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We extend the formulation of relativistic Coulomb sum rules to account for the average effects
of nuclear binding on the initial and final states of ejected nucleons. Relativistic interactions are
included by using a Dirac representation adapted from a vector-scalar field theory. The scalar
field reduces the effective nucleon mass M* and increases the relativistic effects of recoil and Fermi
motion. We consider two models for the off-shell behavior of the nuclear electromagnetic current
and demonstrate that the sum rule is accurate for applications to data over the interesting range of
M' and three-momentum q. We further indicate that the form of the sum rule is sufficiently general
to accommodate a broad class of off-shell form factor models.

PACS number(s): 25.30.Fj, 11.55.Hx, 24.10.Jv

I. INTR.ODU CTION

The subject of this paper is the Coulomb sum rule
(CSR) for inelastic electron scattering [1], in a reformula-
tion which extends its validity to relativistic momentum
transfers q ) M, where q = ~q~ is the three-momentum
transfer to the target nucleus, and M is the nucleon
mass. The purpose of this work is to provide practi-
cal methods for the analysis of the longitudinal (e, e')
response of nuclear targets, at the higher energies now
available at the Continuous Electron Beam Accelerator
Facility (CEBAF) and other electron accelerators. In a
previous paper [3], we derived a relativistic Coulomb sum
rule (RCSR) which incorporates the relativistic efFects of
nucleon recoil at large q, as well as of Fermi motion. In
the present work we extend this theoretical approach to
include the efFects of nuclear interactions on the RCSR.

In our recent article, we discussed in detail the assump-
tions under which a RCSR could be derived. The basic
approximation is that only nucleon, i.e. , as opposed to
antinucleon, degrees of freedom enter the CouloInb re-
sponse in the spacelike regime accessible by (e, e') exper-
iments. We call this the "nucleons-only" approximation;
it ignores efFects of antinucleons, but includes fully the
relativity of the nucleons. Following conventional treat-
ments, we adopt an impulse approximation which ig-
nores explicit contributions from the exchange of charged
mesons. We include nucleon anomalous moments and
elastic form factors, which are important at higher en-
ergies. The Anal assumption is less conventional, but
absolutely necessary. In order to derive a non-energy-
meighted suxn rule, it must be possible to factor all de-
pendence on the photon energy w from the current matrix
element, otherwise unwanted dynamical efFects enter into
the Coulomb response function and complicate the isola-
tion of correlation efFects. In this paper, we restrict our

For a derivation of the nonrelativistic CSR in second quan-
tization, see Ref. [2].

attention to form factor models which have factorable
dependence on u.

We de6.ne the nuclear Coulomb sum in terms of the
Coulomb response function Wc (w, q) and the proton
electric form factor G@„(Q2):

z(q) = wc(~, q)
&z,„(&')'

where the lower limit w+& excludes the elastic peak, and
the upper limit q restricts the integration to spacelike
four-momenta. Under the assumptions of Ref. [3] men-
tioned above, we obtain a RCSR which can be expressed
in terms of one- and two-body contributions:

z(q)—:z('i(q) + c(q) + zi'„) (q),

where the one-body contribution is of the form

Zi'i(q)—:2) n (p) r (p, q),

(1.2)

(1.3)

C(q) includes two-body correlation information in mo-

mentum space, and E„„(q)is the uncorrelated two-body(2) ~

part which is related to the square of the nuclear elastic
form factor, as discussed in Ref. [3].

In the one-body term (1.3), n (p) is the nucleon mo-
mentum distribution function for isospin projection o.

and one spin projection, and r (p, q) is a kinematic fac-
tor which arises due to relativistic nucleon recoil and
Fermi motion in the target. In the nonrelativistic limit
(q (( M), we have r„—+ 1 and r ~ 0, which leads to
Z( i(q) ~ Z; then the sum rule (1.2) is the result of
Ref. [1]. The relativistic efFects are all in the functions
r (p, q), representing recoil of the struck nucleon and
Fermi motion in the target ground state. In Ref. [3]
we further showed that (1.3) does not depend strongly
on the details of n (p), but only on the lowest momen-
tum moments, e.g. , (p ) . This leads to a method of
evaluating (1.3) accurately in a weakly model-dependent
manner, and in principle permits the extraction of the
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correlation function C(q) from the experimentally mea-
sured Coulomb sum (1.1), using (1.2).

In the present paper, we investigate what changes are
required in the sum rule when the Coulomb sum Z(q) is
modified by relativistic two-body interactions. We study
the efI'ect of the average interaction in the nucleus us-
ing the mean-Geld approach of quantum hadrodynamics
(QHD), a relativistic field theory for nuclear physics [4].
In particular, we consider QHD-I, which includes vector
and scalar isoscalar mesons only. We then reformulate
the Coulomb sum rule of Ref. [3] so that results (1.1)—
(1.3) have a similar structure, but with modifications re-
fIecting the mean-field efI'ects of these relativistic inter-
actions.

These modifications have two main efI'ects on the
RCSR. First, there are kinematical eBects resulting from
mean-Beld. interactions of the nucleons, which are repre-
sented in QHD-I by a reduction in the efFective nucleon
mass M* in the medium. Consequences of a reduced ef-
fective nucleon mass M* for the Coulomb sum have been
considered previously in a Fermi gas model [5,6]. These
calculations include interactions of both initial and Gnal
plane-wave nucleon states with the mean Gelds, through
the effective mass M*, which can be interpreted as bind-
ing in the initial state, and final state interactions of the
ejected nucleon with the nucleus. Chinn, Picklesimer,
and Van Orden [7,8] have studied the efFects of final state
interactions on the Coulomb response of a Fermi gas,
using more realistic interactions, and have seen similar
efFects to those seen due to M*/M (1. Second, the elec-
tromagnetic coupling of the nucleon in the medium may
be modified by the mean fields, entering through the ofI'-

shell behavior of the nucleon elastic form factors. Both
modifications introduce a degree of model dependence in
the RCSR which is not present in the nonrelativistic for-
mulation, nor in the relativistic formulation of Ref. [3].
We show how these features can be incorporated into
the theory to allow the evaluation of the one-body con-
tribution Z~il(q), and the subsequent extraction of the
two-body correlation function C(q) from the measured
Coulomb response.

