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Imaginary part of the optical potential for finite temperature
and for preequilibrium processes

M. Abe and S. Yoshida
Ishinomaki Senshu University, Ishinomaki 986-80, Japan

K. Sato
Division of Physics, Tohoku College of Pharmacy, Sendai 981, Japan

(Received 17 March 1995)

Absorptive potentials for preequilibrium reactions are studied in connection with the absorptive
potentials at finite temperature. As a temperature fixed state is a mixture of many-particle many-
hole states, an absorptive potential at finite temperature is constructed from exciton number fixed
absorptive potentials obtained in the previous paper. Our results, which include terms linear in
temperature, are compared with those of Morel and Nozieres which lack these terms. The absorp-
tive potential at finite temperature is decomposed by dividing the occupation probability function
into the particle and hole parts. The resulting potentials are associated with six processes, and
by introducing further approximation we obtain the correspondence with previously obtained ones.
Using the Fermi liquid approximation the absorptive potentials for each process and both contribu-
tions of polarization and correlation are investigated in detail and the origin of the linear terms in
temperature is found coming from the Pauli blocking eKect. The results are compared with those
without the Fermi liquid approximation using a simplified Skyrme interaction. It is found that the
Fermi liquid approximation works fairly well when absorption is not restricted to the bound config-
urations. Furthermore the Pauli correction term is found important and is shown to be easily taken
into account by using the thermal formalism.

PACS number(s): 24.10.Ht, 24.60.Dr, 24.60.Gv

I. INTRODUCTION

Optical potentials have been devised to generate an
energy averaged total cross section and applied to nu-
merous analyses of experimental data. If we assume that
the incident particle is a nucleon (this assumption is kept
throughout this paper), the optical potential is the self-

energy of the nucleon and is calculated from the expecta-
tion value of the mass operator. The absorptive potential
is the imaginary part of the optical potential. If the low-
est order terms in perturbation series are taken, the ab-
sorptive potential corresponds to the absorption process
of the nucleon by creating a particle-hole pair [1].

In finite nuclei, surface vibrational modes are very im-
portant in evaluating the absorptive potential, which gen-
erates the surface term [2,3]. However in this paper these
effects will not be considered but put ofF for future works,
as the volume effects are the first to be treated as a con-
tinuation of our previous work [4]. In this paper we re-
gard the nucleus as nuclear matter, and the surface ef-
fects are taken into account only through the change of
the density around the nuclear surface as in our previous
paper.

In that paper we calculated the absorptive potential for
preequilibrium process by using semiclassical approxima-
tion. In preequilibrium theories [5—7], the exciton num-
ber, a sum of particle and hole number, is fixed for each
stage, and absorptive potentials are needed to calculate
formation and decay rates of the compound system with
fixed exciton number. For this we consider three types

of processes. First is creation of a particle-hole pair in
which the exciton number is increased by 2. Second is
the process in which the exciton number does not change.
Particle-particle, particle-hole scatterings belong to this
process. The last is the process in which the exciton num-
ber is reduced by 2. Annihilation of a particle-hole pair
by the nucleon corresponds to this. For the calculation of
the absorptive potential spectator nucleons are included
to share the energy. However the Pauli blocking effect
by the spectator was not included in the paper, although
the effect was very crudely estimated on an average. This
efFect is expected to be important.

In most preequilibrium theories the compound system
is restricted to the space constructed from bound nucleon
states, which is called Q space. The absorption is also
restricted to the Q space. However in compound reaction
theories and in some preequilibrium reaction theories ab-
sorption is allowed to all space in which nucleons occupy
bound and continuum states, which we call P+ Q space.
So the absorptive potential is calculated for both Q and
P + Q absorption and we found the differences between
them are not small except at low energy.

In preequilibrium theories equilibration must be as-
sumed within states of certain exciton number. Although
validity of this assumption is questioned [8], at present
this assumption cannot be avoided. On the other hand
in equilibrium process like the compound process, equi-
libration must be maintained through all the stages con-
sidered. Of course equilibration within each exciton state
must be assured. Therefore the absorptive potentials cal-
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culated by thermal formulation for a fixed temperature
[9—ll] can be utilized in our preequilibrium potential. It
is known that an equilibrium state with fixed tempera-
ture is considered as a mixture of many-particle many-
hole states [12]. So it must be possible to decompose the
temperature fixed absorptive potential into an exciton
fixed absorptive potential for various processes.

To advance the above program we found that the use
the of semiclassical approximation [13] is helpful, as it
gives an average over the energy and the mass number,
as well as it makes the calculation easy and concrete. An
absorptive potential at finite temperature has two contri-
butions, polarization and correlation, and each contains
three occupation probability functions of nucleons. In
the preequilibrium theory particles and holes are distin-
guished, and the number of particles and the number of
holes have an important role. Therefore to divide the oc-
cupation probability function into the particle part and
the hole part at the Fermi energy is an essential proce-
dure.

By dividing the occupation probability into two par-
tial ones, the absorptive potential at finite temperature
is decomposed into six parts, and each is identified with
processes that are the same as those encountered in the
preequilibrium calculation except one. The calculation
of each term is carried out adopting Fermi liquid ap-
proximation [14]. With this help each term is calculated
analytically, and furthermore the efFect of Pauli blocking
is studied in detail.

Next the calculations without the Fermi liquid approx-
imation using a simplified Skyrme interaction are per-
formed and the results are compared with those of the
Fermi liquid approximation. The Fermi liquid approxi-
mation is expected to be valid at low temperature, and
differences between the two are examined. In usual cir-
cumstances the Fermi liquid approximation is found to be
very useful in practical application for P+ Q absorption.
Throughout the present paper it is assumed for simplicity
that the Coulomb interaction is neglected and the target
nucleus has equal and even numbers of protons and neu-
trons Z = N = Aj2. Therefore the mean potential is
assumed to be independent of spin and isospin. In the
ground state the nucleus is the Op-Oh state; consequently,
in the excited state, particle number n„and hole number
nh are equal and the exciton number is 2m = n„+ nh.
The type of reactions treated in this work is restricted to
nucleon-induced reactions, and the absorption potential
is always evaluated on the energy shell.

In the next section the absorptive potential for equi-
librium process is constructed 6.om the preequilibrium
absorptive potentials obtained in the previous paper. In
Sec. III the Wigner transform of the absorptive poten-
tial at finite temperature is evaluated in the semiclassical
approximation. For this purpose the signer transform
of a product of residual interaction potential is evalu-
ated for the simplified Skyrme interaction and the finite
range Gaussian interaction. In Sec. IV the absorptive
potential at finite temperature is decomposed into those
for various types of processes and the relation with pre-
equilibrium absorptive potentials is established. Sec-
tion V is devoted to the calculation in Fermi liquid ap-

proximation, and analytical results are shown. Numer-
ical calculations with the simplified Skyrme interaction
are carried out in Sec. VI without the Fermi liquid ap-
proximation. In Sec. VII summary and discussions will
be presented. In Appendices detailed evaluation of in-
tegrals appearing in the Fermi liquid approximation will
be given.

II. ABSORP TIVE POTENTIAL FOR EXCITED
NUCLEI IN EQUILIHKIUM

W(m, m, Eg, e) = uj (Eg) + m[va (Eg, O)

+-"(E., o)]
m(m —1) (,)

2
(2.1)

where the excitation energy of the target nucleus is de-
noted by e, which is independent of m. Using this we
calculate the absorptive potential for an excited nucleus
in an equilibrium state.

A. Fixed excitation energy

I et us assume that the target nucleus is excited with an
excitation energy e and in an equilibrium state, namely
the compound state. This state is considered to be a
mixture of many-particle many-hole states. As the state
is in equilibrium the probability to find a mp-mh state is
proportional to the partial state density w(m, m, e),

In the previous paper [4] we calculated the absorptive
potential for a mp-mh state of a target nucleus. In this
case four processes contribute. The first is creation of
a particle-hole pair, which is called the (a) process, and
the exciton number increases by 2. In the approximation
adopted in the paper the absorptive potential ur( ) (Eq) is
only a function of the incident energy Ei, and indepen-
dent of m and the excitation energy of the target nucleus.

The second (b) and third (c) processes correspond to
scattering by a particle and a hole, respectively. In this
case the exciton number does not change. The absorptive
potentials without the spectator nucleons are denoted by
m( ) (Eq, e2) and tv(') (Eq, ez), where ez is the excitation
energy of the nucleon to which the incident nucleon inter-
acts. To obtain the absorptive potential for a nucleus in
a mp-mh state, the absorptive potentials for the elemen-
tary processes w( )(E],E2) and w(')(Ey E2) are multiplied
by m with c2 ——0.

In the fourth process (e), which was called the (d) pro-
cess in the previous paper, a particle-hole pair is annihi-
lated and the exciton number decreases by 2. The ab-
sorptive potential is obtained if the absorptive potential
for the elementary process m(')(Eq, e2) is multiplied by
m(m —I)/2 which is the number of combinations to pick
up two holes from a mp-mh state.

