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Fully microscopic model of 200 Mev proton-1 C elastic and inelastic scattering
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An efFective two nucleon (NN) interaction in the nuclear medium is defined from an accurate
mapping of the NNg matrices obtained by solving the Brueckner-Bethe-Goldstone equations for
infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the
nonlocal effective proton- C interaction from which we obtain predictions of the differential cross
section and analyzing power for 200 MeV elastic scattering. The relative motion wave functions
so found are used as the distorted waves in a distorted wave approximation (DWA) study of select
inelastic scattering events. The effective NN interaction is used as the transition operator in those
calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found
froin a full (0+2)~ shell model evaluation of the positive parity states while a restricted (1+3)her
shell model space has been used to give the negative parity states. Results are compared with those
of the Op-shell model of Cohen and Kurath or with those based upon axially symmetric, projected
Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them
in calculations to compare with measured longitudinal, transverse electric, and transverse magnetic
form factors from electron scattering to many of the excited states of C. Using those models of
the structure of C in our completely microscopic model of the elastic and inelastic scattering of
200 MeV protons, good fits have been found to the cross section and analyzing power data.

PACS number(s): 25.40.Cm, 25.40.Ep, 21.30.+y, 24.10.Ht

I. INTRODUCTION

Und. erstanding the nature and syecifics of the potential
energy of interaction between two colliding nuclei is cen-
tral in almost all studies of their possible reactions. Con-
ventionally, elastic scattering data are used as measures
to assess any candidate form of such (nonrelativistic) in-
teractions. Also it is usual to consider those interactions
to have local forms that may be both complex and en-
ergy dependent and it is common to use an approximate
inverse method by adjusting values of parameters in the
chosen forms seeking a result that "best fits" measured
data [1].

A proper direct approach, however, is to start with
some forxn of the underlying two nucleon, (NN), g matri-
ces and, without adjustment, to fold them with the den-
sity matrices of the colliding systems. The optical poten-
tial so defined is nonlocal due to proper antisymmetriza-
tion of the projectile and target nucleons and to any non-
locality that may reside in the form used. for the NN g
matrices. The study of nucleon-nucleus, (NA), scatter-
ing then is favored as the antisymmetrization is the least
problematic in the theoretical development of the optical
potentials for elastic scattering. That is also the case for
inelastic scattering transition amplitudes when they are
defined within the distorted wave approximation (DWA)
and with appropriate large basis (microscopic) structure
wave functions. To date, few if any calculations have
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been made observing such a strict definition of a fully
microscopic description of NA scattering. Herein we
attempt to do so with an analysis of the scattering of
200 MeV protons &om 2C.

The elastic and inelastic scattering data of protons
kom C are particularly useful to study in a quest for
the "best" effective NN and NA interactions at medium
energies. First there are many states below 20 MeV in
excitation and which can be resolved easily for any in-
cident energy to 800 MeV. Second, those states include
both negative and positive parity ones as well as involving
both natural and unnatural spin-parity transitions (from
the ground state) and for both possible isospin trans-
fer values. Further there are much high quality scatter-
ing data available, especially cross sections and analyzing
powers. Also there are considerable data on the electron
scattering form factors against which the chosen Inod-
els of structure can be tested. Finally, the target is light
enough that reasonable large basis models of its structure
can be made for use in scattering analyses.

In this paper we have chosen to study the 200 MeV
data of Comfort et al. [2]; data that have a special in-
terest for us. This energy lies in a "transition" region
between low and intermediate energies in which one ex-
pects [3,4] not only efFects of nonlocalities in the efFec-
tive NA interaction but also density dependent effects
in the NN effective interaction upon which that NA in-
teraction is built, will be important. Furthermore, these
200 MeV data, and others in the energy range 120—185
MeV [5], have been analyzed in the past with a diverse set
of postulates about the reaction process and with a num-
ber of different effective interaction prescriptions. Most
of those data have been analyzed in the nonrelativistic
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distorted wave approximation (DWA) and usually with
either the Love-Franey (LF) [6,7] or the Hamburg [4] ef-
fective interaction. Those analyses have been considered
to be "microscopic" but they are really at best semi-
microscopic given the strict definition we have set above.
In all cases the distorted waves were generated using a
local and phenomenological model of the optical poten-
tial and the transition operators, while predicated upon
the NN scattering properties, were adjusted in line with
various DWA calculation results.

In most calculations of inelastic scattering the input
spectroscopy is quite limited. For the positive parity
states in C, the Cohen and Kurath (CK) Op-shell model
[8] has been used while the negative parity states were
obtained Rom the Millener and Kurath (MK) lsd-shell
model [9]. With such limited basis structure and at
higher energies, recent analyses of proton- C inelastic
scattering (Rom 200 to 800 MeV) [10] with the latest en-
ergy dependent LF force gave quite good results for the
cross sections but the analyzing powers were not well de-
scribed. However in those calculations adjustments had
to be made for each transition even to fit the cross sec-
tions. Core polarization corrections were needed to give
the observed magnitudes and the single particle bound
state wave functions were varied to give the best agree-
ment with the shape of the data. Also relativistic effects
must grow in importance with such a range of energies
as has been shown by coupled channel analyses of the
strong, collectivelike transitions [11]. That study, based
upon the Dirac equation, gave better fits to the measured
data &om 200 to 800 MeV than were found with any of
the nonrelativistic treatments. The fits to both the cross
sections and to the analyzing powers from the coupling
of the 0+, 2+, and 4+ states using the collective model
are exceptionally good [12]. An ultimate aim of our fully
microscopic approach is to achieve equivalent fits to the
measured results. Currently we are limited to using the
DWA given that inclusion of channel coupling in a micro-
scopic approach is orders of magnitude more complex, at
least &om the viewpoint of computation. Our studies are
based upon nonrelativistic theory but we have used rel-
ativistic kinematics in the optical potential calculations
of elastic scattering and in the DWA analyses of inelastic
transition data.

Within the distorted wave theories there are three ba-
sic ingredients that must be specified to calculate inelas-
tic scattering probability amplitudes. They are the opti-
cal potentials from which the distorted waves themselves
are to be generated, the effective NN interaction that
promotes each transition, and the structure information
of both single nucleon bound states and the many nu-
cleon target wave functions.

Given that the NN g matrices are most easi'ly specified
in momentum space, attempts have been inade [13,14] to
analyze nucleon-nucleus (NA) elastic scattering with a
momentum space solution of the Schrodinger equation.
But as yet there are no programs to use the resulting wave
functions to analyze other reaction data. Thus, as part of
this study is to investigate a select set of inelastic transi-
tions as well as the elastic event, we have chosen to work
with coordinate space solutions. The program DWBA91

of Raynal [15] enables us to generate microscopic optical
model potentials &om a specified NN effective interac-
tion and to use that same interaction as the transition
operator in subsequent DWA studies of inelastic scatter-
ing data.

In coordinate space, microscopic model studies of
(NA) elastic scattering begin by defining eff'ective inter-
actions to the actual NN g matrices one believes to be
responsible for the events. Those effective interactions
can have diverse operator character (central, tensor, two
body spin orbit, etc.) but always relatively simple local
form factors (i.e. , sum of Yukawa or Gaussian functions)
have been used. Furthermore the exchange amplitudes
arising &om antisymmetrization in the folding process
usually have been approximated to give a local equiva-
lent NA optical potential. Nevertheless, with such an
approach, elastic scattering data can be described quite
well [4,16). Until recently, the efFective NN interactions
used in NA scattering analyses were so determined but
then they were modified, often quite seriously, to better
describe the NA scattering data. By so doing, the ability
to accurately ascribe whether specific effects were due to
the fitting of the effective interaction or due to any of the
underlying properties of the scattering (the NN interac-
tion, medium effects, nuclear structure, etc.) was lost.
Of such forces, the LF effective interaction was based
upon the on-shell &ee NN t matrices (the NN scatter-
ing amplitudes) as defined by the Amdt phase shifts [17]
giving quite reasonable descriptions of scattering for en-
ergies up to 800 MeV. No constraints were applied to the
off-energy-shell properties of the t matrices or to allow
for medium modifications of those t matrices specifically.
That was considered a major limitation [13] although the
effective interaction was designed with impulse approx-
imation conditions in mind. A subsequent development
of the LF effective interaction treated medium modifica-
tions "on the average" but still did not offset nonunitary
problems associated with the method of specification [3].