This paper is organized as follows. In Sec. II we intro-
duce the basic formalism to include relativistic mean-field
efFects in the Coulomb sum rule (RCSR). We introduce
two models (F and G) for the electromagnetic charge op-
erator, and investigate the resulting behavior connected
to difFerent oK-shell assumptions for the nucleon elastic
form factors. In Sec. III, we derive a modified version
of the RCSR (1.1)—(1.3), concentrating on the explicit
changes to the one-body term Zi l(q) in ofF-shell mod-
els F and G. In Sec. IV, we illustrate the operation of
the sum rule in a simple nuclear system: uniform nuclear
matter treated in the mean-Geld approximation, with nu-
clear binding effects incorporated using QHD-I. We ex-
amine the sensitivity of the RCSR to M* and to the
choice of off-shell model (F and G), focusing on the con-
vergence of the moment expansion in each case. We fur-
ther demonstrate that the particular form of the RCSR
given here is applicable to both models, and argue that
the same form should also be valid for a broad class of
form factor mod. els. In Sec. V, we draw conclusions, give

guidelines for the application of the RCSR to data, and
indicate important directions for future work.

II. FORMALISM

In this section, we review the formalism for electron
scattering from nuclei, as it pertains to our development
of relativistic Coulomb sum rules. We first give some
standard. results of the plane-wave impulse approxima-
tion (PWIA), which is used for the analysis of (e, e')
experiments on nuclei, in a single-particle basis which
accounts for the vector and scalar interactions of QHD-
I. We then give two models for the nucleon form factors
ofI' shell, which will be used in the next section to illus-
trate the sensitivity of the sum rule to difFerent ofI'-shell
assumptions.

A. PWIA in M' basis

We begin with the difFerential cross section for the scat-
tering of ultrarelativistic electrons &om nuclear targets,
which is commonly written in the form

d'o do Q4

dB'dE' dO'

fl Q2 20+
l

— + tarP — WT ((u, q)(2q2 2
(2.1)

where q" = (u, q) is the four-momentum transferred from
the electron to the nucleus via virtual photon exchange,
and Q = lql —u ) 0. The longitudinal contribution
in (2.1) has been expressed in terms of the Coulomb re-
sponse function

Wc(~, q) —= ).1(f1Jo(v)l&)I ~(~ —Ex+ E;), (2.2)
f

where ]i) and
l f) denote initial2 and final nuclear many-

body states, respectively.
In general, the electromagnetic current density opera-

tor J„(q) may include contributions from both nucleons
and charged mesons. Meson exchange current (MEC)
contributions have been considered by Schiavilla et al. [9],
for example, but are not included here. Including only
nucleons with electromagnetic form factors, the current
density operator can be written in the form

~ (q) —= J &'*'""&(")r (v)@(") (2.3)

where g(x) is the (Schrodinger picture) field operator
for a point Dirac nucleon, and I"„represents the electro-
magnetic coupling at the pe% vertex. There is also a

For notational simplicity, we assume a nondegenerate target
ground state; the results are easily generalized to unpolarized
targets with J+0.
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sum over proton and neutron isospin projections, which
will be suppressed until needed. Any effects of charged
mesons not included in the current operator (2.3) may be
interpreted as two-body effects, as discussed in Ref. [3].

To proceed to a relativistic sum rule, we shall expand
the field operators @(x) of (2.3) in a plane-wave basis,
i.e. , in a PWIA. In Ref. [3], we took this to be the free
basis, i.e., the momentum eigenstates of the free Dirac
equation. In the present paper, we shall instead expand
the field operators in a basis of plane waves moving in
the presence of uniform (isoscalar) Lorentz scalar and
vector potentials, such as would be generated by scalar
and vector mesons in a relativistic field theory of nu-
clei, e.g. , QHD-I. With this modification, the theoretical
development is formally similar to that of Ref. [3]. The
consequences of the change of basis show up after the nu-
cleons only approximation, in which antinucleon degrees
of freedom are removed approximately from the space-
like Coulomb response. In the following, nucleons only
will refer to nucleons in the presence of scalar and vector
potentials in the target. The effect of this modification
is to include efBciently the effects of these mean-field po-
tentials in both the initial and final target states.

We therefore use the plane-wave solutions of the Dirac
equation

p" (iB„—g„V„) —(M —g, P) Q(x) = 0, (2.4)

where the scalar and vector potentials are written in
the forms g, P and g„V~, respectively, corresponding to
the scalar and vector fields P and V~, and the associ-
ated coupling constants. Here, as in the mean-Geld so-
lution for uniform nuclear matter at rest, V„= b Vp,
and Vo and P are constants. The solutions to (2.4) are
discussed in detail in Ref. [4]. In the case of uniform
fields, the energy eigenvalues of (2.4) take the simple form

Ez ——g„Vo + F*, where F' = gp2+M' and the effec(+)

tive nucleon mass is defined as M* = M —g,P. With
the nucleons-only approximation, we need only consider
positive-energy solutions to (2.4). These are plane-wave
solutions of momentum p, which obey the equation

p F* —p p —M* u, (p) = 0. (2.5)

Explicit forms for the interacting solutions u, (p) can
be obtained directly from the free solutions, given in
Appendix A of Ref. [3], by making the replacement
M ~ M*. Since the vector potential g Vp appears ad-
ditively in the nucleon eigenenergy, it does not appear in
(2.5) or its plane-wave spinor solutions.

In Ref. [3] we argued that the Coulomb response func-
tion (2.2) for spacelike (w ( ~g~) photon exchange is dom-
inated by nucleon (NN) contributions to the current
matrix elements, and that antinucleon (NN) and pair
(NN) terms could be neglected. This is an exact result
for a uniform &ee Fermi gas, and leads to the nucleons-
only approximation for interacting nuclear systems. The
presence of a strong scalar Geld in the nucleus induces
mixing of &ee N and N states, particularly for nucle-
ons of high momentum, as in the final states of (2.2).
However, transforming to the plane-wave basis formed

from the solutions of (2.5), hereafter referred to as the
"M* basis, " removes this mixing by the potentials. The
nucleons-only approximation is again adopted for inter-
acting nuclei, but here refers to nucleons of mass M*.
This use of the M* basis for final states implies sub-
stantial interaction of excited (ejected) nucleons before
leaving the target, and is probably a better assumption
for large nuclei than for small. Then the electromagnetic
current operator takes the form

- u" (p+a)
&

u. (p)J„(q) = ) ) . I'„(q) a + .,a~„(2.6)
p Bs V X+~ V p

where a~, is a creation operator for a nucleon with spin
projection 8 and momentum p. The energy denomina-
tors in (2.6) refiect the normalization of the plane-wave
spinors to 2F* particles/volume. The formal derivation
of the RCSR now follows closely that of Ref. [3], once
we have discussed the form of the electromagnetic vertex
operator I'„(q).

