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Intermittency in microscopic simulations of multifragmentation
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We investigate the intermittent nature of the mass spectra resulting from computer simulations
of head-on nuclear collisions leading to multifragmentation in the frame of the quasiclassical nuclear
model (QCNM). It is found that these spectra show what is called strong intermittency.

PACS number(s): 25.70.Pq, 24.60.Ky

I. INTRODUCTION

Intermittency analysis has bedn used in many fields
of theoretical physics including turbulent flows [1], per-
colation models [2], and particle production in ultrarel-
ativistic heavy-ion collisions [3]. Existence of intermit-
tency implies scale invariance properties and it has been
pointed out that it can be a signature of a phase transi-
tion. Recently this kind of analysis has been applied to
nuclear multi&agmentation.

The possibility that the fragment spectra resulting
&om intermediate energy nuclear collisions show inter-
mittency is a topic of debate. It has been suggested re-
cently [4] that the appearance of this effect in the analysis
of experimental data is due to improper binning of events
corresponding to diferent excitation energies or to us-
ing a multi&agmentation model that predicts excessively
broad multiplicity distributions. In Ref. [4] the analysis
was performed using a statistical model. On the other
hand, using a model with the saxne philosophy [5] it was
found that the final spectra showed intermittency. Both
calculations share the shortcoming that the Anal &ag-
ment spectra are obtained assuming that the system un-
der study has reached thermodynamic equilibrium prior
to &agmentation. For a recent review of intermittency
analysis in nuclear fragmentation, see Refs. [6, 7].

It has recently been shown that the final &agment
structure is strongly related to the earliest formed bound
density fluctuations in phase space, indicating that
nonequilibrium eKects should play an important role in
any analysis of fragmentation processes [8—10].

To explore this eKect in the study of intermittency we
calculate it taking as an input the mass spectra generated
through a fully microscopic simulation of head-on nuclear
collisions at intermediate energy using the quassiclassical
nuclear model (QCNM) [11].

ons (A = At + Az with At the target nucleons and A„
the projectile nucleons), each of the resulting final frag-
ment spectra can be considered as a set of N &agments
distributed over M bins of size by = A/M. The factorial
moment of order i is defined by [3]

(2)

where (%) is the mean multiplicity of the sample events.
Following Ref. [12], moments calculated in this way will
be referred to as horizontal moments.

Intermittent behavior exists when the factorial mo-
ments follow a power law

(F;) - M~', 0 & (p; & i —1,

where the log-log plot slope parameter y; can be used to
characterize the intermittency strength. The description
may also be given in terms of the generalized dimensions
D; commonly used in nonlinear physical phenomena re-
lated, for i ) 2, to &p; by [13]

D;=-1 —. (4)

where n is the number of &agments in bin m, the an-
gular brackets denote the average over a large number
of experiments, and V; = 2:(x —1).. . (x —i + I). The
following alternative de6nition has also been suggested
for the analysis of the kind of processes to be analyzed
in this work:

II. INTERMITTENCY

Intermittency is a way of extracting out the chaotic
aspects of a given distribution function. The method of
factorial moments is suitable for considering dynamical
fluctuations without bias &om statistical ones, hence it is
appropriate to analyze the characteristics of the fragment
distribution.

Given a set of collision experiments involving A nucle-

In the limit i ~ 0, D; equals Mandelbrot s similarity
dimension. For homogeneous &actals D~ = D; and for
inhomogeneous fractals D~ ) D; for j & i [14, 15].