When a nucleon impinges on a mp-mh nucleus, these
four processes contribute and the absorptive potential is
given by
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P, (m) = ~(m, m, e) ) w(m', m', e).
ml

(2.2)

Among available formulas of partial state densities the
one given by Ericson [15] and Williams [16] is the sim-
plest, by which the partial state densities are calculated
for 2osPb and are shown in Fig. 1(A). The shape has a
Gaussian-like form and it is approximated by

W(Ei, e) = P, (m) W(m, m, Ei, e)dm
0

~ iu(~) (Ei)

()(E p)+ ()(E p)

+—g '~( )(E„P).
2 2

(2.5)

P, (m) = 2
exp[ —2(m —m) /m]. (2.3)

m = ggy e/2, (2.4)

where g~ is the single particle state density for neutrons
and protons at the Fermi energy E~. The variance of the
particle or hole number is m/4.

The equilibrium absorptive potential is obtained by
averaging the one for mp-mh state (2.1) with the weight
(2.2) as

In the above formula the mean particle or hole number
m is given by

B. Fixed temperature

1
PT(m) = exp

27r 0

(m —m)2

20
(2.6)

The mean value of the particle or hole number I and the
variance 0. are given by

In the previous subsection the compound nucleus is
speci6ed by giving the excitation energy, but it is also
possible by assigning the temperature. In a compound
nucleus with a given temperature T nucleons are dis-
tributed in single particle states according to the Fermi
distribution function. From this the distribution function
of mp-mh states is evaluated as

m = (ln2)gFT, (2.7)
—2 —1o. = (m —m) = gFT, —

2

0.5

0.4

I

(A) Probability of mp-mh states for Pb

8 =10 MeV

both of which are proportional to the temperature [12].
In Fig. 1(B) this distribution function is illustrated in the
case of Pb with g~ = 9.04 MeV [4]. By using the
well-known relation for Fermi gas

0.3
E

0.2

0.1

0.5

(B) Probability of mp-mh states for 'Pb
0.4

T= 6
'Tt gy

(2.8)

the mean particle or hole number m given by (2.7) is ex-
pressed in terms of the excitation energy, which does not
agree exactly with the one given by (2.4). The width of
the distribution for fixed temperature given by Eq. (2.7)
is large compared with that for fixed excitation energy
given by Eq. (2.3).

After averaging over the probability distribution
PT (m), the equilibrium absorptive potential is expressed
by

0.3

0.2

0.1

0

T=0.82 MeV

10 15 20

Wz(E]) = ui (Ei)
+(ln 2)g~T[m( ) (Ei, 0) + m(') (E„p)]
+—[(ln2)gp T] u)(') (Ei, p), (2.9)

which consists of independent, linear, and quadratic
terms in temperature T.

FIG. 1. Probability distribution of the mp-mh state in an
excited state with excitation energy e for Pb [shown in (A)]
and with fixed temperature T [shown in (B)].The values of e

shown in (A) correspond to the values of T shown in (B) in
that order.

III. ABSORPTIVE POTENTIAL FOR FIXED
TEMP ERATURE

For fixed temperature the absorptive potential is given
by the imaginary part of the self-energy associated with
the retarded Green function [3,11]. Using Matsubara for-
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malism it is expressed in the lowest order as

1
n(E~ =

~(E—A) gT

1
n(E) =1 —n(E) =

] + ~—(E—A) /T'

(3.2a)

(3.2b)

where A is the chemical potential.
The absorptive potential for a fixed temperature has

been studied by many authors. To our knowledge Morel
and Nozieres [17] were the first to estimate the polar-
ization term of TVT in an infinite fermion system under
the assumption that interaction matrix elements are con-
stant, and obtained the expression

~T (Ei) = ——v g+ vr T + (Ei —Ep)' n(Ei), (3.3)

where v2 is the average square of the nucleon-nucleon
interaction matrix elements. If the correlation contribu-
tion, which is proportional to n(E), is added then the
factor n(E) is dropped because of Eq. (3.2b), and the
absorptive potential becomes a function of T and the
square of the excitation energy of the incident nucleon,
which restores the particle-hole symmetry [3]. This ab-
sorptive potential has no linear term in T, and it is not
consistent with the results obtained in the previous sec-
tion. This contradiction will be resolved later.

A. Semiclassical approximation

As in the previous work [4] we introduce the semiclassi-
cal approximation [13], because we are interested in the
averaged absorptive potential. Introduction of temper-
ature is also compatible with averaging. The Thomas-
Fermi model with the local momentum approximation is
adopted for the nucleus which is assumed to be spheri-
cally symmetric. If the local wave number at the location
R is denoted by K(R) and the potential by U(R), then
the single nucleon energy is given by

h2
E = [K(R)] + U(R) (3.4)

where m' (R) is the effective nucleon mass at the location
R,. As the real potential U(R) we consider a finite well
like the Saxon-Woods type. The probability of finding
a nucleon at a location R and with energy E, which we
call the spectral density, is given by

m„'(R)K(R)
2~2hz (3.5)

(11W~11') = ——) (»IVI34) ~(E, + E, —E, —E,)
234

x [n(E2)n(Es)n(E4) + n(E2)n(Es)n(E4)]
&( (43

l
/

l
21') (3.1)

where 1,2,3,4 represent the quantum states of partici-
pating nucleons. The first term of the square brackets
in Eq. (3.1) is often called the polarization contribution
and the second term is the correlation contribution. The
occupation probability of a hole and of a particle is given
respectively by

where the factor 4 is included as this spectral density is
for neutrons and protons and spin up and down. The
semiclassical state density is obtained as

g (E) = f g, (E, R)dH. . (3.6)

The integral is extended over the classically allowed re-
gion. So below the minimum of the potential U, which is
denoted by B, the state density vanishes. Above zero en-
ergy for neutrons and the Coulomb barrier for protons the
state density diverges. The state density given by (3.6) is
defined when it has a finite value. When it becomes nec-
essary to use the state density beyond the defined region
it must be extrapolated. In nuclear matter the state den-
sity may be defined at any energy. Therefore the state
density is extrapolated as

g. (E) = g, (0)
E —B

(3.7)

The above energy dependence is the same as the state
density of Fermi gas.

The state density of a single nucleon is conveniently
defined as

g(E) = [g.(E)O(—E) + g.(E)o-(E)] o-(Eo —E) (3 8)

where Eo is the upper liinit of the energy, and 8(E) is
the unit step function. For Q space Eo ——0 and for P+ Q
space Eo ——oo. This extension of the state density to con-
tinuum is necessary in calculating the chemical potential
when equilibrium reactions are considered.

The chemical potential A is fixed by the following equa-
tion

n(E)g(E)dE = A
B

(3.9)

and we call the chemical potential at zero temperature
as the Fermi energy E~, which is defined to satisfy the
relation

Ep
g(E)dE = A. (3.10)

In Table I the chemical potentials for Pb are shown.
For details of the calculation see Sec. VI.

The semiclassical absorptive potential is obtained by
taking the Wigner transform of the quantum mechanical
one defined by Eq. (3.1) [13]. For this purpose the center
of mass R; and relative coordinates x; of the ith nucleons
are defined by

r, +r,'=2R, , (3.11)

respectively, where r; and r', are the locations of the nu-
cleon, with respect to which a matrix element is defined.

The Wigner transform of the absorptive potential R'T
is given by
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TABLE I. The chemical potential A and the number of excited particles or holes m given by (4.3)
and (4.7) are listed at six temperatures T for Pb. In the next rows mh, and m„are quantities
related to the magnitude of the absorptive potential given by (7.1) and (7.2). In the last row those
in the Fermi liquid approximation given by (7.3) are listed.

T (MeV)
A (MeV)

m
mQ

mp
ln2. gFT

0
—9.268

0.00
0.00
0.00
0.00

1
—9.337

6.3
6.59
5.96
6.27

2
—9.516
12.6
13.70
11.44
12.54

3
—9.828
19.1
21.45
16.38
18.80

—10.256
25.?
29.81
20.87
25.08

5
—10.780

32.2
38.67
25.02
31.35

S(Tepee Kl al) = f deele (e»el''(S~)le»'e)

(3.12)

where si stands for spin-isospin quantum numbers for the
I

ith nucleon. However in this paper the absorptive poten-
tial is independent of the spin-isospin state, so henceforth
the quantum number sq will be dropped.