In contrast, the Hamburg force was based upon g ma-
trix elements associated with the Paris interactioii [18]
and evaluated allowing for Pauli blocking and, very ap-
proximately, the average background mean field in which
the nucleons move. Those g matrices were cast as func-
tions of relative momenta (for each NN channel) whose
Fourier transformations were then mapped against those
of an effective (coordinate space) interaction. As with
the LF interaction, the Hamburg force was structured
to have central, tensor, and spin-orbit characters. Each
component had a set of four Yukawa functions as the
form factors. The ranges of those Yukawas were chosen a
priori and their strengths were then adjusted to minimize
the integrated squared difference between the values of
the original g matrices and those of the effective inter-
action in the range of momentum transfer up to 5 fm
The proton-nucleus optical model potentials were then
deduced by folding, and reasonable results were obtained
for proton scattering at various energies to 400 MeV from
targets ranging between C and zosPb.

However the Hamburg effective interactions do not re-
produce sufIiciently well the off-shell matrix elements to
which they were fit. In particular, they do not give a sat-
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isfactory representation of the zero density (&ee NN),
Paris t matrices. That motivated the development of
an efFective interaction scheme [19,20] to give an equally
utilitarian form. In the zero density limit (free NN scat-
tering), this new efFective interaction [20] is a good rep-
resentation of the half-ofF-shell Paris t matrices (at 200
MeV) for most low- J NN channels. With it and neglect-
ing medium corrections, optical model potentials were
found that also led to a reasonable description of the dif-
ferential scattering cross sections in two test cases: 200
MeV protons &om C and O. But the analyzing power
predictions were quite poor. On the other hand, by us-
ing an effective interaction that gave comparable fits to
the half-off-shell g matrix elements computed with both
Pauli blocking and average field effects in the relevant
Brueckner-Bethe-Goldstone (BBG) equations, the atten-
dant optical potentials for 200 MeV protons on both nu-
clei led to better fits to the differential cross section data
and very much better ones to the measured analyzing
power. The procedure used to obtain that effective in-
teraction [20] has been refined especially in regard to the
weight given to fits in select two nucleon channels so that
we now have an effective NN interaction for use at 200
MeV whose double Bessel transforms give excellent fits
to most low J NN g matrices for 0.5—1.0 fm about the
"on-shell" value [21]. More details will be given in the
next section.

That effective interaction has been used as input to
the program DWBA91, first to predict the cross section
and analyzing power for the elastic scattering of 200
MeV protons Rom C. To do so also requires that the
ground state spectroscopy be defined. This we have ob-
tained with various structure model calculations; struc-
ture models that also define the spectroscopy of the ex-
cited states that were considered in studies of inelastic
scattering. Details of the structure models we have used,
the spectra that result, and the electron scattering form
factors they yield, are presented in Sec. III.

The elastic scattering problem is solved using the code
DWBA91 by folding the effective interaction with the den-
sity matrix elements of the ground state and by allowing
for antisymmetrization between the projectile and each
and every nucleon in the target (all nucleons are "active"
in our calculations of C), the resulting optical poten-
tial has both a local "direct" and a nonlocal "exchange"
part. The latter component has been approximated by
a local equivalent term in the past, or simply ignored.
Specifics of the folding to give the optical potentials we
have used are given in Sec. IV along with the results of
those calculations.

The same effective interaction, the fully microscopic
(nonlocal) optical potentials, and the spectroscopic infor-
mation from our large basis shell model study (and from
others), have all been used in DWA analyses of select
inelastic scattering cross sections and analyzing powers.
The structures of the relevant excited states have been
used to define the optical potentials for the outgoing dis-
torted waves. Vie report the results of those DWA calcu-
lations in Sec. V. Quite different aspects of the effective
interaction are important in analyses of such scattering
according to the spin parity involved in the transitions.
Given that the ground state is a 0+ state that equates to
the spin-parity assignment of the final state. The qual-
ity of the various spectroscopic models used varies with
transitions and so we have cross correlated the (p, p') as-
sessments with analyses of electron scattering form fac-
tors.

II. THE EFFECTIVE INTERACTION

Nonrelativistic many-body theories of the NA optical
potentials are &amed around the NN t matrices which,
in momentum space and for channels (JST), are solu-
tions of the Lippmann-Schwinger equation,

(p, p k) = &L,L, (p p)+ —). &L,i (p»q), , tiL, (q p k) q dq
(JST) ( (JST) I 2 ~ (JST) I 1 (JST)

p q2 —k2 —ze

with k being the relative on-shell momentum. But when the struck nucleon is embedded in a nuclear medium, it is
more appropriate to use medium modified NN g matrices in optical model calculations. The g matrices used herein
are solutions of the BBG equation for infinite nuclear matter, i.e., of

'(p', p; k, ky) = &I'.I. '(p', p) + —) . &g$ '(p', q) [&]&('L '(q, p; k, ky) q'dq,
p

(2)

where

A(, , k, K, k, ) = q(q K kf)
E(q, K; ky) —E(k, K; kg) —iE,

in which Q(q, K; ky) is an angle averaged Pauli operator
with an average center of mass (c.m. ) momentum K
being

K = K(k; ky, po)

=(k +po)~ if 0&2k(kg —po

=((k +p ) —-' (2k+p ) —k~j)
if kf —pp & 2k & kf + pp

This prescription as set by Haftel and Tabakin [22], with
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po being the laboratory incident momentum and ky be-
ing the Fermi momentum, is known to be a good approx-
imation. The energies in the propagators of the BBG
equations include auxiliary potentials U defined by

E(q, K;ky) =
l l (q +K )+U(lcl+Kl)
fh2)
qm)

+U(lc1 —Kl) .

Details of the calculations have been given previously
[22,23] and the result is tables of complex numbers for
each incident energy, Fermi momentum value, and set of
relative momenta for each NN channel. In a free %%
collision the struck nucleon initially has zero momentum,
but when it is embedded in (local) nuclear matter that
struck nucleon can have a range of momentum values
and the relative and c.m. momenta are not necessarily
the same.

With any parameterization scheme to define an effec-
tive interaction one must first choose the set of input
data for which a fit is to be optimized. The data may
be purely real (such as for NK potentials themselves) or
complex (such as t or g matrices). One may restrict con-
sideration solely to on-shell or half-off-shell data or one
may take fully off-'shell information. It is possible even
to select a limited set of two body channel information.
Herein, the half-off-shell t matrices (and later g matrices)
are considered as these are the most pertinent quantities
in almost all N% problems. We define the input t matri-
ces as t&&, (k', k; E = k ), where J is the total angular
momentum of the %% system, S the spin, T the isospin,
I and L' the orbital angular momenta, k' the off-shell
momenta, and k the on-shell momentum.

Consider a local effective transition matrix in coordi-
nate space and of the form

for each operator of the central, tensor and spin-orbit set

(i) = (C, Sq2, and L.S). Therein S.' (E) are complex,

energy dependent strengths, A
' = 1/p. ' are the ranges

of the interaction, and j represents the set of ranges cho-
sen. In principle, the number of strengths and ranges
(n, ) chosen can be as large as one likes, though for all
operators n, = 4 seems to be suKcient for one to repro-
duce accurately the half-off-shell t matrices for laboratory
energies between 50 and 400 MeV [24].