B. OfF-shell nucleon form factors

It is conventional to express the pNN vertex operator
in the form

K VI &(q) = Fig& + z F20'»q
2M

(2.7)

GM(Q') —&E(Q')
1+7

(2.8)

For simplicity, ere discretize the sum over the momentum

where r is the nucleon anomalous magnetic moment, M
is the &ee nucleon mass, and Eq and E2 are the Dirac
and anomalous form factors, respectively. In general, Eq
and F2 are scalar functions of p, p', and q. This form
is suKciently general for matrix elements between nu-
cleon states (antinucleons excluded) as in the nucleons-
only PWIA. Since the tensor o.„ is antisymmetric, only
the three-momentum g enters explicitly the Coulomb op-
erator I p. Any remaining dependence on the photon en-
ergy u enters I p ofll,g thI'ough the form factoIs Ey and

For scattering &om a &ee nucleon, the form factors
Fi and E2 depend only on the scalar Q . To ensure
the correct charge and magnetic moments for free nu-
cleons, they are normalized at Q2 = 0 according to
Fi„(0) = E2„(0) = F2„(0) = 1 and Fi„(0) = 0. The
form factors Fi and F2 are obtained from (e, e') scatter-
ing data, usually in terms of the more convenient Sachs
electric and magnetic form factors G~ and GM.

+&(Q ) + r&~(Q )
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where w = Q /4M and Q—:—(k~ —k„'), i.e. , the photon
four-momentum is determined by the four-momentum
transfer at the gee vertex. For a single nucleon in free
space, both energy and momentum are conserved at the
pe% vertex as well, and we have p'„= p&+q~. See
Appendix A for an alternative form of (2.7) which is
expressed. in terms of the Sachs form factors. We use
the standard parametrization of the Sachs form factors,
along with the assumption G~„(Q ) = 0, as discussed in
Ref. [3]. This choice has the convenient feature that all
Sachs form factors are proportional, which satisfies a con-
dition assumed in our derivation of a non-energy-weighted
sum rule in Ref. [3].

For interacting nucleons in a nucleus, one needs infor-
mation about the form factors ofF their free mass shell,
which is simply not known. This leaves considerable
freedom to extrapolate off shell Rom the known on-shell
forms. Given no other information, a common approach
has been to assume that the dependence on Q2 of the
form factors Ei(Q ) and E2(Q2) does not change ofF shell
from that for a &ee nucleon. This implies, at least in
part, a separation of the dynamics of the electromag-
netic structure of the nucleon &om that of the nucleus.
However, even this assumption does not uniquely spec-
ify the o6'-shell form factors, because of the freedom to
transform I'„(q) using the Gordon identity to other op-
erators with other form factors, each of which are equiv-
alent on shell, but not oK shell. This issue has been
considered by de Forest [10], and by Chinn and Pickle-
simer [ll], who have given examples of possible choices of
extrapolation, and studied the sensitivity of the response
functions and of the Coulomb sum to those choices. Our
method is similar in principle, but is based specifically
on the Gordon transformation which relates Eq and E2
to the &ee Sachs form factors G@ and GM, given in (2.8)
for free nucleons. We consider two possibilities: that the
functional dependence on Q of the functions Ei(Q ),
E2(Q ) is unchanged off shell (model F), or alternatively
that the functional dependence on Q of the functions
G~(Q ) and G~(Q ) is unchanged off shell (model G).
Other choices are possible. For example, in principle, the
vector field Vo may also enter the current operator. We
restrict our attention to models F and G which illustrate
the important issues and do not depend on Vo.

The first choice, model F, is the most common; here
it is simply assumed that the Dirac and anomalous form
factors Ei(Q ) and E2(Q ) are unchanged in the nuclear
environment, i.e. , that they are given by (2.8) where
both the Sachs form factors and the kinematic vari-
able 7 = Q /4M are evaluated at the actual momen-
tum transfer of the experiment, i.e., at the momentum
q„= k„—A,

" found at the electron vertex. This is in
some sense a minimal assumption, in that the e8'ects
of the scalar field enter explicitly the current operator
J„(q) only through the nucleon field operators. In spite
of its apparent simplicity, this model has the peculiar fea-
ture that the Dirac and anomalous magnetic moments
are treated differently in the nuclear medium. This fol-
lows since the Dirac moment (e/2M*) scales with the
nucleon mass M*, as can be seen from the solution of
(2.4) for a nucleon at rest in the presence of a uniform

magnetic field, while the anomalous moment (Ke/2M) is
unchanged in the medium. This behavior is possible for a
theory with point Dirac nucleons dressed by charged me-
son fields, such as QHD-II [4], since the anomalous mo-
ments in such a theory are typically included explicitly
by hand, following a solution of the many-body problem
using point nucleons. However, this behavior is not likely
for a theory with internal nucleon electromagnetic struc-
ture, such as @CD, since there one expects that the Dirac
and anomalous magnetic moments may have similar ori-
gins, and therefore may respond in a similar manner to
the nuclear environment.

An alt, rnative assumption, which we call model G, is
that the Sachs electric and magnetic form factors G@(Q )
and GM(Q ) are unchanged in the nuclear medium. To
express I'„(q) in the form (2.7), the transformation (2.8)
is now performed in the M* basis: the o8'-shell forms of
Eq and F2 are now given in terms of the free Sachs form
factors by

G@(Q ) + 7*G~(Q )
+

M GM(Q2) —G@(Q2)
M*

(2.9)

where the new variable j*:—[q2 —(E'+ —&")2]/4M*
contrast to model F described above, the ofF-shell choice
(2.9) leads to a total nucleon magnetic moment equal
to (1+v) e/2M*. In particular, the efFective Dirac and
anomalous magnetic moments behave similarly in the nu-
clear medium. [Note that the factor M/M*, appearing
on the right-hand side of E2 in (2.9), has the efFect of
replacing K/2M by ~/2M* in (2.7).] Also, since 7* de-
pends only on the momenta p and q, the photon energy
u now enters the form factors Ei and F2 only through
the Sachs form factors G@(Q ) and GM(Q ). This can
be seen by expressing I'0 in the alternate form given in
(A5) of Appendix A. In the next section, we will see that
model G leads to a relativistic Coulomb sum rule which
is the direct analog of that derived. in the free PWIA, but
with M —+M*.