The QCNM

The QCNM has already been described in a series of
publications (see Ref. [11] and references therein) and
for the sake of completeness we briefly describe its main
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characteristics. In this model the finite nuclear system is
simulated via a set of classical particles labeled with spin
and isospin labels. These particles interact via a classical
two-body potential which reads

(a) Nucleons being members of a cluster C must be
bound,

ViCC, e;=T;. +) V,, (0,
V = Vn+ Vp+ Vc, (5)

where

Vp(p... q,~) = Vop exp —0.5 " + " br;~ho. ..
(&o qo )

(6)

where p;z is the relative momentum and q;~ is the relative
distance. &-,

~ and bo;~ are Dirac s deltas in isospin and
the spin labels, respectively. This is the term responsible
for simulating the Pauli exclusion principle, while

1

exp ( Pr;, + p—)

(7)

is the so called nuclear term, and

Vc(r;~) =
rii

(8)

III. B.ESULTS

Two sets of evolutions were obtained using the above
mentioned model. In these simulations two spin-isospin
symmetric nuclei of mass 40 performed head-on colli-
sions; one set (hereafter referred to as I) corresponds to
the projectile boosted to an energy of 40 MeV/A, and the
second one (II) to an energy of 80 MeV/A. In this way we
are isolating the efFects due to the dynamical evolution of
the system &om the geometrical ones and no uncertainty
due to binning will remain.

The simulations span an extremely long time interval
of 1200 fm/c, so that the final configurations considered
in the calculation of the intermittency are very close to
the final asymptotic ones. This property can be veri-
fied. by analyzing the complete evolutions using the early
cluster recognition algorithm (ECRA) [8]. The calcula-
tion of the &agment spectrum in the ECRA formalism
is based on the following considerations. Given a system
of nucleons (i.e. , a configuration resulting from a molec-
ular dynamics simulation of a heavy-ion collision) whose

2
Hamiltonian is of the form H = P, —"*' + g, V~, then
the following conditions apply.

is the Coulomb term.
In this model the parameters (Vp„pp, qp Vp

rl, al, a2, P, p ) have been fitted in order to properly de-
scribe some properties of nuclear systems such as the
binding energy of finite nuclei and the equation of state-
(EOS) of iiuclear matter (for infinite nuclear matter Vc
is set to 0) with a compressibility It = 350 MeV and a
binding energy of Eb 16 MeV at a density of p 0.17
fm (see Ref. [8]).

where T,, is the kinetic energy of particle i calculated
in the c.m. of the cluster C and g. V~ is the potential
energy between particle i and all ot6er particles belong-
ing to C.

The Az target and A~ projectile nucleons are grouped
in clusters and &ee nucleons under the constraint that
each cluster nucleon obeys (a).

This grouping is not unique. For a given set of AT
+ A~ nucleons many partitions which obey (a) may be
possible. Then an extra condition is imposed.

(b) The cluster structure of the configuration under
study is the partition that maximizes the total binding
energy of the system (each fragment is considered as non-
interacting with the others or with free nucleons).

A subset of complete evolutions was analyzed as a func-
tion of time using the ECRA algorithm and compared
with the result obtained using a simple configuration-
space minimum spanning tree (MST) cluster recognition
algorithm with a clusterization radius of 6 fm, which
corresponds to the range of the attractive part of the
nuclear potential term in the QCNM. In the MST ap-
proach a cluster is defined in the following way: let i
and j denote two members of a given cluster C, then
Vi C C 2j C C/

~

r;-rz ~( R,i, where R,~ denotes the
clusterization radius and rk the spatial position of parti-
cle k.

In Fig. 1 we show the average number of &agments
for three mass ranges as a function of time according to
the ECRA (full lines) and the MST cluster recognition
algorithm (dashed lines) (see figure caption for details).
It can be seen that the population of the selected mass
bins have reached. their asymptotic values for times much
smaller than the final evolution time. It is then appropi-
ate to use the MST approach for the calculation of the

Fragment Mult.

a)

b)
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PIG. 1. Multiplicity per bin as a function of time accord-
ing to ECRA analysis (full lines) and simple MST recogni-
tion algorithm (dashed lines) (notice that the ECRA results
attain asymptotic values much earlier that those correspond-
ing to the q-space analysis) for mass bins (a) 3(A ( 5, (b)
5(A ( 7, and (c) 7( A ( 9.



INTERMITTENCY IN MICROSCOPIC SIMULATIONS OF. . . 917

intermittency exponents of the asymptotic &agment dis-
tribution.