To match data in the (JSTLL') channel form to the
effective interaction elements in the ST channel form,
the angular momentum state expectation values of the
three operators in the effective interactions are needed.
Explicitly, those expectation values are given by the set

(Oc) = ~r.r. ,

(Or. s) =
2 [J(J + 1) —L(L + 1) —S(S + 1)]br,r. ,

and

(Os„)

' 2bsg if L= J,
(2J+y) if L = L' = J —1

—2(J+2)
(2J ~-) if I =L = J+1,

(2J+~) QJ(J+ 1) if L = J + 1, I' = J p 1,

and it is possible to obtain the effective coordinate space
transition matrix in terms of central, tensor, and spin-
orbit components by

t.'(, E) =).(O.) t.". ( E)

""(E)=) S"(E)
i=1

(~)

) S(*)(E)

With this form of t,& (r, E) as the effective interaction,
a double Bessel transform determines the equivalent mo-
mentum space representation [19,22], viz. ,

t(( ~)~)~, (k', k; E = k ) = ) (O;) jr, (k'r) t *rr (r, E) jr. (kr) r +"dr

(')„~
jr. (kr) r +"dr= ) (O. ) S,"(E)

r

= ) (O;) S,
' (E), (k', k; p,.

* ),

where A = 2 for tensor states and 0 otherwise.
Assuming that the ranges are independent of energy

and momenta (and later of nuclear density), and that the
strengths depend only on the energy, the effective repre-
sentation may be separated into individual sets. The
optimal set of ranges and strengths then are those which
give a y minimization of

'(k', k; E) —&((.'s),),. (k', k; E) l l
(10)

Since it is desirable to have the minimization of
the t matrices centered around the on-shell value,
we include in the minimization the weighting,
exp (—[(k' —k) /P ]), where P is set to 0.3 fm . The
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process has been used with the g matrices as well so
that we have an effective interaction specified in terms of

g,& (r; E, A:y) where ky is the Fermi momentum. That(4)ST

Fermi momentum will have a radial variation when these
effective g matrices are folded with the density profile of
the C nucleus. The specific radial variation is defined
later.

Optimization of the effective interaction is facilitated
by using a two step process. First the ranges, assumed
independent of density (Fermi momentum), are deter-
mined optimally. One is &ee, of course, to specify values
for any of these ranges. Here we have chosen to do so
as previously [19]. To take into account the long-range

nature of the pion tail we set pz ——0.71 fm . We also
set the ranges of the tensor and spin-orbit components of
the interaction to be the same and limit their long-range
nature with pz ——1.25 fm . As for the short-range(L ~)

nature, in all cases we set pi ——4.0 fm, since ranges(L,-s)

shorter than this probe regions in which the NN inter-
actions are not well determined or if at all defined. The
other ranges were adjusted in various searches to give
good representations of the t matrices. The final values

used are p2 ——1.758 fm p = 2.949 fm p
2.184 fm, and p3

'
——3.141 fm . With the ranges

fixed, the strengths are then determined at the desired
energies and densities for each spin/isospin state by sim-
ple mapping techniques. Tables of the interactions used
herein (with g matrices found from the Paris interaction
in particular) are contained in Ref. [21].

The quality of our mapping procedure is illustrated
with the comparisons between the exact and effective
interaction (double Bessel transforms) free scattering t
matrices that are shown in Figs. 1 and 2. The real
and imaginary parts of the half-off-shell t matrices are
shown in those, respectively, and for the Pi, So, Si,
and Pi channels as indicated. At energies of interest,

0..0
P, S,

-0. 1

-0.2

-0.3

0.0
8

-0. 1

p
1

-0.2

-0.3 I I I

1.0 1.5 2.0

k' (fm )

I I I

1.0 1.5 2.0

FIG. 2. As for Fig. 1, but for the imaginary parts of the t
matrices.

those channels are the dominant terms in the singlet-odd,
singlet-even, triplet-even, and triplet-odd two body seg-
ments, respectively. The on-shell momentum was taken
as 1.55 fm since we seek the effective interaction for 200
MeV protons on nuclei. Similar quality of fits were found
with the g matrices for the difFerent Fermi momenta (to
1.6 fm ) needed to define the medium modified specifi-
cation of the effective interaction. The exact t matrices
(of the Paris interaction) are displayed by the solid curves
in both diagrams while the dashed curves are the results
found from our effective interaction. Clearly, save for the
imaginary part of the Pz channel, the fits are very good
especially for a region around the on-shell point. The
imaginary part of the Pi t matrix is not very large and
the effective interaction result is not so different to the
actual one to be of concern. Such results are not depen-
dent upon the precise "realistic" interaction with which
one starts. We have found equally good effective inter-
actions to map to the t and g matrix elements obtained
starting with the BonnB [25] interaction.

P,
0.2

0..0

-0.2

-0.4

S0

III. SPECTROSCOPY

A. The structure models for C

-0.6
S,0.2

0.0

-0.2

-0.4

-0.6 I I

1.0 1.5 2.0

P,

k' (fl )

I I

1.0 1.5 2.0

FIG. 1. The real parts of the half-off-shell-NN t matrices
built from the Paris [18] interaction at an on-shell momentum
of 1.55 fm (200 MeV). The actual t matrices are displayed
by the solid curves for each of the identified two nucleon angu-
lar momentum channels and the dashed curves portray those
found by using our "free" e8ective interaction.

The spectrum of C was calculated using the program
OXBASH [26] and with the MKBW interaction, which con-
sists of the following statements.

(i) The Cohen and Kurath (8—16)POT interaction [8],
for the Op shell matrix elements [although we have mod-
ified them to be the (8—16)2BME values in our calcula-
tions].

(ii) The Wildenthal interaction as supplied with the
program OXBASH [26] for the Odls shell matrix elements.

(iii) The Millener-Kurath interaction [9] for the (psd)-
cross shell elements.

(iv) Those matrix elements, also supplied with the pro-
gram OXBASH [26], for the other elements spanning the
space from the Os to the Of 1p shells.

The positive parity states of 2C were calculated in a
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complete (0 + 2)ku space using this interaction, while
the negative parity states were calculated in a restricted
(1 + 3)hcu space. In both calculations the same single
particle basis of Os up to and including the Oflp shell
was used. Hence the restriction from a full (1+ 3)ku
study is that we have not included the Ogld28 shell.

The spectrum of C so obtained up to 20 MeV in
excitation energy is displayed in Fig. 3 wherein it is com-
pared with the experimental values [27], with the spec-
trum found using a particle-hole model (PHM) [28] based
upon a multicon6guration Hartree-Fock calculation and
with that &om a standard Op-shell model (CK) calcula-
tion [8]. The restricted basis of the CK calculation means
that only positive parity states result. With exceptions,
most notably the 3& ,'0 state at 9.64 MeV and the su-
perdeformed 0&, 0 state at 7.65 MeV, our calculated spec-
trum is in agreement with observation to within 2 MeV,
and is a marked improvement on the others, particularly
as the PHM calculation places the 2&, 0 (4.44 MeV) state
so far from the accepted value.

