are no Quc-
tuations in o.) The integrand in Eq. (24) is simply

G~ i (t) = 1 —exp (—t), (26)

IV. UNIFQHM DENSITY LIMIT

As noted above, new information about the generating
function can be obtained from total cross sections only for
heavy nuclei. The nuclear densities p(r) are then nearly
constant in the nuclear interior, falling quite rapidly to
zero at the nuclear surface. In this section the extreme
uniform density limit is assumed:

g(r) = 0(R —r) / (47rR /3), (28)

where B roA /, with ro —1.1 fm, is the nuclear ra-
dius. In this limit, replacing A by the equivalent and
more convenient label B,

t(B, b) = t(B, 0) QI —(b/R) 2 e (B —b),

where

t(R, O):—nB,

with

while

G (t) = (i l
exp ( t x &) l

i)——exp (—t). (27)

Because o.l~l is a fairly small correction to o, (A), in
applying these formulas to experimental data it may be
sufhcient to include nondispersive corrections, such as
nuclear correlations and corrections to the short-range
approximation, only in cr~ l, leaving 0 (D) as the simple
expression above.

where f, (x) is the mth derivative of f;(x). If the gen-
erating function could be determined for large enough t, n —= o / (47rro / 3). (31)
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With this simple expression for t(R, b), for any expres-
sion for a contribution to a total cross section of the form

0~ ——2 d bGt B,b (32)

it is easy to show that the derivative

der~ / (2vrRz) = t"[t(R, O)]. (33)

V. WOODS-SAXON DENSITIES

A more realistic nuclear density, especially for the
heavy nuclei of main concern here, has the Woods-Saxon
form

go (R)
1 + exp [(r —R) / ap]

' (34)

In other words, the slope of the cross section contri-
bution as a function of twice the nuclear geometric cross
section is just the function G evaluated at the maximum
value of t(R, b) for that nucleus, obtained at zero irn-
pact parameter. Since G can be chosen to be 1 minus
the generating function, or the generating function mi-
nus exp( —t), it is then trivial to extract the generating
function at t(R, 0) &om the derivative of the cross section.
This relation, however, is exact only for the uniform den-
sity case. In the next section the accuracy of this relation
for more realistic Woods-Saxon densities is studied.

1000 2000 3000 4000

2zR (mb)
FIG. 1. Dispersive contribution to pion-nucleus scattering

as a function of 2vrR, where R is the radius parameter in
the Woods-Saxon nuclear density. Curves 6, c, and d are cal-
culated using the corresponding distribution functions shown
in Fig. 1 of Ref. [2], while curve a is calculated using a dis-
tribution function which is a superposition of the n = 0 and
n = 1 exponential distributions defined in Sec. II. This dis-
tribution was chosen to match distribution c at o.=0 and has
(o ) / (o) =1.7 instead of the value 1.5 of distributions b, c,
and d.

where ao =0.523 fm is the surface thickness parameter,
and

i ) g. (a) = -' ~s' (i + ~' ",) (35)

is chosen so that the volume integral of p is unity. (The
parameters B for a number of diferent nuclei have been
determined by Gts to total cross sections at energies below
30 GeV/c, where inelastic contributions are expected to
be small [6,8]. More exact nuclear densities can be deter-
mined &om electromagnetic form factors, but the Woods-
Saxon form is sufficient for present purposes. ) Although
there is an exact analytic expression for

t(R, O) = Argo (R + ln [1 + exp (—R / ao)]), (36)

the thickness function for other values of b must be ob-
tained by numerical integration. For this density the
derivative relationship found in Sec. IV is not exact, al-
though one might expect it to be a good approximation
for large B where the density is quite uniform over most
of the nucleus. In this section numerical results deter-
mining its accuracy are presented.

Figure 1 shows 0 (R) as a function of 2mRz for four
diferent pion-nucleon cross section distribution functions
for pion-nucleus scattering. Distributions b, c, and d are
the same as in Fig. 1 of Ref. [2], while distribution a is
the superposition of two Poisson-like distributions intro-
duced in Sec. II. Figure 2 shows the analogous curves
for nucleon-nucleus scattering, together with two experi-
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FIG. 2. Dispersive contribution to nucleon-nucleus scatter-
ing as a function of 2mR, where R is the radius parameter
in the Woods-Saxon nuclear density. Curves 6 and c are cal-
culated using the n = 2 and n = 6 distribution functions
shown in Fig. 4 of Ref. [1], while curve a is calculated using
a distribution function which is a superposition of n = 1 and
n = 4 exponential distributions chosen to also give (a. )
1.25(cr) . All these distributions vanish at cr=O. The experi-
mental points with their errors are taken from Ref. [6].
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mental points, along with their error bars, &om Ref. [6].
Here curve a is a two-term exponential while b and c are