Substituting Eq. (3.1) into Eq. (3.12), the Wigner
transform of the absorptive potential is expressed as

WT(sl, Kl Rl) = ——(2ee)
' f dKedxedxedaedaedae

2

x ) (s1K1R»s2K2R2IVV ls3K3R3 s4K4R4)
82 q83184

x [r1(E2)r1(E3)r1(E4) + r)(E2)n(E3)r1(E4)]b'(E1 + E2 E3 E4) I

where the Wigner transform of the interaction part is

(IVV'I) = ) (»K1R» s2K2R2IVV'l»K3R3 s4K4R4)
8g 8384

iKi xi+iK2x2 —iK3x3 —iK4x4
3Cy Kg %.3 X,4C

8g 83 84

x (s1r1, s2r2IVlssr3 s4r4)(»r1»r'2IV'l»r3 s4r4). (3.i4)

In the following the Wigner transform of simple inter-
actions is illustrated. First a simplified Skyrme interac-
tion is considered,

(r1r2lvlrsr4) = b(r1 —r3)b(r2 —r4)(1 —P P )

x 08 (r1 —r2) Vp (r1), (3.i5)

where the strength of the interaction Vp(r1) depends on
the density which is a function of rq, and 0 represents
its exchange character,

0 = a + acr Pa + a~P~ + aawPo P (3.16)

(IVV'I) = ~(R1 R3)~(R2 R4)~(R1 R2)
x J[Vp (R1)]'(2~)'b, (B„V) (3.17)

where

The spin and isospin exchange operators are denoted by
P and P respectively, and a, . . ~, a are parameters ex-
pressing the exchange character. The Wigner transform
is given by

J=6((a —a ) +(a —a ) ) (3.i8)

is a constant associated with the exchange character. The
function

O(s, , q) = (2ee)
' f dx, e

xVp Rg+ — Vp Rg —— Vp Bg

(3.19)

depends on the change of the total wave number,

q = Kg + Kg —K3 —K4. (3.2O)

( )
— e /+o (3.2i)

then

(3.22)

If the strength Vp(B) is proportional to the density and
its distribution is approximated by the Gaussian function
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(iVVt~) = h(R) —Rs)h(R2 —R4)8(R) —R2)

x J[VO(Bg)]'(22r) h(q). (3.23)

The magnitude of wave number K; is close to the Fermi
wave number Kp ——1.4 fm, while the nuclear radius is
Ro ——3 5 fm, so the function A(Bq, q) may be regarded
as a delta function of q. In this paper this approximation
is adopted as in the previous paper [4], (rqr2~V~r314) = h(rq —rs)h(r2 —r4)

x(1 —P,P P )Ov(~r) —r2~) (3.24)

is considered, where P„ is the space exchange operator.
Then the signer transform is

For a density independent interaction the above result
becomes exact provided that Vo(R) ) is a constant.

Next the finite range interaction

(IVV'I) = (2~)'~(q)

S2

dwv Ry —R2 + — v Rg —R2 ——
2 2

x ) (ssss~Os~s, ss)(e'{ ' '{"b(Rs —Rs)b(Rs —Rs)
S2

+e'{ ' '{"b(Rs —R, )b(R, —Rs)) —2) (s, ss~P OP'~ , s)bs(sR, + R, —R, —Rs)2

{se —se ){ss —ss ) —'{se —ss ){ss —ss )b(2R 2R + ))
Sums over spin-isospin give

(3.25)

J~ = 2):(»s2IO'l»s2)
Sg

=8(a +a +a +a )+8(a+a )(a +a )+4(aa +a a ),
J, =2) (sqs2))P~P 0 ~(s)s2) = 16(aa +a a )+8(a+a )(a +a )+2(a +a +a +a ).

S2

(3.26)

(3.27)

From Eq. (3.18), the following relation is easily shown:

J= Jg —J,.

For the special case of Gaussian interaction with the strength V~ and the range ro,
2 2

vb-(r) = —V~e

(3.28)

(3.29)

the integral is easily calculated

fdxe'""v~ Ry —R2 + — vt- R] —R2 —— ——v~ R] —Rg 27rr e
2 2 0 (3.30)

(~VV ~)dRsdRsdRs —(2e') b(sb) f (ee:(~{R,—Rs)))'dRs(2ese)'

J ——"2& (Ky —K3) + ——"222- (K1—K4) J —-"888- ((K1—K2) +(Kg —K4) )
L

"2 ' (3.31)

By using the relation (3.28) and

(3.32)

it is easily seen that Eq. (3.31) is equivalent to Eq. (3.23)
in the limit of ro —+ 0. The notation Vo is the strength
of the delta interaction whose volume integral is equal to

the Gaussian interaction (3.29).
To survey the temperature and the incident energy de-

pendence of the absorptive potential R'~, the polariza-
tion and correlation contributions are shown in Fig. 2.
Adopting the same simpli6ed Skyrme interaction as in
Ref. [4] and both P + Q and Q absorptions are as-
sumed. Details of the calculation will be given in Sec. V.
First P + Q absorption is examined, which is shown in
Fig. 2(A). The curves for the polarization contribution
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2.5

2

1.5

corr

0 I I I

2.5

At zero temperature, states up to the Fermi energy E~
are completely filled, and the relation (3.10) holds. At fi-
nite temperature T, nucleons occupying states below the
Fermi energy are excited to above the Fermi energy ac-
cording to the distribution function given by (3.2a), and
the average number of excited nucleons and its variance
are given approximately by (2.7) at low temperature.

In order to derive the preequilibrium absorptive po-
tential &om the fixed temperature one the distribution
function n(E) must be decomposed into the particle part
and the hole part because nuclear states in the preequi-
librium process are specified by the exciton number 2m.
The occupation probability n(E) is divided into two par-
tial ones at the Fermi energy E~

2
n(E) = H(E)+ p(E) (4.1)

~.5—
X where

0.5
C

H(E) = n(E)8(Ep —E),

p(E) = n(E)O(E —Ep) (4 2)

0 I

-20 -10 10 20

are the hole and particle parts, respectively. The particle
number m is given by

FIG. 2. Absorptive potentials —WT at temperatures
T = 0, 1, and 2 MeV and at Bq ——0 are shown both for
P + Q absorption (Eo = 60 MeV) in (A) and for Q absorp-
tion (Eo = 0 MeV) in (8). As the residual interaction, the
simplified Skyrme interaction is adopted, and the numerical
calculation is performed without the Fermi liquid approxima-
tion.

Ep

p(E)g(E)dE = m
EF

(4.3)

which also gives the relation between the temperature
and the average exciton number. By using (3.10) and
(4.3) we obtain

are well reproduced by the well-known quadratic formula
given by (3.3). Below the Fermi energy the curves grad-
ually tend to zero as predicted by n(Ei). The correla-
tion contribution is almost the corresponding polariza-
tion contribution reBected at the ei ——0 line. The case
of Q absorption is shown in Fig. 2(B). The correlation
contribution for Q absorption is almost the same as the
corresponding P + Q absorption. However the polar-
ization contribution is markedly different &om those for
P+ Q absorption. The curves do not increase quadrati-
cally as the excitation energy increases. This is because
the particle energy is cut off at the energy zero for Q
absorption.

EF
H(E)g(E)dE = A —m.

B

For the vacancy probability we divide

n(E) = 1 —n(E) = h(E) + P(E),

where

h(E) = n(E) 8 (E~ —E),

P(E) = n(E)8(E —Ep).

(4.4)

(4 5)

(4.6)

IV. DECOMPOSITION OF ABSORPTIVE
POTENTIAL Wz INTO PREEQUILIBRIUM

POTENTIALS

In this section the correspondence between the absorp-
tive potential at finite temperature given by (3.13) and
the preequilibrium absorptive potential whose approxi-
mate formulas were intuitively constructed in the previ-
ous paper [4] is established.

By using (3.10) and (4.5) and (4.6) we obtain the hole
number

f
EF

h(E)g(E)dE = m.
B

(4.7)

The divided occupation probabilities (4.1) and the va-
cancy probabilities (4.5) are put in the absorptive poten-
tial given by (3.13), whose last line is expanded in the
following form,
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[n(E2)n(E3) n(E4) + n(E2) n(E3) n(E4)]b(E1 + E2 —E3 —E4)

= [H(E2)P(E3)P(E4) + h(E2)p(E3)p(E4)]b[E1 —(—E2 + E3 + E4)]
+[p(E2)P(E3)P(E4) + P(E2)p(E3)p(E4)]b[(E1 + E2) —(E3+ E4)] (~)
+[2H(E2)P(E3)k(E4) + 2h(E 2)p(E3)H(E4)]b'[(E 1—E4) —(E3 —E2)] (c)
+[2p(E2)h(E3)P(E4) + 2P(E2)H(E3)p(E4)]b[(E1 + E2 —E3) —E4] (d)
+[H(E2)Ii(E3)ti(E4) + ~(E2)H(E3)H(E4)]b[(E1 E3 E4) ( E2)] (e)
+[P(E2)h(E3) h(E4) + P(E2)H(E3) H(E4)]b [Ei —(2E1 + E2 —E3 —E4)] (f)

(4.8)

where the factor 2 in lines (c) and (d) appears because
the interchange of labels 3 and 4 gives the same inte-
gral. Now we explain how the right-hand side of the
equation is arranged. At each line the 6rst term comes
from the polarization contribution n(E2) n(E3)n(E4) and
the second term comes from the correlation contribution
n(E2)n(E3)n(E4); the latter is obtained from the former
by replacing the capital letters H and P by their small
letter counterparts. Each line is labeled by o, , 6, . . . , f to
be identified with each process shown in the upper row
of Fig. 3 when the nucleon 1 is a particle and in the lower
row when it is a hole.

The polarization contribution for an incident particle
is considered first. The hole case will be considered in the
last subsection. As the capital letter distributions H and
P measure large compared with the small letter distribu-
tions, states with capital letter distribution are chosen as
intermediate states of nucleons over which a sum is taken.

I

WT(E1) Ki) Ri) ) W (E11K1~Rli T)~ (4 9)

where

I

Nucleon states with small letter distribution are assigned
to initial states, and it is seen that each line corresponds
to each process shown in Fig. 3, although processes up
to the intermediate stage are actually drawn there. The
arguments of the energy delta function is also rearranged
accordingly. The interaction part in Eq. (3.13) will be
considered later.