All established spin-parity assignments are matched by
our large basis shell model calculations, and mostly with
good agreement for the excitation energies. Of those
states for which the spin-parity (and isospin) assignments
are uncertain, there is some doubt as to the spin of the
18.35 MeV state. It is listed [27] as being both a 2; 0+ 1
state and a 3;1 state. A 2 assignment is supported by
analyses of pion and proton inelastic scattering data [29],
while the 3 assignment is supported by an analysis of
inelastic electron scattering data [30]. However, in that

analysis of the longitudinal electron scattering form fac-
tor, Yamaguchi et aL [30] give the energy of the state
as 18.6 MeV. Therefore, the state at 18.35 MeV is more
likely a 2 state. The 13.35 MeV state is listed [27] as
a (2 ); 0 state. However, there is also some doubt about
that assignment. Millener [27,31] suggests that it is prob-
ably a 4 state. Both our (1+3)hu and the PHM model
[28] calculations predict that a 4; 0 state lies close to this
excitation energy, and that assignment is also supported
by a calculation of the alpha decay width of the state [32]
that was made using an alpha cluster model for 2C. De-
tailed microscopic model analyses of the inelastic proton
scattering data to the assumed 2; 0 states (11.83 MeV,
18.35 MeV) and to the assumed 4;0 13.35 MeV state
are in progress to resolve any residual problem with those
assignments.

B. The one body density matrix elements and
electron scattering form factors

As a test of the suitability of the calculated nuclear
wave functions, and to determine the appropriate sin-
gle particle wave functions for use in the analyses of the
elastic and inelastic proton scattering, elastic and inelas-
tic electron scattering form factors for C were analyzed.
Our calculations of those form factors were made using
the standard prescriptions for them given by de Forest
and Walecka [33], but modified for the transverse electric
case by the formalism of Friar and Haxton [34] wherein
Siegert's theorem is used to account for meson exchange
current efFects. The resultant efFective (one body) trans-
verse electric multipole operators have significant efFects
when used with OR@ wave functions [35]. Herein, the T
operator form [34,35] has been used for the calculation
of the transverse electric form factors as that seems to
be the most appropriate for calculations using OLu wave
functions [35]. One body operators have been used also to
facilitate calculations of both the longitudinal and trans-
verse magnetic form factors. Consequently, one body
density matrix elements (OBDME's) are needed f'rom the
structure calculations to evaluate all of the electron scat-
tering form factors.

Those OBDME's (transition densities and shell occu-
pancies) for all the transitions considered herein have
been tabulated [35,36]. They are the (singly) reduced
matrix elements of an irreducible particle-hole tensor op-
erator formed &om the general transition density matrix
elements (for protons and neutrons separately),

4.44 2+;0 4 62 / 4.66/

2.95

0.00 0+;0

experiment PHM CK

by using

a, , a~, , = ) (—1) ' ' (jq mq j2 —m2[I —N)
I,N

FIG. 3. Energy level diagram for the low-lying states in
C. The present calculation (MKBW) is compared to exper-

iment [27], as vrell as the PHM model of Amos et al. [28] and
the Op-shell model of Cohen and Kurath [8].

X a. X az,

so that the signer-Eckart theorem gives

(12)
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X (J; M, IN
i Jf Mf ) S~,~,I,(2'+ 1)

(13)

case. The isoscalar dipole transitions correspond to com-
pression modes of (collective) oscillations [37], and as
such, there exists the possibility of spurious c.m. mo-
tion with the transition. To ensure that no such motion
exists, the OBDME's obtained from the wave functions
for the 1;0 states must satisfy the constraint

where the OBDME is identified by

I — 4Jy Gj X Gj (14)

P= 1;0 ) r, 0+;0) =0.
i=1

(15)

The 0+ -+ 1~;0 (10.85 MeV) transition is a special
I

From the matrix element, all components of the vector
P are also constrained to be zero and are given by

.,+),+s (2jg + 1)(2j2 + 1)(2lg +1), 1 Ig l2
gypsy $ 1 2 1 ~ ~ nslsnyly)

j.27t 22 21
jlj2

(16)

where

P GPB ~ P R i f' (17)

Implicitly the summations include contributions from
both protons and neutrons as they will in all subse-
quent discussion. For the OBDME's given in Table I
&om the present calculation, the value of the compo-
nents is —1.46 x 10 fm. The value obtained using the
OBDME's &om a previous lsd shell model calculation
[10], which are also listed in Table I is 1.49 fm. The
(0 + 2)Ru and (1 + 3)Ru wave functions are far more
appropriate to describe the isoscalar dipole transition.

All form factor evaluations also require specification of

( S ~'1d~
V = Vp 1+2A[1 s]

~ ~

—— f(r, &,a), (18)
(m cj rdr)

where,

f(r, R, a) =
1+ exp (" )

the single-particle radial wave functions. In all of the cal-
culations we have made, we have used either harmonic
oscillators (for which the oscillator parameter was 6 =
1.61 fm) or Woods-Saxon wave functions (calculated us-

ing the code WSBD of Delbrouck-Habaru and Dubois
[38]) for which the potential used in the Schrodinger
equation has the form

21:22
Ops .Os&

2 2

Op i:Os 1
2 2

Os1.Ops
2 2

Ods ..Ops
2 2

Ods. Ops
2 2

1s 1 .'Op s
2 2

Os1.0pi
2 2

Ods ..Opi
2 2

ls i:Op1
2 2

Ops .Od 5
2 2

Ofv. Ods
2 2

Ofs.Ods
2 2

1ps .Od 5
2 2

Ops ..Ods
2 2

Op i:Od s
2 2

Ofs:Ods
2 2

a

0.0102
0.0235

bSii j

0.0109 —0.0755
0.0014
0.0047

—0.0302
—0.0133 0.0941
—0.0012

0.0205
—0.3297 0.5534

0.0002
0.0053

—0.0026
0.1400

—0.0934
—0.0006

—0.2111
0.1730

b
F1~2

0.0002
21:22

1ps ..Ods
2 2

1pi:Od s
2 2

Ops '. 1s1
2 2

Op 1:1s1
2 2

1ps .lsd
2 2

1p1 '. 1s &
2 2

Ods Of7.
2 2

Ods:Of s
2 2

Ods:Of s
2 2

Os 1:1ps
2 2

Od s .1ps
2 2

Ods .'1ps
2 2

ls 1 .1ps
2 2

Os&. 1p 1
2 2

Od s .1p1
2 2

is& .'1p1
2 2

—0.0005
0.6543 1.0922
0.3465 0.4678
0.0038
0.0022
0.0014
0.00006
0.0002

—0.0548
0.0060
0.0020
0.0005
0.0311
0.0043

—0.0009

(0+ 2)hey.
psd shell model [10].

TABLE I. Proton transition density matrix elements for
the 0+ —+ 1~;0 (10.85 MeV) transition. The neutron values
are identical.

y„~,(r) = &„~,(r) ) (&m~ 2 m. jm) &j~, (& )g~
mI ms

(20)

orthogonality is guaranteed between states of difFerent
angular momenta. The question of nonorthogonality oc-
curs with only the Op and lp states. With the wave

TABLE II. Woods-Saxon parameters used for the single
particle states in C.