It must be emphasized at this point that when the frag-
ment spectra are calculated at very long times their struc-
ture does not depend strongly on the cluster recognition
algorithm employed. At this stage of the evolution, the
system can be viewed as a dilute mixture of &ee nucleons
plus some small &agments. These &agments form com-
pact structures in both q space and p space and are well
separated &om one another or from the &ee nucleons. As
a consequence, the result does not depend strongly on the
size of the clusterization radius as long as it is neither too
small (i.e. , using B = 3 fm the same fragment spectra are
obtained), nor too big. On the other hand, it is also im-
portant to note that for short times (i.e. , t ( 200 fm/c,
see Fig. 1) MST analysis does not provide a proper view
of the &agmentation process. In fact, in recent publica-
tions [9, 10] it has been shown that fragments are already
formed in phase space before they can be recognized in
configuration space. Then, for early times, cluster anal-
ysis of the ECRA type is necessary. This fact seems to
have been overlooked in recent works [16].

Both sets I and II consisted of 150 collisions, which
turn out to provide good statistics as can be seen &om
the dispersion of the calculated moments (see below).

The colliding nuclei being of mass 40, we have to an-
alyze &agment distributions with 4=80. Factorial mo-
ments of order i=2—10 were calculated and averaged over
the set of simulations. The generalized dimensions D,
were extracted for bin numbers M=5—80 (smaller bin
numbers are of no interest since the largest fragment mass
is less than 20, so for bin numbers M=1—4 scale invari-
ance is trivial). Finally Do was extrapolated from the
data. For the sake of completeness normal and horizon-
tal factorial moments were calculated with no noticeable
difference in the final results.

Figure 2 shows the log-log plot of the factorial moments
vs the number of bins M for diferent moment orders i for
the two sets of collisions that were analyzed. In all cases
the linear dependence of E, upon M is evident. Through
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FIG. 2. log-log plot of the factorial moments (F,) vs num-

ber of bins (M) for order i = 2 (+), 3 (triangles), 5 (dia-
monds), and 10 (open circles), for (a) case I and (b) case II.
Straight lines denote fitting in order to get the corresponding
dimension (see text for details).
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FIG. 3. Generalized dimension (D;) vs moment order (i)
(dots). The dashed line denotes extrapolation to order 0 for

(a) case I and (b) case II.

a standard least squares fit the slopes y; of these graphs
were determined and then the dimensions D; were calcu-
lated. The results are summarized in Fig. 3 where D,. is
plotted vs i. A strong intermittency pattern can be no-
ticed since all dimensions are lower than 0.35. While the
I'; values within a set have a relative dispersion of 1%, the
relative error in the values of the dimensions arising from
the linear fit is below 10% for both cases. Since D~ g D,
for different i, j the underlying physical phenomena must
be multi&actal in nature. The relation between D; and
i can be suitably fitted by an exponential function for
set II whereas for set I this relation seems to be more
complex. From these data the respective values of Dp
were obtained via extrapolation; the resulting values are
0.45 p 0.05 for set II and 0.6 g 0.1 for set I .

These results suggest that the mass spectra in multi-
&agmentation may eventually show intermittent behav-
ior even if events of a given energy and impact parameter
are isolated from the experimental data. It also follows
that a question should be raised regarding the validity
of thermodynamic models for the analysis of this kind.
of process, i.e. , the assumption of thermal equilibration
prior to &agmentation. Once the possibility of finding
intermittent behavior in fully dynamical simulations of
&agmentation processes has been established, one more
question remains: are we in the presence of critical phe-
nomena related to a phase transition? According to [6]
intermittency is not only a signature of critical phenom-
ena but also a way of characterizing it; on the other hand,
in a recent work [17] a word of caution has been raised
calling attention to many possible sources of spurious
intermittency signals, amongst which finite size effects
seem to be crucial. More work should be done in this
direction, for example, analyzing the intermittency sig-
nal in expanding infinite periodic systems, a domain in
which we are currently working.
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