III. COULOMB SUM RULES

The derivation of a RCSR based on the interacting
PWIA of Sec. II is formally similar to that based on
the free PWIA of Ref. [3]. We begin with the Coulomb
response function (2.2), and formally evaluate the space-
like Coulomb sum (l.l) by integration over the photon
energy w. As described in Ref. [3], to arrive at a non
energy-weighted sum rule it must be possible to factor all
dependence on w (which here enters through Q2) from
the current matrix element in (2.2). This can be accom-
plished by requiring that the ratio I'p(q)/G~„(Q ) be in-
dependent of cu, since the plane-wave spinors appearing
in (2.3) are functions only of the three-momenta p and
g. For a system of Dirac protons, for which I'o ——po, this
is satisfied trivially. In model G, it is satisfied by explicit
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construction, using the assumption of proportional Sachs
form factors. For more complicated ofF-shell models, such
as model F, which do involve explicit dependence on u,
the derivation of a RCSR may require further assump-
tions. In this article, we will assume that the above con-
dition is satisfied, and outline the remaining steps which
lead to a RCSR.

We next use closure to perform the sum over final
states in the squared matrix element. In the nonrelativis-
tic Coulomb sum rule, in which the integration is over all
~, the use of closure here is exact. In the relativistic
case, the use of closure over the spacelike states alone
requires certain assumptions about the spacelike nuclear
excitation spectrum, as discussed in Ref. [3]. These ar-
guments were based primarily on the example of a Fermi
gas. We make similar arguments here, and assume that
the spacelike spectrum is saturated by the nucleons-only
response, where now "nucleons only" refers to positive-
energy baryons of mass M*. After performing the sum
over final states

~ f), the momentum-space anticommu-
tation relations are used to separate one- and two-body
terins, as in (1.2). The relativistic recoil function which
appears in (1.3) is of the form

next section, we will study how the convergence proper-
ties of this moment expansion depend on the parameter
M*, and on the particular choice of oK-shell model. We
now give the precise forms of the recoil factor r, (q) in
models F and G.

A. Sum rules in model C

We first consider model G, in which we assume that
the medium dependence of the nucleon electromagnetic
coupling is described by the off-shell form factors (2.9).
By construction the form factors I"i and I'2 depend on Q
only through their linear dependence on the free Sachs
form factors, which are assumed to be proportional. This
ensures that the ratio I'o/Ga„(Q ) is independent of the
photon energy cu. With this condition satisfied, and since
the baryon spinors are also independent of cu, the matrix
element j,), (p, q) is a function only of three-momenta
and the separation of one- and two-body terms in Z(q)
proceeds as described above, leading to (1.3).

Using the form factors (2.9) in (2.7) to evaluate the
matrix element j,), (p, q) we obtain

))'(P) q) ) ~ 2)) 8 ET(P~) q)
88I

(3.1) r (p, q) = e' r~(p, q) + p' rM(p, q), (3.5)

where the matrix element is defined by
where we have defined the electric (E) and magnetic (M)
recoil functions

u"-(p+q) I'.(~) n-(p)
/2E'+ G~p(Q2) /2E* ' (3 2)

1 (E* +E )" (P'q) = 1+-* 4E*E*
P P+9

(3.6)

Zi'l(q) = ) N r; (q) (p') (3.3)

where the momentum moments are defined as

and u, (p) represents a nucleon with momentum p, spin
s, and isospin projection o. The above expressions are
identical in form to those obtained in the free PWIA of
Ref. [3], but with the replacement M -+ M*.

Although the one-body term, evaluated using (3.1) and
(3.2), would account exactly for the relativistic effects of
nucleon recoil and Fermi motion, it requires knowledge
of the nucleon momentum distribution n (p) in the tar-
get ground state, which is not normally known precisely.
We therefore expand the recoil factor r (p, q) in powers
of the nucleon momentum p, as in Ref. [3]. Assuming
spherical symmetry, the one-body term takes the form

7=*(E*+ + E*)' —(1+~*)q'
rM(p, q) =

P+a

Ip x q['
& + &* 4M' 4EpEp+~

(3.7)

G@~(Q ) 1 fora=p
G~„(Q2) 0 for o = n '

The functional forms of r~ and r~ can alternatively be
obtained by writing I'~ of (2.7) in terms of G~ and GM,
as explained in Appendix A. In (3.5) we have also defined
the nucleon electric charge e (in units of the proton
charge) and the total magnetic moment p (in nuclear
magnetons):

2
(p')- —=

N ):n-(p) p',
P

(3.4) GM (Q ) 1+lcp foro =p
GE„(Q2) e„ for o = n.

(3.8)

and N = Z, N for o =p, n, respectively. In Ref. [3], we
explained that only the first few moments are required to
obtain an accurate result for the one-body term. In the

We have changed notation slightly from Ref. [3j, in naming
the expansion coefficients r, (q).

The functional form of the recoil function (3.5) is iden-
tical to that obtained in the &ee PWIA of Ref. [3], but
with M + M'. This was ensured by choosing to include
the factor M/M* in (2.9). As described above, we ex-
pand r (p, q) in powers of the nucleon momentum p,
which with (1.3) leads to an expression for the one-body
term Xiii(q), as in (3.3). The expansion coeKcients are
given in Appendix B, and are identical to those obtained



906 D. S. KOLTUN AND T. C. FERREE 52

B. Sum rules in model F

We now return to model F, in which we assume that
the nucleon form factors are given by (2.8). Now the
photon energy ~ enters not only through Q, which ap-
pears in the &ee Sachs form factors, but also through
7' = Q /4M, which enters in the transformation (2.8).
This additional dependence on u can not be removed by
simply dividing by an overall factor G~p (Q2), as in model
G, without some further approximation.