Os m (lsOd)
Oflp

Vp (MeV)
—62.5
—90.0

ro (fm)
1.35
1.35

ap (fm)
0.65
0.65

A

7.0
0.0

with B = roA ~ . The Woods-Saxon potential parame-
ter values we have used are listed in Table II with the
calculated single particle state binding energies given in
Table III. A deeper potential was used for the Oflp
shell to ensure that the calculations of the bound state
wave functions for these shells converged. By so doing,
the 0f lp orbits are loosely bound but then a degree of
nonorthogonality is introduced. Since the single particle
wave functions take the form
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State
081
OP 3

2

OP 1
2

Ods

083

E~ (MeV)
—38.75
—22.37
—20.65
—6.28
—3.58

6
7
8

9
10

State
1S1

2

Ofv

Ofs
2

1P3
2

1P1
2

E~ (MeV)
—5.87
—1.04
—1.07
—3.53
—3.53

TABLE III. Binding energies for the single particle states
in C as calculated from the Woods-Saxon potentials in Ta-
ble II.
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FIG. 4. Elastic electron scattering for factor for C, cal-
culated using the (0 + 2)Ru wave functions (solid line) and
the Cohen and Kurath Op-shell model wave functions (dashed
line). Harmonic oscillator (HO) and Woods-Saxon (WS) sin-
gle particle wave functions were used. The data are those
of Jansen et al. [39] (squares), Sick and McCarthy [40] (dia-
monds), and Nakada et al. [41] (circles).

functions we have used, the volume integrated overlap
between the Op and 1p radial wave functions is zero to
within 1 part in 10

The elastic electron scattering form factors for C are
presented in Fig. 4, in which the data shown are those
of Jansen et at. [39] (squares), Sick and McCarthy [40]
(diamonds), and Nakada et at. [41] (circles). Both the
(0 + 2)ku and the Op-shell model wave functions have
been used in the calculations of the form factors; the
results displayed being the solid and dashed lines, re-
spectively. There is excellent agreement with data irre-
spective of whichever model and whichever set of single
particle wave function are used, indicating that the sets
of single particle wave functions used are appropriate for
use in analyses of inelastic scattering data with both the
Op and multi-~ shell model wave functions. However the
structure aspects of importance for elastic scattering are
just the (ground state) single particle state occupancies,
and they are so dominated by the Op-shell attributes in all
prescriptions for the ground state that large basis space
efFects are not tested. Inelastic transitions are required
for that.

The inelastic longitudinal and transverse electron
scattering form factors for the transition to the 2z', 0
(4.44 MeV) state in ~ C are displayed in Fig. 5. Therein,
the data for the longitudinal form factor of Flanz et alt.

q(fm )

FIG. 5. Longitudinal (FI, ) and transverse (Fz, ) electron
scattering form factors to the 2~;0 (4.44 MeV) state in C.
The data are those of Flanz et al. [42]. Calculations are those
using the (0+ 2)M wave functions (solid line) and Cohen and
Kurath Op-shell model wave functions (dashed lines).

[42] are compared in the top segment of this figure with
the results of our calculations using the (0 + 2)Ru (solid
line) and the Op-shell (dashed line) model wave functions.
Both calculations were made using the harmonic oscilla-
tor single particle wave functions. The results of our cal-
culations made using the Woods-Saxon wave functions
are so similar that they are not displayed. The Op-shell
model calculation underestimates the data by a factor
of 2. Using the (0+ 2)Ru wave functions gives far bet-
ter agreement with the data; the additional transitions
obtained by the inclusion of the 2' components in the
wave functions provide the necessary extra strength to
give agreement with the data. The result of the (0+2)Ru
calculation is equivalent to that obtained recently by us-
ing the symplectic collective model [43].

The situation is similar in the case of the transverse
electric electron scattering form factor from the excita-
tion of the 2I+; 0 (4.44 MeV) state. The results are dis-
played in the bottom segment of Fig. 5. Therein the
data of Flanz et aL [42] are compared to the results of
our calculations made using the (0+2) Ru (solid line) and
Op-shell (dashed line) model structures. In each case, the
calculation fails to reproduce the magnitude of the data.
However, the q dependence of the form factor calculated
using the (0+ 2) Ru wave functions almost exactly agrees
with that of the data as, with an enhancement of 1.6, the
result reproduces the data very well.

The longitudinal form factors for the excitation of the
3~;0 (9.64 MeV) and l~;0 (10.85 MeV) states in C
are displayed in Fig. 6 as sections (a) and (b), respec-
tively. Therein the results found using the (1 + 3)~
wave functions are displayed by the solid curves while
the dashed curves represent the results obtained using
the PHM spectroscopy. Both sets of calculations used
Woods-Saxon single nucleon wave functions. In Fig. 6(a)
and (b) the results of our calculations are compared with
the data of Crannell [44] and of Torizuka et al. [45], re-
spectively. For both form factors, the (1 + 3)ku wave
functions give the better agreement with the data, no-
tably for the lower momentum transfer regime. In par-
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~ ~ 4 +A+

10
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ticular we reproduce the magnitudes of the data so that
there is no need for any scale enhancement one could
associate with core polarization.

The transverse electric form factor for the 0+ ~ 2z, 1
(16.11 MeV) transition is displayed in Fig. 7, wherein the
data of Flanz et al. [42] are compared with the results of
our calculations made using the (0+2)Ru (solid line) and
the Op-shell model (dashed line) wave functions. Clearly,
the (0+ 2) Ru calculation is in better agreement with the
data. The eKect of the enlarged basis for this isovector
transition has been to reduce the net transition strength.
This occurs because the higher shell entries in the
OBDME's are formed at the expense of the strength of
the dominant shell transition values in this case.

A similar reduction in transition strength is observed
with the isoscalar magnetic dipole form factors, but that
is caused by an increased destructive interference be-
tween proton and neutron contributions. Further there
is some evidence for isospin mixing between the 1&,0

10

10

FIG. 6. The longitudinal form factors for the excitation of
the 3~; 0 (9.64 MeV) state (a) and of the 1~;0 (10.85 MeV)
state (b) in C. The data are those of Crannell [44] and of
Torizuka et al. [45] for the 3 and 1 excitations, respectively.
The results of calculations made using the (1+3)bc' and PHM
model wave functions are displayed by the solid and dashed
lines, respectively.

(12.71 MeV) and 1+&', 1 (15.11 MeV) states [46]. The
transverse M1 electron scattering form factors for these
states are displayed in Fig. 8. Therein, the data of Flanz
et al. [46] are compared with the results of our calcula-
tions made using the (0+ 2)he@ (solid line) and the CK
(dashed line) wave functions. The contributions from
meson exchange currents have been neglected in these
studies, but as they are isovector in nature, they should
afFect only the high-q part of the isovector transverse form
factor. Such is evident in the calculations of Flanz et al.
[46]. Meson exchange current effects do not account for
the disparity between calculated and measured isoscalar
M1 form factors at low momentum transfer. For that
isospin mixing between the two states is required. We
assume that to have the form

12.7]-
15.11

o. P T=0
—P o, T=1 (21)

10

10

10

F

10

where P = 0.07 [46] and o. = Ql —Pz = 0.9975. The re-
sults of form factor calculations made incorporating this
mixing are portrayed by the dot-dashed lines in Fig. 8.
As is evident, there is a significant improvement in the
prediction of the isoscalar form factor but there is very
little change in the isovector form factor caused by this
mixing. The results are consistent with the findings of
Flanz et al. [46]. The reason for this improvement is illus-
trated in Fig. 9, in which the individual proton and neu-
tron contributions to the isoscalar form factor are shown

by the dot-dashed and dashed lines, respectively. The
total isoscalar transverse form factor is the result of the
serious destructive interference between the proton and
neutron amplitudes. Hence the small changes to the tran-
sition densities introduced by the isospin mixing sufiices
to make a large change in the final total form factor. The
proton-neutron interference is constructive in the case of
the isovector transition so that there is very little efFect
on the predicted isovector transverse magnetic form fac-
tor.

10
F

10

10

10

10
0

q(fm )

q(fm )

FIG. 7. Transverse electron scattering form factor to the
2~+; 1 (16.11 MeV) state in C. The data of Flanz et al. [42]
are compared to the calculation using the (0+2)Ru wave func-
tions (solid line) and the ORu wave functions (dashed line).

FIG. 8. Transverse M1 electron scattering form factors to
(a) the 1~+; 1 (15.11 MeV) state and (b) the l~+; 0 (12.71 MeV)
state in C. The data of Flanz et al. [46] are compared to
the calculation using the (0+ 2)her wave functions (solid line)
and the Cohen and Kurath wave functions (dashed line). The
dot-dashed line is the result of assuming the two-level isospin
mixing as described in the text.
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10 confidently to select one wave function form as the more
appropriate.