For the correlation contributions states with small let-
ter distribution are assigned to intermediate states, so
the correlation contributions are small compared with
polarization ones when the nucleon 1 is a particle.

Substituting (4.8) into Eq. (3.13) WT is decomposed
into 12 components as

W" (R1, K1, R1, T) = ——(2m)
' f dKzdKsdK4damda~da4

2

& (I«'I) ~2(E2)~3(E3)n4(E4) b(E1 + E2 —E3 —E4) (4.10)

In the above equation the superscript (i) specifies
the kind of processes (a)—(f) as well as the contribu-
tion of the polarization p or the correlation c, and
n2 (E2)n3 (E3)n4 (E4) is the corresponding product of

three partial occupation probabilities.
In the previous work [4] we introduced intuitively the

absorptive potential for preequilibrium processes (a)—(e)
for a particle (Ei ) E~) shown in Fig. 3. In the fol-

3 4 2 3 2

(a)
pm=+1

3 4 2 3 4 3 2

1 2 1 4

(b) ~ () ( )
1 2 3 3 2 4

Qm= -2 FIG. 3. Diagrams of absorp-
tion processes (a)—(f). The up-
per row shows the case when
the incident nucleon is a parti-
cle, while the lower row the case
of a hole.

1 2 1 4 1 2 3

pm= -1

32 4

(a)
Qm= -2
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lowing the expression (4.10) is written for each process, &om which the corresponding preequilibrium absorptive
potential is derived, and is shown to reduce to the previous result [4] if further approximation is applied.

A. Calculation of absorptive potential for each process

1 T. he process (a)

This process is a particle-hole pair creation by a particle, so it is similar to the thermal process. By taking the first
term of the first line of the right-hand side of (4.8), Eq. (4.10) for this process is given by

2V~ ~(Eq, K~, R~;T) = ——(2vr) f dKgdK~dK4dR2dRsdR4

X6[Ei ( E2 + E3 + E4)](lVV l)H(E2)P(Es)P(E4) ~ (4»)

The above expression reduces to the one we obtained
previously if partial occupation probabilities are replaced
by those of zero temperature. So our present results take
into account the Pauli blocking eKects, reduction of the
intermediate phase space due to the excitation of nucle-
ons, whose mean number is equal to the particle number
given by (4.3).

As the process appeared in the absorptive potential
at finite temperature and the process (a) is essentially
the same with respect to the interaction, it may not be
necessary to explain the interaction. But the matrix el-

ement (2 34lVll) for the process (a) in Fig. 3 is equal
to (34]V]21) by particle-hole conjugation, which appears
in (3.14). The overline indicates the time-reversed state.
Although 2 instead of 2 appears in (3.14), it does not
matter as a sum over 2 is taken there.

Therefore the absorptive potential given by Eq. (4.11)
is the preequilibrium one for the process (a) where the
target nucleus has the mean particle number m. The
result of numerical calculation of W„ for n+ Pb will
be shown in Fig. 6 in Sec. V.

2. The process (b)

For this process (4.10) becomes

2V~~ ~(EQ Kf Rl T) = ——( z') 2f dK, dKzdK4dRqdR3dR4

&& ~[(Ei + E2) —(Es + E4)](IVV'1)p(E2) P(Es)P(E4) ~ (4.12)

In this formula the integrals over K3 and K4 are for intermediate states, but the integral over K2 is taken with
respect to the initial states, so it is rearranged to fit the process (b). The matrix element of the interaction is just the
one that appeared in Eq. (3.14). The integral over the variable K2 is expressed as an integral over the direction K2
and the magnitude in terms of the energy using (3.5)

dK2p(E2) dK2dE2p(E2)g(E2)
(2z) s g, (E2, R2)

4 4vrg E2
(4.13)

where the last term on the right-hand side of the above equation is the probability of the particle 2 with energy E2
being located at R2. Then Eq. (4.12) reads

W„(Ei,Ki, Ri, T) = ——(2m) dK2dE2dR2p(E2)g(E2)
2 42Tg E2

X dK3 dK4 dR3dR4b E'i + E2 —E3 E4 +V + E3 + E4
1

4
(4.14)

It is convenient to define the eleinentary absorptive potential for the process (b) by the following expression which
appears in Eq. (4.14)

w~ ~(K~K~, K~K~; T) = ——(2z) f dK~dK4dR~dR42(E~ + Eg —Eg —E4) —(~VV ))P(ES)P(E4), (4»)
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although the effect of the target excitation is already in-
cluded through P(Es) and P(E4). The absorptive po-
tential (4.15) is further averaged over the location and
the direction of the momentum of particle 2

44 (E1R1,E1;T) = f dK1dR1

') ~(') (K R K R, T)(E )
(ci2 i i) 2 2)

(4.16)

Again our present result takes into account the Pauli
blocking effects, and is improved on the previous one in
the process (b).

The factor p(E2)g(E2) has a sharp peak at E2 ——E~
while the other factor is a mild function of E2, so the
latter factor may be taken out of the integral with E2 ——

E~ and the rest p(E2)g(E2) is integrated over E2, which
gives the value m by (4.3). Then (4.17) is approximated
as

W„(EiRi, T) = mu)„(EiRi, E2 ——E~, T). (4.18)

Then the absorptive potential (4.12) is given by

W4~'(E4R4 T) = f dE1P(E4)

x g(E2) 2d) (EiRi, E„T). (4.17)

Furthermore if the occupation probabilities are replaced
by those of zero temperature in the absorptive poten-
tial for the elementary process we obtain the absorptive
potential for the process (b) of the previous paper [4].

3. The p2ocess (c)

This is the preequilibrium absorptive potential for the
process (b) where the target nucleus has 2 m excitons.

The process (c) is treated in the same way as in the
process (b), and the absorptive potential (4.10) becomes

W„(') (Ei, Ki, Ri, T)

= ——(244) f dK4dK1dK4dR4dR1dR4b[(E1 —E4) —(E3 E1)]([VV [)2b4(E4)E(E4)P(E4).
2

If the absorptive potential for the elementary process (c) is defined by

(K1R1,K4R4, T) = —44(244)
' f dK1dK4dR1dR4b(E1 + E1 —E4 —E4)([VV [)II(E1)P(E1)

and averaged over the location and the direction of the momentum of the hole 4,

u)„' (EiRi, E4, T) = dK4dR4 u)„' (KiRi, K4R4, T)(,)
- g, (E4, R4) (,)

4vrg, E4

(4.19)

(4.20)

(4.21)

is obtained. The interaction (14 ~V~32 ) is equal to (12~V~34) which appears in Eq. (3.14). In terms of this we
finally obtain the preequilibrium absorptive potential for the process (c) as

Wj (E1R1,T) fdE4b4(E4 )2 (E4=)4414' (E1R1 E4 T)

= mw(')(EiRi, E4 ——E~, T),
where the last line expresses the approximate formula as in the previous process.

(4.22)

The process (d)

The absorptive potential for the process (d) is given by

W~ ~(E, , K, , R, ;T) = ——(244) f dK, dK4dK4dR, dR4dR4

»KEi + E2 —Es) —«)](IVV'l)»(E2) h(Es) P(«).
As in the previous cases the absorptive potential for the elementary process (d) is defined by

444 (K1R1,K1R1,K4R4;T) = —44(244) f dK4dR4b(E1+E4 —E4 —E4) —([VV [)P(E4).

(4.23)

(4.24)

In this case the average must be taken with respect to the initial state of the particle 2 and the hole 3:

(EiRi, E2, Es, T) = dK2dR2 dKsdRs zu„(KiRi, K2R2, KsRs., T).g, (E2, R2) - g, (Es, Rs) (d)
4vrg, E2 4~g, Es

(4.25)
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Finally we obtain the absorptive potential for the process (d)

6V (EiRi;T) = f dEgp(Em)g(E2)dEah(Es)g (E~)m (EiRi, E~, EsT,)
= m, 'rd) ~ l (Eg Rg, E2 ——E~, Es ——Ey, T), (4.26)

in terms of the absorptive potential for the elementary process (d). As in the previous cases the last line is the
approximate formula.

$. The process (e)

The absorptive potential for this process is given by

W& &(E„K„R,; T) = ——(2z) ' f dKdKdK4dRdRdR46](E, —E, —E4) 6 E ](]VV ])E(E)6(E~)6(E4)

(4.27)
while the absorptive potential for the elementary process is de6ned by

1
w~ ~(K~R~, K3Rz, K4R4,.T) = —vr(2z') f dK~dR~6(E, + Eg E3 E4) (]VV ])E(Eg). (4.28)

As in the previous processes the absorptive potential for the elementary process is averaged over initial states

u)„' (EgRg, Es, E4) T) = dKsdRs ' dK4dR4 rd)„' (KgRg, KsR3) K4R4, T),(,)
- g, (E3 R3) - g, (E4, R4)

4rrg, Es) 4rrg, E4
(4.29)

and the absorptive potential is rewritten in terms of (4.29) as

p'6V( i Ei;RT) = f dEa&(Eg)g (Es)dE~&(E4.)g (E4)~p'(EiR. i', E4, T),
—2

rd) l'l (EgRg, Es ——Ey, E4 ——Ep, T). (4.30)

It should be noted that the label of the processes (d)
and (e) in the previous paper [4] is interchanged in the
present work. In addition, the factor I/2 in Eq. (2.34) of
Ref. [4] should be eliminated.