In order to proceed, we will first calculate the matrix el-
ernent appearing in (3.1), using the vertex operator (2.7)
and the form factors (2.8). Since division by G~p(Q ) is
not sufBcient to render the matrix element a function only
of the momenta p and g, this function will not yet lead to
the one-body term of the Coulomb sum rule. However,
it does serve as a useful starting point to illustrate the
important issues. We obtain

r-(p, a;Q') = G@ (Q, ~*)

Gap(Q')

2

«(p, ~)

+ ', r~(p, a), (3.9)
Ep

in the free PWIA of Ref. [3], but with M -+ M". In this
model, therefore, we can include the relativistic effects of
a strong scalar field, in a straightforward extension of the
RCSR derived in the free PWIA.

maining a dependence, which arises through the variable
7 in (3.11). A simple method is based on the excitation
energy of a uniform Fermi gas in QHD-I, which is ex-
pressible simply in terms of the three-momenta p and q:
u = E*+ —E*. We therefore make the replacement in
(3.11)

, (M*) '
~(Q') ~ ~(Q')

cg=E'+ E — ( M )
(3.12)

r-(p ~) = ~.*'(~) «(p ~) + ~.*'(&) rM(p ~) (3.»)

to obtain energy-independent effective form factors. The
factor (M'/M) arises directly Rom the definition of 7

following (2.8). With the replacement (3.12) in (3.11),
the recoil function (3.9) is now independent of the photon
energy w, and the derivation of a non-energy-weighted
Coulomb sum rule for model F proceeds as for model G.

At this point, it is possible to expand 3.9) about p =0
and obtain a moment expansion for Z~i (cl), as in (3.3).
However, the resulting coefficients r; (g) are much more
complicated than those which arise from (3.5) in model
G, due to the dependence on p of the effective form
factors (3.11). In addition, we will see that the essen-
tial physics of Fermi motion enters (3.9) only through
the electric and magnetic recoil functions «(p, q) and
rM(p, q), and can be ignored in the effective form factors
themselves. It is therefore useful to consider an approx-
imation scheme which will allow a more efFicient evalua-
tion of the one-body term: setting p = 0 in (3.11) after
applying (3.12), we can write

where we have emphasized explicitly the dependence on
Q2. The form of (3.9) is similar to (3.5) for model G, but
with "effective" Sachs electric and magnetic form factors,
defined by

G@ (Q,f *)—:Fi (Q ) —~ 7.*F2 (Q ),

where we have defined the "effective" nucleon charges
and magnetic moments

GE.(Q' &*)
e*(g) =

g=o

GM. (Q' &*) = Fi-(Q') + &- M F2-(Q')

(3.10)

which reduce to the free Sachs form factors if M* = M.
Inserting Fi(Q ) and F2(Q ) of (2.8) into (3.10), we have

2M'+ M(E* —M')
2M2 + M'(E* —M*)

+@~
(M* —M) (E* —M*)

Q

2M'+ M*(E* —M')

(3.14)

Gz. (Q' &*)

G~p(Q2)

y+ M
M

1+7
M
M

1+v
GM. (Q' &')

&~(&) —
G (Q2) ~=o

GM. (Q' &*)

G~p(Q')

M
M

1+7

(3.11)

which illustrates the "mixing" of (&ee) electric and mag-
netic contributions in this model. This mixing enters as
a result of the reduced effective nucleon mass, and is dis-
tinct &om the usual Lorentz mixing which occurs for a
moving particle. EfFective form factors of the sort (3.11)
can also be seen in Ref. [6], for example.

To continue the derivation of a non-energy-weighted
sum rule, we must make some assumption about the re-

2M(M —M')
2M2 + M*(E* —M~)

I

2MM* + M*(E* —M*)
2M' + M*(E,* —M*)

following (3.8). We will refer to expression (3.13) as the
"factored moment expansion. " The effective form fac-
tors now enter (3.13) as functions only of the momen-
tum transfer q, but do not complicate its expansion in
p. That this simplification is a valid approximation will
be shown numerically in the next section.



NUCLEAR BINDING EFFECTS IN RELATIVISTIC COULOMB. . . 907

IV. SUM RULES FQR RELATIVISTIC
NUCLEAR MATTER

We now apply the sum rules d.erived in the previous
section to a model nuclear system: uniform nuclear mat-
ter in the relativistic mean-Geld approximation, as given
by QHD-I [4]. For this systein the effects of nuclear struc-
ture on the Coulomb sum Z(q) enter through the efFective
nucleon mass M* and through the nuclear electromag-
netic current, as we have discussed in Sec. III. We are
interested in the dependence of the Coulomb sum on M*
and on the choice of off-shell model (F or G) for the cur-
rent. We then demonstrate how to apply the sum rule
methods of Sec. III to the model system, as if it were
measured Coulomb response data. The analysis will nec-
essarily be model dependent, through the choice of M*
and the off-shell model (F or G), as well as through the
moments (p') of the nucleon rnomenta in the target. We
shall examine the accuracy of the moment expansion for
the "best-case" analysis, that is, for which the sum rule
parameters match those of the assumed nuclear model.
This will illustrate the convergence properties of the mo-
ment expansion in each model, and the validity of the
factored moment expansion in model F.

SA(q)—:—1 Z(q)
Z rA(q)

' (4.2)

where the recoil "correction" factors are deGned as

N
ri(q) = ro„+ rp„—

Z (4 3)

values of M* are obtained. from the self-consistent solu-
tions for uniform nuclear matter at saturation. Taking
Z = N and using the input parameters p~ ——1.42 fm
and E~/K = —15.75 MeV/nucleon, leads to the values
M*/M = 0.556 in the MFT, and M*/M = 0.718 in the
RHA. Although it may be argued that the model as-
sumptions of MFT are technically more consistent with
the nucleons-only approximation, it may also be true that
the resulting effective mass M* is too small due to the
simplicity of the model, as compared to optical potential
phenomenology (see, e.g. , Ref. [12]). In the calculations
to follow, we will show results using both the MFT and
RHA values of M* to illustrate the kinds of eKects which
can be expected. in this range.