10 IV. ANALYSIS OF ELASTIC PROTON
SCATTERING DATA

10

q(fm )

FIG. 9. Proton contribution (dot-dashed line) and neutron
contribution (dashed line) to the transverse Ml form factor
for scattering to the lr+; 0 (12.71 MeV) state. The total form
factor is given by the solid line.
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FIG. 10. Longitudinal E4 electron scattering form factor
for the 0+ ~ 4&, 0 (14.08 MeV) transition in C. The data
of Nakada et al. [41) are compared to the calculation using the
(0+ 2)bur wave functions (solid line with Woods-Saxon wave
functions and short-dashed line with harmonic oscillators)
and that using the PHF wave functions [36,47] (long-dashed
line with Woods-Saxon wave functions and dot-dashed line
with harmonic oscillators).

The longitudinal form factor for the 0+ ~ 4» 0
(14.08 MeV) transition is displayed in Fig. 10. The Op-

shell model cannot predict any state with J ) 3. Hence,
the data of Nakada et al. [41] are compared with the re-
sults of calculations made using the (0+2)Ru and the pro-
jected Hartree-Fock (PHF) models [47] of spectroscopy.
The latter gives a form factor in close agreement with
the data while the (0 + 2)ku calculation underestimates
the data by a factor of three. The close agreement with
data from the PHF calculation indicates that & 2' com-
ponents are required in the wave function. Two results
are shown for each spectroscopic model used. The small
dashed and dash-dotted curves were obtained by using
harmonic oscillator functions while those portrayed with
the solid and long dashed curves used Woods-Saxon func-
tions. The difFerences caused by our choice of single par-
ticle wave functions are not large and occur at higher
momentum transfers where higher order scattering pro-
cesses may be needed in any calculation to use the results

The cross sections and analyzing powers for 200 MeV
protons elastically scattered &om C have been calcu-
lated by using the DWBA91 code. That coordinate space
code requires as input, the single nucleon shell occupan-
cies of the target state, the single particle bound state
wave functions, and the efFective NN interaction. The
single particle occupancies for the case of C have been
obtained from the spectroscopic models described in the
previous section. The large basis efFects are not very
significant in so far as the occupancies are concerned.
The efFective interaction required is of the form we have

discussed previously, i.e. , g,& (lrl;E, ky(r)), and it is
folded with the nuclear structure functions allowing ex-
plicitly for the antisymmetrization of the projectile and
each and every target nucleon. Further, a kinematic cor-
rection to the efFective NN interaction is required to de-
scribe a given NA system. In accordance with Eq. (19)
in Ref. [6], this scaling factor for the case of 200 MeV
protons on C is 0.93725. It remains then only to deter-
mine the specific radial variation of the Fermi momentum
which is defined by

1
(3vr'

kf(&) =
I p(&) I)

The density profile we have chosen to be the three pa-
rameter Fermi distribution

po(1+ tor2/c2)
,(.—.)t.)

(23)

(2L+ 1) Vt (rr, r2, E, kg) Pl. (cosg) P P
LST

(24)

with po ——0.182 nucleons/fm, c = 2.355 fm, z
0.5224 fm, and tU = —0.149 [48].

We will identify by the label "DD " all results obtained
from complete calculations of elastic scattering, i.e., those
made using the nonlocal optical potential microscopically
generated with the medium modified efFective interac-
tion. The same label will be used in our later discussion
of inelastic scattering calculations. Also we have used
an efFective interaction defined by mapping the f'ree NN
t matrices and results obtained with the nonlocal opti-
cal potential found thereby are identified as the "&ee"
ones hereafter. Note that this corresponds to the choice
kf (r) = 0 for all radii.

The forms of the optical potentials specified in DWBA91
follow from identification of the net efFective interaction
between the projectile and each and every nucleon in the
target as

&.~(lrl E kf)
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where ~r~ = ~rq —r2~ and VL (rqIr2, E, kf) are two body
spin (S) and isospin (T) rnultipoles. Those multipoles are
related to the effective interaction by a series of Fourier
and Bessel transformations [49], viz. ,

where

W (q;E, kI) = & / e~*s'~ p~s~ (~r~;E, kI(r))dr .

&i~ ( ~ 2 E &x)

q E kf jl, qri jI. qr2 q dq, (25)

(26)

Antisymmetrizing the NA wave function leads to a
nonlocal optical potential. This takes the form

U'(r„rs;Z) = d(ri —r )&sI f p„'(s)v (r...k;pjkI(s)l) tp„(s)ds
n

+ ) ~ 0' ( &) ( &2 E P[~f("2)]) & ( 2)

m UD (rg., E) + U@ (rg, r2, E), (27)
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FIG. 11. The "direct" components of the calculated mi-
croscopic optical potentials found by folding the free effective
and the complete, density dependent, effective interactions
with the density matrices of the ground state of C and dis-
played by the long dashed and solid curves, respectively. With
the medium modi6cations limited to —and —central nuclear
density, the results shown by the dot-dashed and small dashed
curves, respectively, result.

upon folding the effective interaction, Eq. (24), with the
density matrix elements of a nucleus. Here v and v
are appropriate combinations [4,49] of the ST channel
elements of the effective interaction of Eq. (24), p~(r)
are the single (bound) nucleon wave functions and („are
the shell occupancies in the target state.

The leading term, the "direct" term has been used in
the past as the sole contributing element. It equates to
the interaction one would specify by the so-called tp ap-
proximation. At 200 MeV, it is inappropriate to use
such a microscopic direct potential solely in an analy-
sis of scattering data since the nonlocality (due to the
antisymmetrization contributions to the optical poten-
tial) cannot be ignored and also the choice to use the t
rather than the g matrices makes a considerable differ-
ence. In Fig. 11, the direct potentials calculated by the
prescription we have set down, are shown for the effec-
tive interaction with pro61es, Eq. (23), limited to different

maximum densities. The real and imaginary parts of the
central and spin-orbit components of the direct poten-
tials that result from the folding process are displayed
for the free and complete (DD) cases by the long dashed
and solid curves, respectively. The dot-dashed and small
dashed curves show the "direct" potentials that result
if one uses medium modified g matrices and a density
profile limited to 3 and 3 of the nuclear central density,
respectively. In those two cases, for radii at which the nu-
clear density would normally exceed the limits, the limit
form of the g matrices were used. The "direct" spin-orbit
interaction is quite weak and essentially real with little
variation due to medium effects upon the g matrix speci-
fication. However, there is a clear progressive and marked
enhancement of the calculated (central local real) optical
potential strength as one moves from using free to com-
plete density dependent forces. Likewise the imaginary
part of the central interaction changes &om strongly pro-
ductive to weakly absorptive with gradual inclusion of the
medium modifications. This suggests that one cannot ex-
pect a calculation made using a free NN interaction with
a tp approach leading to a local NA. optical potential, to
describe adequately elastic scattering data. Without the
exact nonlocal components, arbitrary adjustments to the
effective t matrices and/or use of an equivalent local ap-
proximation to the true exchange terms, must be made.
Such make the analyses nucleus and transition depen-
dent.

The cross sections and analyzing powers that result in
using our calculated optical potentials are compared with
data [2] in Figs. 12 and 13. Those calculations were made
using the ground state occupancies given by the (0+2)Ru
shell model calculation. Consistent with the results found
with the elastic electron scattering form factors, Fig. 4,
using the CK structure values makes virtually no change
to the proton elastic scattering predictions &om those
displayed. In Fig. 12 the solid and dashed curves display
the results obtained by using Woods-Saxon and harmonic
oscillator bound state wave functions, respectively, for
the orbitals in Eq. (27) and the "free" and DD results
are shown in the left- and right-side panels. It is evident
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FIG. 12. The 200 MeV proton elastic scattering cross sec-
tion and analyzing power data [2] compared with the results
found using the (nonlocal) microscopic optical potentials built
using the free NN t matrices (left) and the full interaction
(right). The solid and dashed curves display the results found
using Woods-Saxon and harmonic oscillator single particle
bound state functions, respectively, in the calculations.