Ref
L
1j. ~

~The n = 10 distribution gives results which~ ~

are almost identical to those for n = 6. In using the dis-

parameters slightly so that (1) = (T) = 1.0 more pre-
cisely. ) For small 27rR2 all the distributions give nearly
the same crD(R) because only low moments contribute,
but for large 2vrR2 there are difFerences of order 50 m .
Since these are of the same order as the experimenta
errors in Ref. [6], it is clear that more accurate exper-
iments on heavy nuclei at very high energy are needed
if the hadron-nucleus cross sections are to discriminate
among difFerent cross section distribution functions.

I F' 3 the slopes in Fig. 1 are compared with t en lg. e s
GD [t(.R, 0)] 's for the various distributions. At large t e
two quantities are simi ar,

~ ~

imilar but G is uniformly below
the derivative, although the difFerence slowly decreases
with increasing

'
h

' B. The corresponding results for nuc eon-
nucleus scattering are shown in F g.Fi . 4. It seems t at
one might get a reasonable estimate for G+ if oD(B)
could be measured accurately enough. This would be
particularly true if an estimate for the surface corrections
to the derivative relationship at large R could be found.
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0.00
1000 2000 3000 4000

FIG. 4. The solid curves are the derivatives of the corre-
sponding curves in ig.d' F' 2 while the adjacent dashed curves
are the G~ of Eq. (27) for the same distributions, evaluated
at t(R, 0) as given by Eq. (30).

VI. CONCLUSION

0.20

Pion-Nucleus

0.15

bd(2sR )
0.05

0.00
1000 2000 3000 4000

FIG. 3. The solid curves are the derivatives of the corre-
sponding curves xn ig. , wd ' F 1 while the adjacent dashed curves
are the G of Eq. (27) for the same distributions, evaluated
at t(R, O) as given by Eq. (30).

The results above suggest that accurate measurements
of the total cross sections for the interactions of hadrons

cross section distribution functions, fixing the generat-
ing functions up to fairly large arguments and selecting

among models suggested by theoretical prejudices and
constraints on the first few moments. Very high energies
are required for the validity of the "frozen configuration"
approxima ion, w i et h'1 errors in measuring cross sections
ranging to more anthan 3000 mb must be restricted to per-
haps less than 10 mb. The dispersive efFects are larger
for pions than for nucleons, but unfortunately the maxi-
mum value of the argument of the generating function is
sma er or pions ecause11 f ' b use of their smaller cross sections
on nucleons.

Even if the results of such difIicult measurements were
availa e, owever, mobl, Ii more work is required before t ey
could be unambiguously interpreted in terms of the dis-
tribution functions. The formulas above depend upon a
number of simplifying assumptions: the frozen approx-
imation, the neglect of nuclear correlations, the short-
range approximation, and the neglect of the real part of
the hadron-nucleon scattering amplitude. Fortunately, as
noted in Ref. [6], the energy dependence of the total cross
sections gives us a handle on many of these. For energies
high enough that the Glauber approximation is valid, but
low enough that inelastic contributions do not yet con-
tribute significantly, the total cross sections, as well as the
difFerential cross sections, can be used to check assump-
tions about the nuclear wave functions and approximate
formulas for correlation corrections [9], which seem to in-
troduce corrections comparable to those due the Quctu-
ations discussed above. For much higher energies t e to-
tal cross sections should approach constant values (aside
&om slow changes due to the energy dependence of the
hadron-nucleon parameters) if the frozen approximation
is asymptotically valid. The existence of this limit will
depend upon the spectrum of massive difFractively ex-
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cited states and the form factors for their coupling to
each other, about which little is known.

It would be useful to have more information about the
surface corrections to the relation between the generating
function and the derivative of the total cross section as
a function of R derived in Sec. IV in the uniform density
approximation. Preliminary investigations suggest that
for Woods-Saxon distributions these corrections should
decrease as an inverse power of R. If this is true it should
be possible to obtain more accurate values for the gener-

ating functions by studying the dependence of the total
cross sections on R.
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