For applications to data, it is convenient to cast the
RCSR in a slightly diferent form, so that the saturation
of the suin rule is more apparent. As in Ref. [3], we define
the "modified" Coulomb sum

A. Test in Fermi gas model
»i(q) —= «(q)+ "p(p')p+ Z"-(p')- (4.4)

&(~) = f, , ).~-(r) ~ —~-0+~)
2x) j, , (pq) (4 1)

We begin by computing the Coulomb sum E(q) for a
uniform Fermi gas of nucleons moving in uniform vec-
tor and scalar potentials. This has been studied previ-
ously [5,6]. The result can be written in the form

and. so on for higher orders. The expansion coefFi-
cients r; (q) are given in Appendix B. The moments
(p') are defined in (3.4). For applications of the RCSR
to Z(q) of (4.1), we will assume the sharp distribution
n (p) =())(py —

~p~) for the evaluation of the momentum
moments. Integrating this distribution over the Fermi
sphere of radius p~ leads to the ith moment, given by

8S (P*)- =
3

(4.5)

where the matrix element j, , (p, q) is defined in (3.2).
We will evaluate (4.1) by numerical integration over p
and 0, the angle between p and q. The result is indepen-
dent of Vo, for reasons given following (2.5). The factor
n (p)—:8(py —

~p~) restricts the sum over initial states to
include only those states which are occupied in the nu-
clear ground state, and the factor 1—n (p+q) ensures
that final states for which ~p+q~ ( p~ are excluded.
This Pauli exclusion is the only source of two-particle
correlations in this simple model.

We shall consider two particular values of M* which
arise in QHD-I, as well as M* = M. In the mean-field
theory (MFT), static polarization of the baryon vacuum
in the nuclear ground state (due to the scalar field P) is
ignored in the coupled Geld equations. In the relativistic
Hartree approximation (RHA), static vacuum polariza-
tion is included at the one-loop level. The particular

SA(q) = 1 + — C(q) + Zl'„l (q)ZTA q
(4.6)

as discussed in Sec. V of Ref. [3]. The Fermi gas model
includes only Pauli correlations, which vanish identically
for q & 2p~. Consequently, an application of the RCSR

This is consistent with the PWIA and the evaluation of
the RCSR on (4.1). For applications to actual data, how-
ever, it would be preferable to use the most accurate val-
ues available for these moments, e.g. , using experimen-
tally determined n (p) from (e, e'p).

Following (1.2), the above definitions lead to an ap-
proximate sum rule of the form

"MFT" and "RHA" are used here in the conventional sense
defined in Ref. [4].

Note the factor I/Z, which is not present in SA as defined
in Ref. [3].

In this notational scheme, r A(q) includes terms through
2A —2)
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mass M* can be accounted for accurately in both mod-
els F and G. Keeping only terms through O(p ) gives

5% accuracy, which is small on the scale of the dom-
inant kinematical effects. Keeping terms through O(p )
gives 1% accuracy. We emphasize that in both inodels
F and G, the RCSR was evaluated using the same mo-
ment expansion coefficients (those in Appendix B), but
in model F the effective charges and magnetic moments
depend on q and M*. This simplification requires using
a factored moment expansion, in which Fermi motion ef-
fects entering though the effective form factors G& and
GM are ignored. In the cases studied this is an excellent
approximation, as explained further below.

C. Discussion of results

of (3.14) for model F. In model G, br~(q) is multiplied
by the constant factor p„+p 11.4, while ~„+e„=
1. For M*/M = 1, this gives a 10—20% increase in the
Coulomb sum Z(q), as was discussed in Ref. [3]. As
M*/M decreases, the enhanced eff'ect of brM(q) increases
further: for M*/M =0.556, the Fermi motion correction
increases with q about as quickly as r~(0, q) decreases,
as shown in Fig. 5(b). This leads to the behavior of E(q)
for this value of M*, shown in Fig. 3(b), and remarked
on earlier, i.e., E(q) l. As M* is decreased to the
MFT value, this increase in brM effectively triples the
importance of higher moments. This accounts for the
decreased accuracy of the RCSR at O(p ), compared to
that applied to &ee nucleons.

Model F has qualitatively similar behavior, as we saw
in Figs. 4(a) and 4(b). Here, however, K(q) is modified

One can understand the results just presented by look-
ing individually at the electric and magnetic recoil func-
tions r~ and rNI, defined in (3.6) and (3.7), as functions
of M*. We shall look at the variations of e* (q) and p,

*
(q)

of (3.14) in model F, compared to e and p, in model
G. We are especially interested in the factored moment
expansion in model F. We shall exaxnine the reasons for
its success, and under what conditions such an approach
may be expected to work for other off-shell assumptions.
We argue that a factored moment expansion, like that
adopted here, should be accurate in a large class of off-
shell form factor models.

In Figs. 5(a) and 5(b), we show the electric and mag-
netic recoil functions, r@(pl q) of (3.6) and rM(p, q) of
(3.7), for two values of M*. In both figures, the solid
curve represents the electric term r~(0, q), which dom-
inates the Coulomb response for a system of Dirac nu-
cleons. The magnetic term r~(0, q) =0, as can be seen
from the second equality in (3.7). Thus the Coulomb re-
sponse for a nucleon at rest is purely electric, as noted
in Ref. [3]. The electric function r@(0,q) decreases from
unity at q =0 to its limiting value 1/2 as q ~ oo. These
limits are independent of M*; however, for smaller M*,
r~(0, q) decreases more rapidly with q, since it is a mono-
tonic function of q/M*. This increased suppression is
easily accommodated by using an appropriate value for
M*, as discussed for the Dirac case in Fig. 1.

The corrections for Fermi motion to r~ and rM are
also shown in Figs. 5(a) and 5(b), and are denoted by
br@(q) and brM(q), respectively. These corrections were
calculated by averaging r@(pl q) and rM(p, q) over the
Fermi sphere, taking p~ ——1.42 fm . For a system of
Dirac nucleons, br~ and br M enter the response with
equal weighting. We noted in Ref. [3] for M'/M = 1 that
this leads to a nearly exact cancellation over the entire
momentum range, and ensures that the lowest-order sum
rule, RCSR-I, is accurate to within 1%. Note that this
cancellation persists to 1% accuracy for M*/M ( 1,
although both br~ and brM nearly triple for M'/M 1/2,
as in the MFT example.