FIGIG. 13. The 200 MeV proton elastic scattering data [2]
compared with the results found using the microscopically
calculated optical potentials built upon free and density de-
pendent e8'ective interactions. The solid and dashed curves
give the results found when the Paris [18] and BonnB [25]
NN forces were used to specify the input t matrix informa-
tion, respectively.

the density dependent, Woods-Saxon bound state result
matches the cross-section data best. That is even more
obvious with the analyzing power. The DD results are
far better in agreement with observation than the "&ee"
ones.

In Fig. 13 the "&ee" and DD cross sections and an-
alyzing powers are shown kom optical potentials calcu-
lated using the Paris and BonnB interactions as the ba-
sic input NN interactions. The Paris and BonnB results
are shown by the solid and dashed curves, respectively.
Again the density dependent results, whether obtained
&om the Paris or BonnB input, are in far better agree-
ment with the data, and especially the analyzing power.
There is little to choose between the results found with

Q s~the two digerlng "realistic" starting interactions, how-
ever, and such is also the case with all of the inelastic
scattering cases studied and discussed next.

V. ANALYSES OF INELASTIC PROTON
SCATTERING DATA

amplitudes can be written as

wherein the distorted wave functions are denoted by

(kq) for an (incoming/outgoing) proton with spin
projection p, wave vector k, and coordinate set "q." The
radhal (partial wave) components of these are generated
&om the microscopic optical model calculations that were
discussed previously. The A-nucleon nuclear structure
wave functions are denoted by @gM(1. A) and since
a pairwise interactions between the projectile and every
target nucleon i.s taken to be the same, it is convenient
to make a cofactor expansion of each, viz. , to use

The theoretical derivation of the scattering amplitudes
in the DWA for inelastic scattering &om nuclei have been
presented in detail elsewhere [50] and so only the salient
features are given herein. With Aoq being the two nu-
cleon antisymmetrization operator, the DWA transition

Th erewith all dependences upon the coordinate "1" se-
lected to be the active entry in the "g " be g,g can e iso ate
so that the transition amplitudes expand to the form

$1 )j2 )m1 ym2

(3o)

To use the Wi ner-E kag -Eckart theorem the product of creation and annihilation o erators muop o p
sor opera or an that is as specified in E . ~12~.q. ~&~j. Then the scattering amplitudes become
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I 1
Tq q™v(0) = ) (J M IN~ Jf Mf) Sg' g I ) (—1) ~' '

(Zi mi&2 —m2~ I —N)
jg,jg, I(1V) m1 m2

&vl k&0 pj&m2 1 gefF 0& 1 py gv ki0 &&1m& 1 (31)

wherein the Sz,~, l are the OBDME's defined by Eq. (14).
They are exactly those quantities required from the nu-
clear structure calculations to give the electron scattering
form factors discussed previously.

DWA calculations of diverse inelastic scattering cross
sections and analyzing powers &om the scattering of 200
MeV protons &om C are compared with data in the
next set of figures. In those figures the results shown
in the left-hand panels were obtained using an effec-
tive interaction based solely upon the free Paris t ma-
trices. Those in the right-hand panels were found by
using the full medium modified g matrices to define the
effective transition operator. With one exception, the
results for positive parity transitions displayed by the
dashed curves were obtained using the CK wave func-
tions while those displayed by the solid curve were cal-
culated using our (0+ 2)her structure. The exception is
for the 4+i; 0 (14.08 MeV) excitation wherein the dashed
curves will display the results found by using spectro-
scopic amplitudes &om an axially symmetric PHF calcu-
lation [36]. The CK model, being a purely Op-shell study,
does not support any sensible prescription for the 4~; 0
state. With the negative parity excitations, the dashed
curves are the results of DWA calculations made using
the spectroscopy of the PHM scheme [28]. En all cases the
distorted waves were generated using the optical poten-
tial found by folding the same effective interaction used
as the inelastic scattering transition operator with the
occupation numbers for the ground and relevant excited
states of C. Thus the effective NN interaction specifies
both the (nonlocal) optical potentials used to define the
distorted wave functions and the inelastic scattering tran-
sition operator in the two particle fully antisymmetrized
matrix elements specified in Eq. (31).

The results of our DWA calculations for the cross sec-
tion and analyzing power &om 200 MeV protons exciting
the 2+i; 0 (4.44 MeV) state in i C are compared with the
data in Fig. 14. With both the &ee and density depen-
dent effective interactions, the larger based structure cal-
culations increase the predicted magnitudes above those
given with the CK wave functions into quite good agree-
ment with the data. The results refIect the similar effects
observed when those wave functions were used in the cal-
culation of the electron scattering form factors in Sec. III
B.The density dependent effective interaction gives cross
sections in best agreement with the data reproducing the
shoulder effect in the 20 —40 region in particular. The
analyzing power results are not as good fits to the mea-
sured values. They do reflect the general shape of the
data however, and the density dependent results more so
than the &ee ones in the scattering angles to 50 . With
this transition the central and two body spin-orbit at-
tributes of the transition operator are the most impor-
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FIG. 14. The di8'erential cross section and analyzing power
from the inelastic scattering of 200 MeV protons from C
leading to the 2i+; 0 (4.44 MeV) state. The data [2] are com-
pared with the results of our DWA calculations made using
the microscopic optical model interactions for the free and
density dependent interactions (left and right panels) and the
(0 + 2)Ru and CK (Op) models of spectroscopy (solid and
dashed curves).

tant contributing features. We stress that there has been
no core polarization correction applied to the calculated
cross-section magnitudes shown in Fig. 14, nor indeed of
any that we show hereafter, and as was the case with
all of the electron scattering form factors displayed pre-
viously. But in other studies [10] that was not the case.
The cross-section results they displayed were scaled to
give the best fit to the data. The justification for so
doing was that core polarization corrections are needed
when, as they did, the CK shell model of structure was
used to describe the nuclear transitions. But those scal-
ings were not consistent with the enhancement the same
structure model needs to match electron scattering form
factors and/or p-decay rates.

The results of our DWA calculations of 200 MeV pro-
ton inelastic scattering to the 3i', 0 (9.64 MeV) state are
shown in Fig. 15. The &ee and density dependent effec-
tive interaction results are quite similar and are in good
agreement with the data. As this final state cannot be
specified by the CK model, the (1+3)ku shell model re-
sults (solid curves) are compared with those obtained by
using the PHM [28] prescription. A similar result is found
with the scattering to the li, 0 (10.85 MeV) state; albeit
in this case the &ee effective interaction cross sections are
marginally better in agreement with the data given the
two spectroscopies used. But the analyzing power is bet-
ter reproduced by the DD calculation. Those results are
displayed in Fig. 16. Consistent with the results found
&om our analyses of the electron scattering form factors,
no enhanceinent of the (1+3)ku OBDME's is needed to



874 KARATAGLIDIS, DORTMANS, AMOS, AND DE SWINIARSKI 52

0
10

10

10C

10

10

1.0

0.5

4j» ki»

10

10
E

10

10

1.0

0.5

0.0

-0.5

0.0

-0.5

-1.0
0 20 40 60 0 20 40 60 80

Oc (deg)

-1.0
0

I I I I

20 40 60 0 20 40 60 80

0, (deg)

0
10

10
2 -2

10

0 4
10

1.0

Free DD

0.5

0.0

-0.5

-1.0
0 20 40 60 0 20 40 60 80

0, (deg)

FIG. 16. As for Fig. 15 but for the excitation of the 1~;0
(10.84 MeV) state.