8. The process (f)

inal polarization term (a). In this way correspondence is
achieved by reversing the order of the labels. Treatment
of a diagram for each process is the same. All particle
lines and hole lines are interchanged, and the order of la-
bels is reversed, then the lower row of Fig. 3 is obtained
from the upper row. Therefore we need not do any new
calculations for a hole.

The polarization contribution for the process (f) van-
ishes due to the energy conservation.

V. ANALYTIC FORMULA BASED ON THE
FERMI LIQUID THEORY

B. Correlation contribution and the absorptive
potential for a hole

For the correlation contributions the same treatment
may be applied, but no correspondence is obtained to
the previous work [4] because we did not consider the
correlation contribution there.

Now consider the case in which the incident nucleon is
a hole. By the time reversal invariance the interchange
of all particles and holes does not change the matrix el-
ements of the interaction for the processes (a) through
(f). In Eq. (4.9) the main contribution comes &om the
correlation part in the case of a hole. By this interchange
the correlation term of the process (f) becomes the orig-

In this section we calculate the absorptive potential
W~'l at the nuclear center (R) ——0) adopting the Fermi
liquid approximation [14] which is expected to be valid
at low temperatures. By using the resulting analytic ex-
pressions for TV~'~, temperature and energy dependence
of each process are examined.

In the Fermi liquid approximation, wave numbers of
participating nucleons are supposed to be close to the
Fermi wave number K~, and integrals over the wave
number are carried out by introducing the angles 02, p2,
and P. The z axis is taken along Kq, and the polar and
azimuthal angles of K2 are denoted by 02 and p2. The
momentum conservation Kq + K2 ——K3 + K4 and the
relation Ks K4 fix Ks and K4 if the angle P between
two planes containing Kq, K2 and K3, K4 is given. Using
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these angles the following replacement

8(Kg + K2 —K3 —K4)dK2dKsdK4

dE2dE3dE4 sin d—82dp2dr/p (5.1)
/'m„'(R, ) i '

Og

2

For the Gaussian interaction, the expression given by
Eq. (3.31) contains the quantities IKz —K3I, IKq —K4I,
and IK3 —K4I which depend on the angle variables.
These are averaged over angles 02, p2, P, which is denoted
brieQy by 0,

(
—ro(Kg —Ks) /2) (

ro(K—i —K4) /2)

W(') (E„K„a„T)=—
(2~)4 ( 52

xdjVO(R, )]~J dE, dEzdE4

xb(E~ + E2 —E3 —E4)
x n2 (E2)n3 (E3)n4 (E4) . (5.2)

is applicable. Momentum conservation is no longer nec-
essary to be taken into account, and the calculation be-
comes easier.

First consider the case of the simplified Skyrme inter-
action with the approximation (3.23), which contains no
angle variables. Therefore the angle integral gives a fac-
tor 8' . The absorptive potential is given by

(
—~8((K~ —K2)~+(K3—Kd)21) y ( ~ ) (5 4)

~p P

where

(5 5)

is Dawson's integral [18]. Then the absorptive potential
reads

W ' (Eq, Rq, T) = — v~(IRq —R2I) dR2(27rrp) 2 dE2dE3dE4
(27r) 4

x
I I 8(EQ + E2 E3 E4) Jdr erf(~2rpKF)/(~2rpKF)
(m„(Z, ) )

'
~7r

h2 2

J&I"(&o~F—)/(&o~F) n2(E2)ns(E3)n4(E4). (5.6)

A. Average square of the residual interaction matrix
elements and efFective state density

To investigate further the relation between the tem-
perature dependent absorptive potential and the exciton-
number-fixed absorptive potentials, Eq. (5.2) is rewritten
as

W * = ~v,~pd, ~(Eg),(') 2 (') (5.7)

where v,& is the average square of the residual interaction
matrix elements given by

J /'m' ) Vp

(2')4 I( FP ) gF
(5.8)

The next factor pd, & (Eq) is called here the effective state
density, which is given by

The two functions appeared in the last equation
~2erf(v 2x)/(~2+) and I' (x)/x are both decreasing
functions of x starting &om the value 1 at x = 0. How-
ever the latter decreases faster than the former. So the
effect of the exchange term decreases with increasing the
interaction range Tp.

pd, ~(Eg) = dE2dE3dE4b(Eg + E2 —E3 E4)(i)

xgF3n2(E2) n3(E3)n4(E4). (5 9)

For the polarization contribution of the process (a) this
is the state density of the intermediate states modified
by the presence of excited nucleons. For other processes
they include the effect of the initial state, but still have
a dimension of the state density and Eq. (5.7) has the
form of the Fermi golden rule, so we call it the effective
state density for convenience. It is also noted that both
v2& and pd, &(Eq) depend on the single particle state den-
sity g~. However these dependences are super6cial, and
the absorptive potential, the product of the two, is not
dependent on g~.

The relation (5.7) could be used in the general case,
but the calculation of v & becomes much more compli-
cated and also depends on the type of processes. On
the other hand Herman, Reffo, and Weidenmuller [].9)
assumed that the factorization (5.7) holds and v2& is in-
dependent of the process, which is justified under the
Fermi liquid approximation.

The integral is expressed in a dimensionless form by
introducing the variables
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si ——(Ei —EF)/T,
si = IE~ —EFI/T (a = 2, 3, 4),

(u,~~(si) = g~T I(')(s, )

(5.10a)

(5.10b)

(5»)

is used, where the indices k2, k3, k4 take either the value
0 or 1. It is easily seen that the integral does not change
the value if the order of these indices is changed, so there
appears factors 3 in Eq. (5.15)

Similarly the integrals for the process (b) in the polar-
ization contribution

The dimensionless integral will be calculated in the next
subsection for each process.

For the occupation probability the notation

I( ) (si) = ds2 dss ds48(si + E2 E3 s4)
0 0 0

x f('2) [1 —f ('s)][1 —f ('4)] (5.19

f() = (5.12) is given by

is used, and the partial occupation probabilities are ex-
pressed as

II(Ek) = 1 —f(sA. ), I'(Ea) = 1 —f(sa),
p(E~) = f(sa), ~(Ea) = f(sa) (5.13)

where s'g is defined by Eq. (5.10b).

B. Calculation of effective state density

I~ (si) = ds2 des de4h(si —s2 —e's —s4)
0 0 0

x [1 —f (s2)] [1 —f (ss)] [1 —f(e4)]. (5.14)

The dimensionless integrals appearing in Eq. (5.11) are
calculated in the Fermi liquid approximation. The inte-
gral limits of c; are 0 and oo and the chemical potential
A is set equal to the Fermi energy E~. In this subsec-
tion brief descriptions of calculations and results are pre-
sented, while details are given in Appendix A.

The integral for the process (a) in the polarization part
is given by

( i) = ioo( i) iio( i) + »i((s) (~) (~) (b) (5.20)

where I& & & is defined by Eq. (5.18) in which the en-

ergy delta function is replaced by the one appearing in
Eq. (5.19). For the correlation contribution

I( )(si) = ds2 dhs ds4h(&i + E2 s3 E4)
0 0 0

x [1 —f (s2)]f(ss)f (s4), (5.21)

we have

(si) = Ioii(si) i»( i).(~) (~) (5.22)

For the process (c)

I„' (si) = 2 ds2 des ds4h(ci —sq —s3 + s4)
0 0 0

"I:1—f( )ll:1 —f( )]f( ) (5.23)

is obtained &om Iz by interchanging e2 and e4 and mul-

tiplying a factor 2,

(5.24)

The integraiid is expanded in terms of f(s;) and is ex-
pressed as

For correlation contribution,

I(~)(s ) 2I(s)(s ) (5.25)

p ( i) = ooo( i) ioo( i) + iio( i) iii( i).
(5.15)

The correlation contribution is given by

I, (s, ) = ds2 des ds4
0 0 0

( — — — 4)f( 2)f( s)f( ) ( . )

I " (si) = 2 ds2 des ds4h(si + s2 + e3 s4)
0 0 0

x f (c2)f (ss) [1 —f (e4)], (5.26)

holds.
The polarization contribution for the process (d) is

given by

furthermore, it is expressed as
while the one for the process (e) is

I~ (si) = Illl(sl)

In Eqs. (5.15) and (5.17) the notation

(5.17)

(5.27)

I(' (si) = dh2 des de4h(si —s2 + e3 + E4)
0 0 0

x [1 —f (s2)]f (ss)f (s4).

r„.„,(„)= ~., J' a.j a.( )

0 0 0

xh(si —s2 —s3 E4)(f( )s)2'

X 8'3 6'4 (5 18) and

I(~) ( ) 2I(~) ( (5.28)

As in the case of processes (b) and (c) we have relations
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( i) = oii( i) iii( i).() () (5.29)

For the correlation contribution

(5.30)

is expressed as

(5.31)

I (Ei) = ds2 des ds'4b(si —s2 + ss + «)
0 0 0

xf( )[1 —f( )][1—f( )]

which are proved by using the relation 1 —f (e) = e' f(e).
Now the integrals I& & & (si) are evaluated assum-

ing e~ & 0. The integrals are calculated in the or-
der of complexity. The last integral corresponding to
(k2, ks, k4) = (1, 1, 1) is expressed in terms of the previ-
ously obtained one using the relations (5.37).