For nucleons with anomalous magnetic moments, this
near cancellation of br~(q) and brM(q) no longer occurs,
since these functions are multiplied by different factors:
e and p,

2 of (3.8) for model G, or e* (q) and p,
*

(q)
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FIG. 5. Electric and magnetic recoil functions, r~(p, q)
and r~(p, q), in a convenient separation. Results are shown
for (a) M'/M = 1 and (b) M" /M = 0.556. The functions
rz(O, q) (solid), brz(q) (dashed), and br~(q) (dot-dashed)
are shown; r~(O, q) =0. (Note the scale changes for br@ and
br~. )
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by the efFective charges and moments (3.14), which are
shown in Fig. 6 (solid curves). For this case (p,„* +p„* )
is somewhat smaller than (@2+p2 ) and increases with q
over the range shown. This explains the smaller values of
Z(q) in Figs. 4(a) and 4(b) than in Figs. 3(a) and 3(b),
and the upturn with increasing q in Fig. 4(b).

We have seen that the convergence properties of the
RCSR in model F are similar to those in model G, in spite
of the use of a factored moment expansion that ignores
certain Fermi motion effects, which would enter through
the efFective form factors (3.11). In order to understand
this result, we first examine the effective form factors
themselves. In Fig. 6, we show these in the form in which
they enter the recoil function r (p, q; Q ) in model F, i.e.,

[G& /GEz] and [GM /G~„] . We have used (3.12) and
M'/M = 0.556 in their evaluation. The dashed curves
show the form factors at p = 0, and the solid curves
were obtained by averaging over the Fermi sphere with

p~ ——1.42 fm . [Note that the electric form factors tend
to their free values in the limit @~0,while the magnetic
form factors tend to their free values in the limit q —+ oo.
This can be seen from the definitions given in (3.11).]
We see that the Fermi motion corrections to the ratios
[G'/G~z] are small coinpared to the ratios themselves.
Thus terms O(p ) and higher are small, especially in the
magnetic form factors. [Terms O(p q) vanish upon angle
integration with spherical symmetry, and therefore do
not contribute to the results in Fig. 6.]

To understand the success of the factored moment ex-
pansion, consider the second-order sum rule Sii(q). It
omits two types of Fermi corrections: (1) O(p2) terms
which come &om a moment expansion of the effective
form factors and multiply r@(O, q) and rM(0, q), and (2)
products of linear terms involving (p q), one term from
the effective form factors, and one &om the recoil factors

6 i & r &

)

i i & &

]

i r

r@ and rM. The first of these make at most 5% cor-
rection to the electric contribution, and less than 1%
correction to the magnetic, as can be seen from Fig. 6.
These terms can therefore be neglected to a good ap-
proximation. Linear terms do not enter the magnetic
contribution, as can be seen from the (p x q) factor in
(3.7). Linear terms have been omitted from the electric
contribution, and could in principle have been apprecia-
ble. In fact, these terms taken together result in less than
a 1% error in the RCSR, as can be seen by comparing
the dashed and dot-dashed curves for Sii(q) in Figs. 4(a)
and 4(b). Thus the success of the factored moment ex-
pansion in model F can be attributed to the smallness of
Fermi corrections in the effective form factors themselves,
and in part to the complete absence of linear terms in the
magnetic contribution.

We believe that the success of the factored moment ex-
pansion in model F may also occur for a much wider vari-
ety of off-shell models than we have considered here. The
basis for this claim is that Fermi corrections tend to be
small in general, representing effects of order (p~/M*)2.
The main exception is the magnetic correction, which
is substantial because of two properties: rM(0, q) = 0,
and (GM2„+GM )/G&„10. The magnetic contribution
brM is small, but is then enhanced by roughly an order
of magnitude by the anomalous magnetic moments. No
such enhancement occurs for br~. Thus in model F the
further corrections due to p dependence in [G& /G~„]
and [GM /G@z] are negligible. In other ofF-shell mod-
els, for which r (p, q) is expressible in the form (3.9), we
expect Fermi motion effects in the corresponding effec-
tive form factors also to be small. We therefore propose
that a factored moment expansion, like that employed
here in model F, may also be accurate for the evalua-
tion of Fermi motion effects in a wide variety of off-shell
models. This allows one to evaluate the RCSR using the
expansion coefficients given in Appendix. B. [We include
br@(q), although a small contribution in nucleon models
with anomalous magnetic moments, to ensure the cancel-
lation of Fermi corrections for the Dirac system, and to
allow the "consistent" calculation of Sii(q) in Figs. 5(a)
and 5(b).]

V. SUMMARY AND CONCLUSIONS

0
0 1 2

q (Gev)

FIG. 6. Effective form factors (squared) in model F, for
M*/M = 0.556. Solid curves are obtained by averaging (3.11)
with (3.12) over the Fermi sphere, and include Fermi correc-
tions to all orders. Dashed curves are e' (q) and p' (q) of
(3.14), as used in the "factored" moment expansion.

The main results of this paper can be summarized
as follows: The effects of nuclear binding in the mean-
field approximation enter the Coulomb response function
Wc (w, q) and the Coulomb sum Z(q) in a way that can
be characterized by a reduced effective mass M*. These
effects depend on the behavior of the electromagnetic cur-
rent for the off-shell kinematics in the nuclear medium.
The sensitivity of the Coulomb sum E(q) to the choice of
off-shell model has been discussed previously [10,11]. We
consider two illustrative models: F and. G. We demon-
strate in these models that the RCSR of Ref. [3] can be
extended to account for relativistic binding effects, in ad-
dition to the purely kinematic effects of recoil and Fermi
motion treated in Ref. [3]. The resulting RCSR is no
longer model independent, since one must make some as-
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sumptions about M* and the off-shell behavior of the
form factors. However, to the extent that the dominant
effects of the nuclear medium can be characterized by
the simple parameter M*, the Coulomb sum rule analy-
sis can be applied to data, with the goal of looking for
nuclear structure effects beyond the mean field, e.g. , two-
body correlations. We emphasize that the form of the
sum rule is sufBciently general to accommodate a broad
class of off-shell form factor models, i.e., those for which
the recoil function r (p, q) can be expressed in the form
(3.9).

The real change in transforming to the M* basis enters
through the nucleons-only approximation, under which
the sum rule is derived. Strong potentials in relativistic
models mix &ee N components into the initial and final
interacting nuclear states, and modify the spacelike re-
sponse function. Chinn, Picklesimer, and Van Orden [7,8]
have isolated the effects of this mixing of N components,
and. show results qualitatively similar to those seen in
Fig. 4. (Their form factors are closer to our model F
than G.) The transformation to an M* basis automati-
cally incorporates these potential effects in a convenient
representation, although the use of an effective mass inde-
pendent of position or momentum may only approximate
the physical situation.