FIG. 15. The inelastic (200 MeV) proton scattering data
[2] from the excitation of the 3~;0 (9.64 MeV) state in C
compared with the results of DWA calculations made using
the free and density dependent efFective interactions (left and
right, respectively) and with the (1 + 3)her and PHM spec-
troscopy (solid and dashed curves, respectively).

FIG. 18. As for Fig. 14 but for the excitation of the 1~; 1
(15.11 MeV) state.

give the magnitudes of these cross sections.
The magnetic dipole excitati. ons are shown in Figs. 17

and 18 for the isoscalar (12.71 MeV) and isovector
(15.11 MeV) transitions, respectively. Strength suppres-
sion with bigger basis spectroscopy is evident from these
calculations, again concurring with the results found for
the electron scattering form factors. The density de-
pendent, large basis spectroscopy calculation results are
marginally the best of the set. None give the magni-
tude of the larger scattering angle measured cross section
however, and the analyzing power is less structured than
predicted. The isovector dipole transition cross section is
well reproduced by our favored, density dependent large
basis spectroscopy model but now the measured analyz-
ing power data have severe variations with momentum
transfer which have not been reproduced by the calcula-
tions. Unlike the case of the electron scattering form fac-
tor, isospin mixing does not account for these variations
as the efFective XN interactions are charge independent.
Finally we note that, while the tensor force component
of the transition operator are important elements in the
calculations of both the isoscalar and isovector excita-
tions, the spin-orbit terms are essential for the isoscalar
scattering amplitudes but it is the central terms that are
so for the isovector ones.

The 2z, 1 (16.11 MeV) excitation results are shown
in Fig. 19. The diminution of transition strength ex-
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FIG. 17. As for Fig. 14 but for the excitation of the 1+~; 0
(12.72 MeV) state.

FIG. 19. As for Fig. 14 but for the excitation of the 2~; 1
(16.11 MeV) state.
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FIG. 20. The difFerential cross section and analyzing porkier
from inelastic (200 MeV) proton scattering to the 4i; 0 (14.08
MeV) state in C. The solid and dashed curves show DWA
results found using the (0+2)bc' and PHF models of structure.

VI. CONCLUSIONS

Elastic and inelastic scattering data, cross sections,
and analyzing powers, &om the scattering of 200 MeV
protons oÃ C have been analyzed using a completely
microscopic model of the reactions. The nuclear struc-
ture required for those analyses was obtained from large
basis shell model calculations and. comparisons of that

pected with larger basis calculations of such transitions
is observed with both the &ee and density dependent
(0 + 2) Ru structure calculations giving very good agree-
ment with the data. The reduction of the cross-section
predictions with the larger basis spectroscopy matches
that noted with the transverse form factor from electron
excitation of this state. In this case, all attributes of the
transition operator are important in the calculations, and
again we stress that no core polarization corrections have
been used to give good agreement with the data.

The results of our DWA calculations for the cross sec-
tion and analyzing power from 200 MeV protons exciting
the 4+i, 0 (14.08 MeV) state in i2C are compared with
the data in Fig. 20. As with other normal parity transi-
tions, the central and two body spin-orbit attributes of
the transition operator are the most important contribut-
ing features. In this case, as with the electron scattering
form factor calculations shown in Fig. 10, the dashed
curves give the results obtained using the PHF model
spectroscopic amplitudes [36]. The PHF model yields a
larger cross section than does the (0 + 2)ku model and
while both results reflect the general shape of the data
neither gives the correct magnitude for the cross section.
That was not so with the longitudinal electron scattering
form factors &om which we surmised that the inherent
larger basis aspect of the PHF structure was essentially
the needed improvement to the (0 + 2)Ru shell model.
With proton inelastic scattering then one may surmise
that the scattering process is incomplete, with perhaps
some channel coupling efFects now being evident. But
only with even larger basis structure calculations can one
hope to do more than surmise.

structure have been made with the spectral properties
of the standard (CK) small basis structure of 2C and
with those of large basis projected Hartree-Fock calcula-
tions. All established spin-parity assignments to 20 MeV
excitation in C are matched by our calculated spec-
trum with most states being in good agreement. We
have analyzed electron scattering form factors from ex-
citation of most states in the low-lying spectrum as they
are sensitive to the same OBDME's required in analyses
of proton inelastic scattering using the microscopic DWA
model. The results have shown that the structure so de-
fined is very good, and in addition, we have seen evidence
of the degree of isospin mixing one should consider with
the 1+ states. With the large basis space structure, the
electron scattering form factors indicate that no enhance-
ment, such as core polarization corrections are required
for most transitions. Also the single particle wave func-
tions were not changed with any transition analysis and
good to excellent results so far as the momentum transfer
variations are concerned have been found. Woods-Saxon
functions are the preferred set.

A fully microscopic calculation of proton scattering
from C next requires the efI'ective NN interaction
within the nuclear medium be specified. This we have
done in the form that can be used in the scattering anal-
ysis program of Raynal, DWBA91. The effective inter-
action then has central, tensor, and two-body spin-orbit
attributes each with a sum of Yukawa functions (in co-
ordinate space) as the form factor, and with each form
factor varied according to the location of the interaction
within the nuclear medium. We selected the ranges and
strengths of those form factor components by optimiz-
ing the half-ofI'-shell t and g matrix elements they give in
infinite nuclear matter of diverse densities against those
of the Paris NN interaction. We have placed particular
emphasis upon the match between the sets of elements
around the on-shell momentum (1.55 fm i) for all low J
NN channels.

To analyze elastic scattering data, the optical potential
must be specified by folding the effective NN interaction
with the density matrix elements of the ground state of

C. That requires the occupation numbers of bound nu-
cleons in C and they dier little between the various
models of structure. But the results are very nonlocal
and quite sensitive to the medium modifications that dis-
tinguish the efI'ective interaction &om the &ee NN coun-
terpart. With Woods-Saxon bound state wave functions,
full treatment of the nonlocal character of the optical
potential gave extremely good agreement with the mea-
sured cross section and analyzing power up to 60 in
the c.m. scattering angle.

The same microscopic optical potential, and the rele-
vant one for each and every final state of a (p, p') reac-
tion, have been used to define the distorted wave func-
tions for DWA calculations of inelastic scattering cross
sections and analyzing powers. The same e6'ective inter-
action was used as the NN transition operator in those
evaluations. With our large basis model of nuclear struc-
ture giving the OBDME's, fits to the measured data at
200 MeV range &om quite good to excellent. Details of
some transitions remain unresolved, but the results are
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as good or better than have been found in equivalent
studies in the past. Notably the results for the analyz-
ing powers are good. But the data &om the so-called
strongly collective states, the 2i, 0 and 3& ', 0 excitations,
are well reproduced by our calculations and without need
for any core polarization corrections to give the observed
magnitudes. The same is true for the excitations of the
1i;1 and 2&,'1 states. The data &om other transitions
are not as well reproduced but the results are quite good
nevertheless.

In summary, we have presented a new efFective NN
interaction for use in elastic and inelastic proton scat-
tering analyses and a new large space calculation of the
needed structure in such analyses. With those, the op-
tical potential has been calculated fully microscopically
and its nonlocality retained in the Schrodinger equation.
The result for the elastic scattering of 200 MeV protons
&om C is excellent. The fully microscopic DWA was

then used to evaluate cross sections and analyzing pow-
ers for inelastic scattering ofF C with very good results.
No adjustments have been made to the e8'ective inter-
actions specifications or to the structure input with any
transition and none are needed in some.
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