The integrals I& & & (si) are expressed in terms of
seven independent basic integrals, which result in two
constants, two logarithmic functions, and three diloga-
rithmic functions [18] of variable x defined by

and the relation
x=6 (5.38)

I( )(s, ) 2I( )(,) (5.32)

holds.
Finally for the process (f)

I„~ (ci) = ds2 dss ds4b(si + s2 + s3 + s4)
0 0 0

xf(s.)f(es)f(«) (5.33)

and

I(~)(s,) = ds, ds,
0 0 0

x [1 —f (s2)] [1 —f (ss)] [
—f (s4)]

dh4b(si + s2 + s3 + «)
(5.34)

( i) = iii( i)~(f) (f)

c ( i) = ooo( i) ioo( i)(f) (f) (f)

+3Iiio(si) Iiii(si)(f) (f)

(5.35)

(5.36)

Between polarization and correlation contributions we
have relations

I(')(si) = e "I(' (ei), j=a, b, . . . , f, (5.37)

are the polarization and the correlation contributions,
respectively. The expansions are given by

The definition [see Eq. (B2)] and main properties of the
dilogarithm function are given in Appendix B. The inte-
grals are listed in the first row of Table II, where three
functions

di(x) = dilog x,
1+x

d2(x) = dilog
2

7r2
ds(x) = dilog(1+ x) +—

12
(5.39)

are all constructed to vanish at x = 1. As the dilogarithm
is a monotonically decreasing function of x, the ranges of
these three functions are easily 6xed as

0 ( di(x)( di(0) = —= 1.64,

vr 1
0 ( d2(x)( d2(0) = ———(ln2) = 0.58,

12 2

0 & ds(X)( d3(0) = —= 0.82
12

(5.40)

for0&x&1.
The expansion coeFicients of the integral I& & & in

terms of the seven basic functions are listed in the rows
below the erst one in Table II. The polarization contri-
bution of each process I„(ei) and the total polarization
contribution I„(si) are also listed. The correlation con-
tribution is obtained by multiplying the corresponding

TABLE II. List of integrals appearing in the Fermi liquid theory in terms of two constants and
6ve independent functions.

(a)
Iooo

(~)
3I1OO

(~)
3I11O

(~)ill
1(a)

p
(&)

3I1OO
(~)
110

(~)

3r„'"
(e)

3IO11()
3I(e)

p

Ip

12

—3K
1+a

3
1+m

3
1+~

3
1++

6
1+%

(1n 2) —ln 2lnx

3K
1+m
—3

1+a

—3K
1+a

3
1+m

(ln z)'
1
2

—x/2
1+x
1/2
1+@

1/2
1++

di (2:)

—3x
1++

3
1++

—3
1++—3
1++

d2(*)

6m
1++—6
1+%

6—6m
1++
12

1+m

—6
1+a—6
1+a

d3(x)

—3K
1+m

3
1+m

6a
1+m—6
1+%
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polarization term by x owing to the relations (5.37).
In order to obtain the integral for the case of a hole

E~ & E~, Table II cannot be used directly, because they
are calculated assuming ri & 0. Instead the following
relations

I(o)( s ) I(f)(z )

I('l(—.,) = I( l(., )
I(~) ( s, ) I(s) (s, ) (5.41)

should be used. These relations are proved easily by using
Eqs. (5.16) and (5.33) and (5.21) and (5.27).

C. Temperature and excitation energy dependence
of the efFective state density

As we are considering the case of a particle, c j ) 0, the
range of variable x is given by 0 & x & 1. We investigate
the behavior of the integrals I& & & and the absorptive

2& 3) 4
potentials for each process. An interesting limit is the
low temperature, but in this case x cannot be expanded
in power series of T/si, where ei = Ei —E~. The dilog-
arithms also cannot be expanded in T/ei either. Except
for z and di (z) ds (x) the dependence on ei and T may
be explicitly shown. Restricting to the T & ei case, the
functions di (x), d2(x), ds (x), which cannot be expressed
as power series of x, are quantities of order of 1,

0.77 = di(e ) & dq(x) & di(0) = 1.64,

0.34 = d2(e ) & d2(x) & d2(0) = 0.58,

0.41 = ds (e ) & ds (x) & ds (0) = 0.82 (5.42)

for 0 & x & e . Because of Eq. (5.11), integrals multi-

plied by T are considered below.
Let us start from the process (a). The first one T2Ioo&

is just given by ei/2, which survives in the limit of zero
temperature. This absorptive potential has a well-known
quadratic dependence on the excitation energy of the in-

cident nucleon.
The second term T IieJ = (ln2)eiT —T ds(x) has a

main term proportional to temperature, or the number
of particles or holes in the target nucleus. This term
is obtained if f (s2) is considered as a function peaked
at s2 ——0. First evaluating fz f(s2)F2 ——ln2 the re-
maining integral is carried out over e3 and e4 putting
c2 ——0 which gives zi. This term represents the suppres-
sion of creating a 2p-1h state in the intermediate states
where particles and holes already exist. The factor 3 that
appeared in (5.15) comes from the three sources of the
Pauli blocking of two particle and one hole. The remain-
ing term contains higher order terms of order T which
comes &om the correction te the above approximate eval-
uation.

The third term T I]yp has no term proportional to T,
and it includes only terms of order T and higher order
terms, which are corrections to the second term.

For the process (b) the dominant term T I&co ——ln 2 .

~qT + z& T consists of the terms proportional te T and
T . The former is proportional to the exciton number, or

TABLE III. List of integrals appearing in the Fermi liquid
approximation for rl &( T.

T I000
—3T'I"1003T'I"110

T21(~)
111

T'I„"
3T'I("100

—6T'I'"110
3T'I'"111
3T21("p
3T'I"Oll

—3T'r"ill
T21(~)

p

T I„

—3(ln 2)'
——+ 3(ln 2)2

8

3(ln 2)'
—3(ln 2)

8

4

3ln2
3(1 —2 ln 2)———(1 —ln 2)16 2

+ s(1 —ln2)

—s (1 —ln 2)—„—-', (1 —ln 2)

62

1
2

3
4

3
8

1
16

1
16

8
———ln23 3
8 4

-', (1 —ln 2)

—ln2 ——3 9
4 16

——+ —ln29 3
16 4

1
4

the particle number, and is obtained by exactly the same

method as used in evaluating the main term of T Izpp.
These two terms have the same magnitude and cancel
each other. The next term T Iizp consists of the term
quadratic in T and an additional term with the same
order as the main term. This additional term is the Pauli
blocking correction and other correction terms te the first
term.

For the process (e) the main contribution T2Ioiz is pro-
portional to T representing the product of the particle
and hole numbers in the initial state which appeared in

Sec. II. The next integral Iyyy is the Pauli and ether
corrections to the first term.

Next we consider the opposite limit, ei && T. In this
case it is possible to make a series expansion. Using se-
ries expansion of d;(x) and Eq. (5.38), power series ex-
pansions of d; (x) 's up to the second order are given by

1 2dg(z) = sg ——s~+

=1 32
d2(z) = —sg ——s, +

2 16
1

ds(z) = ln2. s, ——si+. . .2

4
(5.43)

20 I

Fermi Liquid app

polarization )+(c)

10

-5 10
E, g

FIG. 4. Integrals I„(si), I„(si)+I„'(ei), and I„(si)
+I~ (sz), denoted by (a), (b)+(c), and (d)+(e), respec-
tively, and the total sum are shown as a function of
sg = (Eg —E~)/T.
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50
Fermi

30

20

10

-10 -5 0 10

FIG. 5. Sum of all integrals in Fermi liquid approximation
g. I„(sr) is shown by the solid curve, while g. I, (K1) is

2 2
shown by the dashed one and the total sum by the dotted
curve.

ically, but the effect of higher order terms is important.
The curves for (b)+(c) and (d)+ (e) coincide at s1 ——0,
and the former increases roughly linearly while the lat-
ter keeps almost a constant value. At lower energies the
contribution for the Lm = 0 process is dominant, but at
higher energies the contribution for the process Am = 1
increases very rapidly and surpasses other contributions.
Below s1 ——0 the contributions for the process (a) van-
ishes and others tend to zero by the denominator 1+x.
The total contributions f'rom the polarization I~' (s1) and
also the correlation I,' (s1) are shown in Fig. 5. If one
of the former curves is reflected at ci ——0 then the latter
curve is obtained. The total contribution has a simple in-
verted bell shape, which is just given by Eqs. (3.3) where
n(E1) is replaced by 1, and it does not vanish at s1 ——0.
This is because a nucleon at the Fermi level has a finite
lifetime if the nucleus is at a finite temperature. The
nucleon gets energy &om the nucleus and gets excited.

By putting these in Table II we obtain Table III.
The main contribution comes from the processes (b)

and (e) and also the correlation and the polarization
terms have contributions of the same order. The Pauli
blocking effect is large. The Io&0 term is smaller than the
magnitude of the next correction term I&00 and the total(~)

contribution of the process (a) is reduced by a factor 8
compared to I00o The large Pauli correction arises in
other processes, because many nucleons below the Fermi
energy jump up.