How might one apply this RCSR to experimental data'?
First, the Coulomb sum Z(q) must be calculated &om the
measured Coulomb response function, as in (1.1). Then,
one must make some specific assumptions about the off-
shell behavior of the current operator, as discussed in Sec.
III. This should be cast in the G' form as in (3.10) and
(3.11) for model F [or G*=G(Q ) for model G], with the
substitution (3.12) to remove (approximately) any resid-
ual ur dependence from G& /G~„and GM /G@„. The
choice of model is not restricted to those presented in
Secs. IIIA and IIIB. With the factored moment expan-
sion, the relativistic recoil function (3.1) takes the form
(3.13) and the ratios G*/G@z are evaluated at p = 0, as
in (3.14). The recoil factor r~(q) is then evaluated in a
moment expansion, e.g. , to O(p2) as in (4.4), with (p2)
fixed by other experimental information, or by a model
as in (4.5), or as a free parameter. The expansion coeffi-
cients r; (q) are given in Appendix 8, and are functions
of the parameter M*.

The modified Coulomb suxn S~(q) is obtained by form-
ing the ratio (4.2) of the experimentally determined nu-
merator Z(q) and the (model-dependent) recoil denom-
inator Zr~(q). The expected behavior of Z(q) with in-
creasing q is that it will approach the one-body term
Z~xl(q) of (1.3), assuming that both C(q) and Z„„(q)~
0 in (1.2), as q-+oo. The modified suxn S&(q) will then
approach unity if the assumed form of the current is cor-
rect, and if the effective mass M* is appropriately chosen.
Should that be the case for a given set of data, it would
be reasonable to assume that the recoil functions have
been correctly chosen. The sum rule (1.3) can then be
used to investigate the two-nucleon correlation function
in the ratio form

by looking for deviations from unity at moderate momen-
tum transfers. The two-body correlation function,

1 C(q)&~(q)—:—Z r~(q)
' (5.2)
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is related to the standard nonrelativistic correlation func-
tion. [See Eqs. (5.8) and (5.16) in Ref. [3].] An interesting
application of the RCSR is the constraint of the viable
oR'-shell form factor models by analyzing the experimen-
tally determined Couloxnb sum Z(q) in difFerent off-shell
models and comparing to SA(q) 1 beyond the expected
range of correlations.

A further remark about the analysis of data with the
RCSR seems appropriate. It has become customary for
the experimental Coulomb response data to be integrated
in a modified form of (1.1), as suggested by de Forest [13],
in which the proton electric form factor G~„(Q ) is re-
placed by G~„(Q ) = G~„(Q ) g(1+7)/(1+2~), with
7" = Q /4M (see, e.g. , Refs. [14,15]). We explained in
Ref. [3] why this procedure will not lead to a non-energy-
meighted sum rule: to obtain a sum rule of the form (1.2)
or (1.5), the extra w dependence should not be introduced
into the definition of the Coulomb sum. The kinematic
effects included in the recoil factors r~(q) depend on the
three-momentum transfer q, rather than on the invariant
Q2. It is this property which preserves the sum rule in
passing from (1.2) to (5.1).

The use of the M* basis for both initial and final states,
with the same value of M*, implicitly assumes that the
nucleus is large enough that the nucleon kinematics in
the final state are sensitive to the scalar field. For smaller
nuclei, it may be necessary to account for the effects of
finite size. This could possibly be accomplished through
a rederivation of the RCSR in a Hartree representation
based on bound, localized nuclear states. Another issue
is the momentum dependence of the mean-field poten-
tials, as discussed in Refs. [16,17], for example. Since
the RCSR has been derived in momentum space, such a
modification is relatively straightforward. As a first ap-
proximation, which is consistent with our conclusion that
Fermi motion effects tend to be small, it seems reason-
able to use M*(0) for initial states and M'(q) for final
states. This prescription preserves the basic structure
of the RCSR, in that no further dependence on p is in-
troduced. This would require the initial and final state
masses to be treated distinctly, however, and would com-
plicate the form of the coeKcients in Appendix B.

We are currently investigating the effects of virtual
KK pairs (of mass M*) on the RCSR, as they enter inter-
mediate excited states in the random phase approxima-
tion. These were considered previously by Horowitz [18],
and appear to be significant. We are also interested in
how energy-dependent terms, which can enter in off-shell
models where a substitution of the form (3.12) is not
appropriate, affect the RCSR.

Z(2) q~ (q) =1+&~(q)+ Z""
ZF~ q
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APPENDIX A: I'„ IN TERMS OF SACHS
FORM FACTORS

(E*
G (q2) ( P+9 P)

1+~* 2M*

(q2)
'Ys'7 (p x 9)

2M* (A5)

An alternative form of the current operator (2.7) may
be obtained by making a Gordon transformation [19,20]
on matrix elements between &ee plane-wave spinors:

In model G, we use the on-shell forms of G@(Qz) and
GM(Q ), given in (A5). In model F, we use G& and
GM, given in (3.11). Expression (A5) makes clear the
origin of the functional forms in (3.6) and (3.7).

G (&') "+ (&') (A1)

where P„= 2 (p+p')„, and

1r~—:— ~~(I'. ~)(V. ~) —
(V V)(&.~)W~,P (A2)

pp: 2 $56p~p~P g p o

For @=0we have

(A3)

and the I" 's and G's are related by (2.8). Another form
of r~ may be obtained [21]:

APPENDIX B: COEFFICIENTS OF FACTORED
MOMENT EXPANSION

, E*+M*
rp (cl) = e 2E* (B1)

In this Appendix, we give the coeKcients r; for even
powers through O(p ) in the moment, expansion. These
are written as they appear in model G, i.e. , in terms
of the usual nucleon charge (e ) and magnetic moment
(l -):

1
&p = -(&~+~+&~)

2

rp —2psp (p x g).
(A4)

—4E*' + 5E*'M* + 2E*'M*' —3M*'
(

12E* M*

For matrix elements between mean-field spinors, we have
for @=0

E* —M*
+ p~

g
(B2)

1 E* —M*

+30E* M* —90E* M* —210E*M* + p —64E* —24E* M*+ 16E* M* —16E* M*

—48E* M' —24E* M*
g

These forms are also applicable to model F, upon making the replacements e —+ e* (q) and p —+ p,
* (q) using (3.14).
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