The absorptive potentials for each process &om the po-
larization contributions are shown in Fig. 4 as a function
of ei. They are plotted in nondimensional quantities, so
they must be converted by appropriate units to obtain
the actual values. The absorptive potential for the pro-
cess (a) starts from s1 ——0 and increases roughly quadrat-

VI. NUMERICAL CALCULATION

In this section absorptive potentials for preequilibrium
processes are calculated using a simplified Skyrme in-
teraction. Their temperature as well as incident energy
dependence are investigated and compared with those in
the Fermi liquid approximation given in the previous sec-
tion.

If the signer transform of the interaction product
VVt given by Eq. (3.23) is put in (4.10) the absorptive
potentials are expressed as

W~ ~(E~, K~, Rz;T) = ——(2z') Z(V (R1)]0f dKrdKa&K4h(K& + Kz Ks K4)2
X ~(E1 + E2 E3 E4)~2 (E2)~3(E3)~4(E4) . (6 1)

In this formula energy as well as momentum conservations are observed. , so the calculation becomes complicated com-
pared with the Fermi liquid approximation. Furthermore n (E2)n2(E3)n34(E4) represents the corresponding product
of partial occupation probabilities, so this also imposes restriction over the energies, which depends on the process.
The directions of K2 and K3 are parametrized by

Ki . K2 ——KqKg cos02, K - K3 KK3cos03y (6.2)

w'here

(6.3)

After integration over K4 in Eq. (6.1) we obtain

W ' (E1,K1, B1,T) = ——(2m.) J[Vo(R1)] " dK2dK3 b
i

cos 83—(') ,2m„*(B,) 1 ( K3+ K1 K2')
2 52 2KK3 q KK3

X%2(E2)A3(E3)&4(E1 + E2 —E3). (6.4)

Integration over 03 is readily performed because of the delta function, in which the condition cos 03 & 1 imposes the
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relation

Ks(K, + K2 —Ks)
K2K2 (6.5)

From this the integration limits for cos 02 are obtained as

n= min 1,
K2(K2+ K2 —K2) l

K~2 K22 )
(6.6)

In Eq. (6.4) 02 is contained only in K, so the integration over cos 82 is performed as

1 2—d cos 82 —— I" (Eq, E2, Es),
—Cl 2

(6.7)

where

1
Q (E~ E2 Es)—

2K' K~ + K22 + 2KgK2o. — K~ + K2 —2KyK2n
~

. (6 8)

Finally the absorptive potential is obtained as a double integral over energies,

' RW~'&(E„K„R„.T) =—,J[V.(R,)]'
(2~) E & ) v(a, l

X%2(E2)713(E3)A4(E1+ E2 —E3).

dE2 dEsF(Eg) E2, Es)
U(R1)

(6.9)

It is noted that this formula is applicable both for a par-
ticle and for a hole in contrast to our previous work [4].

Numerical calculations are performed for n+ Pb.
The interaction is assumed to be the simplified Skyrme
interaction of the strength,

Vo(R) = to+ tsp(R), (6.10)

while for the real mean potential the Saxon-Woods type
with the effective mass m* /m„= 0.7 is used. Parameters
for Vo(R) and the Saxon-Woods potential are the same
as in the previous paper [4].

To evaluate the chemical potential A Eq. (3.9) with
(3.8) are used. For the upper limit of the integral in (3.9)
Ep = 60 MeV is adopted instead of in6nity. The value
60 MeV is much larger than the temperature considered
in this work. Only the results of absorptive potentials
at the nuclear center (Rq ——0) are shown below, as sur-
face vibrational modes are not taken into account in this
paper in contrast with the work by Bortignon et al. [3].

First the dependence on the excitation energy of the
incident nucleon ez ——Eq —E~ is investigated by fixing
the temperature T = 2 MeV. Results assuming P + Q
absorption are given in Fig. 6. The polarization contri-
bution &om each process is shown in Fig. 6(A), whose
pattern of the curves is almost the same as the one for
Fermi liquid shown in Fig. 4, while the correlation contri-
bution shown in Fig. 6(B) is very similar to the pattern of
the curves obtained by inverting the direction of the ab-
scissa of Fig. 6(A). At this low temperature the results of
P+ Q absorption are not difFerent from the one obtained
in the Fermi liquid approximation and also particle-hole
symmetry holds in a good accuracy. However we find
a difFerence in detail. The Lm, = 0 curves denoted by
(b) and (c)/2 which should coincide in the Fermi liquid

approximation gradually split with the excitation energy.
The comparison with the Fermi liquid approximation will
be discussed later.

Results of calculations for Q absorption are shown in

Fig. 7. The pattern of curves for the polarization con-
tribution shown in (A) is noticeably different from those
of the P + Q absorption and the Fermi liquid approxi-
mation. The particle hole symmetry is hardly observed
except for low excitation energy. Of course this is be-
cause the continuum part is cut from P + Q space. The
absorptive potential for processes (a) and (b) are sup-
pressed greatly, as two particle states are involved in the
intermediate states. The curve denoted by (a) has a max-
imum near eq

——20 MeV while the one denoted by (b)
has a maximum near e~ ——10 MeV, and both of them fall
ofF gradually. On the other hand the curves for correla-
tion contribution shown in (B) do not change appreciably
from those for P + Q absorption except for the (d) pro-
cess which shows a plateau below eq ———10 MeV and the
(b) process which dies ofF below eq ———10 MeV.

Next the temperature dependence of the absorptive
potentials is examined and results for P + Q absorption
are shown in Fig. 8. For the process (a) three parabola-
like curves for three temperatures 1, 3, and 5 MeV are
drawn, of which the right-hand part corresponds to the
polarization and the left-hand part corresponds to the
correlation contributions. As the temperature increases
the curvature of the curve decreases. Due to the Pauli
blocking efFect a particle-hole pair is di{Bcult to create in
intermediate states as the temperature increases.

The polarization contributions for the processes (b)
and (c) are shown in Fig. 9(A) and the correlation con-
tributions for the processes (d) and (e) are shown in
Fig. 9(B). In Fig. 10(A) the polarization contributions
for processes (d) and (e) are shown, and in Fig. 10(B)
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the correlation contributions for processes (b) and (c) are
shown. In all cases except processes (a) and (f) the abso-
lute value of the absorptive potential increases with the
temperature as seen in the previous paper [4], because the
temperature is approximately proportional to the exciton
number. Two curves drawn by solid and dotted lines with
the same temperatures in one kame, which should coin-
cide if the Fermi liquid approximation is adopted, split
with the increase of the temperature, and some of them
cross each other.

In Sec. V we discussed the Pauli blocking effects and
the linear term in T by decomposing the occupation prob-
ability into the zero temperature part and the correction
part as shown by Eq. (5.13). The same decomposition

is applied to TV& in the present numerical calculation.
We consider the following two typical cases.

The erst is the case of T = 1 MeV ancl Q absorp-
tion. In this case the mean particle number m = 6.3 and
the situation may be realized in a typical multistep com-
pound process. In Fig. 11(A) the absorptive potentials
for processes (a) through (e) are shown by full line curves
without decomposition. The curve (a0) is the result for

T = 0 or corresponding to Iooo in the Fermi liquid ap-
() () ()proximation, and (al) corresponds to Imp Ipip Iopi.

The figure shows that the sum of curves (a0) and (al)

0.8

0.6

(4) n +
Q abs
polari

T=2
R=O

0.2

~8
0

-10 10

0.8

Am-+1 (f)

0.6

Q m=O0.4

0.2

( )/2
pm=-1

-10

I I I I I r I0
-20

30

&sl n+ Pb
Q absorption
correlation

T=2 MeV
R=O

40

10

0.8
(A) n

P+Q
pol

g m=+1 (a)

(b)

FIG. 7. The same as Fig. 6, but for Q absorption.
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is approximately equal to the (a) curve. This indicates
that (al) is a dominant Pauli correction term at this low
temperature. Furthermore the sum of contributions &om
(b) and (c) curves is approximately equal to the absolute
value of the curve (al).

Next the case T = 5 MeV and P+ Q absorption is con-
sidered. In this case the mean particle number m = 32
can possibly be realized in heavy ion reactions. Curves
in Fig. 11(B) are results calculated in the same way
as in Fig. 11(A) except for the curve (a2). This curve

(a) (a) (a) (a) y(a) &(a)corresponds to —
Igloo

—Io&0 —Iooz + Iozz + Izoz + I&zo.
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FIG. 6. Polarization contributions —W„(j = a —e)(j)

[shown in (A)] and correlation ones —W (j = b —f) [shown(j)
in (B)] at T = 2 MeV for P+ Q absorption. The simplified
Skyrme interaction is used as the residual interaction and the
numerical calculation is performed without the Fermi liquid
approximation.
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FIG. 8. Polarization contributions —W„and correlation(~)

ones —W at temperatures T = 1, 3, and 5 MeV in the case
of P + Q absorption. Calculations are the same as in Fig. 6.
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In the present paper we considered the absorption
process at finite temperature in connection with pre-
equilibrium processes and found a new interrelation be-
tween them. The absorptive potential at finite temper-
ature WT is decomposed into 12 components W„and
W, (j = u . . f) Each comp. onent represents the ab-u)

sorptive potential for preequilibrium processes specified
with the particle or hole number m given by Eq. (4.3)
and includes thermal Pauli blocking efFects which were
considered only approximately in the previous work [4].

Temperature dependence of the absorptive potentials
W& ~ is one of interesting problems, and the Fermi liq-

0.1

0
-20 -10 10 20 30 40

FIG. 10. Polarization contribution —W„~ (j = d, e) [shown
in (A)] and correlation ones W~~~(j = b, c) [shown in (B)].
Calculations are the same as in Fig. 6.
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-10 10 20 30

FIG. 12. The absorptive potentials for polarization contri-
bution in the Fermi liquid approximation which are shown by
dotted curves are compared with those of the numerical cal-
culations using the simplified Skyrme interaction for (a), (b),
and (e) processes. For curves (e) the values multiplied by 10
are shown.

uid approximation is introduced to obtain analytic ex-
pressions. The results show how each component of
TV~ depends on temperature, and give a reason why no
linear T term appears in TVT. When all components
W„and g~ are summed up, the well-known behav-
ior WT (ir T + ei) appears. Main results obtained
through analytic calculation in the Fermi liquid approx-
imation are as follows.

(1) The e2i term comes from the process (a).
(2) Linear T terms consist of the negative contribution

from the Pauli blocking effect in the process (a), and the
positive contribution from processes (b) and (c). Net
contributions to TVz cancel one another to zero, which
agrees with the Morel and Nozieres result [17]. How-
ever T linear terms remain in the absorptive potential
for Lm = 1 and Lm = 0 processes and give effects on
transmission coeKcients.

(3) T2 terms mainly come from processes (b), (c), (d),
and (e).

The Fermi liquid approximation is expected to be valid
at low temperature, so it is important to undertake calcu-
lations without this approximation. For this the simpli-
fied Skyrme interaction, which is just a delta interaction
in our approximate treatment, is adopted. These calcu-
lations are also useful to determine how far the Fermi
liquid approximation is valid, especially in the case of
Q absorption, where this approximation is supposed to
have very limited applicability.

Calculations are performed for Pb, and absorptive
potentials for processes (a), (b), and (e) are shown in
Fig. 12 for T = 3 MeV as an example. It is seen that the
Fermi liquid approximation is adequate around the Fermi
energy E~ while it overestimates the magnitude of the
absorptive potential with increasing energy. Although
the case of processes (c) and (d) is not shown, a similar
tendency is observed.

In the Fermi liquid approximation all participating nu-
cleons are assumed to have momenta very close to the
Fermi momentum. Therefore it is expected to be valid
in the low temperature limit, and as the temperature in-

m& ——g~ p(E)dE = g~T ln(1+ e (~~ ")~—
)

(7.2)

are considered to be related to the magnitude of the ab-
sorptive potential. The last expressions on the right-hand
side of the equations represent values for U(Bi) = —oo
and Ep = oo. The constant state density g~ is included
just to make these quantities comparable with particle
or hole number as given by (4.3) and (4.7), nonetheless
they are not the particle or hole number exactly.

In the Fermi liquid approximation

de = (ln2)g~Tg~
o 1+e'~+ (7.3)

is the corresponding quantity. These values are listed
in Table I, and we can estimate how much the magni-
tude changes in the case of the simplified Skyrme inter-
action compared with the Fermi liquid approximation.
It is noted that this effect is independent of the energy
of the incident nucleon, as it is concerned with the ini-
tial state of the target nucleus. The partial occupation
probabilities II(E) decrease and P(E) increases as the
chemical potential decreases. However they appear in
the intermediate states and the effect is not too impor-
tant.

The second source of the deviation comes &om neglect
of momentum conservation and the upper limit of the
excitation energy of particle or hole.

As the momentum conservation imposes restriction on
phase space integration, the absorptive potentials with
the delta interaction cannot be larger than those in the
Fermi liquid approximation provided the same chemi-
cal potential is used. This effect is represented as the
integral E(Ei, E2, Es) given by (6.8), which is unity
in the Fermi liquid approximation. This factor is es-
timated approximately, namely in a linear approxima-
tion with respect to the deviation &om the Fermi mo-
mentum of participating nucleons. For processes (a),
(b), and (d), E(Ei, E2, Es) = 1, while, for (c) and (e),
E(E] E2 E3) & 1. The upper limit of the excitation

creases the Fermi liquid results deviate &om those with
the delta interaction. Two sources of deviation may be
considered. The first is a shift of the chemical potential
downward &om the Fermi energy. As the temperature
increases the curve of the occupation probability moves
to the lower energy side by E~ —A, which is listed in
Table I.

In Sec. IV the absorptive potentials are expressed ap-
proximately in terms of the ones for the elementary pro-
cess and the proportional constant was the mean particle
number m for processes (b) and (c) and m for (d) and
(e). On the other hand for the absorptive potential cal-
culated with the simplified Skyrme interaction given by
(6.9) the quantities

EF
riih = gF h,(E)dE = g~Tin(1+ e(@ &)IT)

U(a )

(7.1)
&0
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energy of particle or hole restricts the integration limit
through the partial occupation probabilities.

As seen in Fig. 12 for process (a) the difFerence be-
tween two calculations is small at low excitation energy
because the effect of the chemical potential is not present
in the initial state and the momentum conservation effect
is approximately given by E = 1. Reduction at higher
excitation energy may be caused by suppression due to
the momentum conservation rather than the effect of the
chemical potential, by which enhancement in 2p-1h states
is expected. For the process (b) the effect of the chemi-
cal potential works to suppress the absorptive potential
because p(E) appears in initial states. On the contrary
for the process (e) two partial occupation probabilities
h(E) appear in the initial states, and the enhancement
is expected in agreement with the curves in Fig. 12. At
higher energy this tendency is inverted, and this may be
due to the momentum conservation and energy limitation
of particles.

In the actual situation of a nucleon induced multistep
compound (MSC) process, the incident energy is not so
large and the typical temperature is estimated to be less
than 1 MeV for zosPb or 2 MeV for sNb using Eq. (2.8).
So the Fermi liquid approximation is expected to work
fairly well.

In the present paper we concentrated on studying the
relation between the absorptive potential in thermal equi-
librium and those in preequilibrium processes, and on
their features at the nuclear center (i.e. , in the nuclear
matter). Calculations may be extended to the nuclear
surface region, but only the density effect may be in-
cluded as the effect of surface vibrational modes is ne-
glected in this work.

Bortignon et aL [3] investigated the absorptive poten-
tial for surface vibrations in thermal equilibrium, and
found a different temperature dependence &om our case.
Recently Danielewicz and Schuck [20] have succeeded in
obtaining a formula for the absorptive potential for the
damping processes of collective motion as well as of a
single particle at the same time. If we decompose their
absorptive potential into preequilibrium components in
line with the present work, it may be possible to get a
preequilibrium absorptive potential for collective motion.

In MSC reaction theories the absorptive potentials ob-
tained here are used to calculate the transmission coefFi-
cients &om which the formation and decay probability of
the compound system are obtained. Usually transition
f'rom P space to Q space takes place in the first stage of
the Inultistep direct process, but the importance of tran-
sition from the second stage was discussed in our previous
paper [4]. In such a calculation the absorptive potential
obtained here is very useful because they are evaluated
more accurately.

In the calculation of level density [21], and also MSC
reaction cross section [8,1g], the transition matrix ele-
ments between exciton states in Q space are assumed to
be random matrices and its second moments are impor-
tant basic quantities. The absorptive potential obtained
here is used to evaluate the spreading width semiclassi-
cally as given in [22] for particles and holes and the sec-
ond moments are obtained &om them. The calculation

becomes much simpler compared with the actual eval-
uation of matrix elements [21]. These applications are
interesting future problems.
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APPENDIX A: INTEGRALS APPEARING IN
FERMI LIQUID APPROXIMATION

In this appendix the integrals I& & & appearing in Sec.
V are evaluated when the nucleon 1 is a particle, namely
ei & 0. The method of the calculation is almost the same
for processes (a), (b), and (e), so only the first process is
explained in detail.

i. Process (a)

The first integral is defined by

Three integral variables e2, e3, e4 as well as E'i are re-
stricted to positive, and the energy delta function gives
rise to the following integral ranges and the integral is
readily evaluated as

1
Iooo(si) = de'q des ———(s, )

0 0 2
(A2)

To evaluate the second integral

8'I

Iioo(si) =(a)

0 0

1
diaz (si —s2),

0 1+ e~~

1
dG' g 1+ e~&

(A3)

the integral variable e2 is transformed to the variable
t=e "and

( ) ln( —')
Iioo(si)—

1 1+i (A4)

is obtained. The upper limit of the integral x is given by
Eq. (5.38). After one integration by parts the integral is
expressed in terms of the dilogarithm defined by (B2),

2

Iioo (s i ) = —ln 2 ln x —dilog (1 + x) ——.(a) '7l

12' (A5)

In the third integral

Iooo(K1) — I&2 f Ik3 J BE48(E1 E2 EB —E4).
0 0 0

(A1)
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Iiio (Ei)(a)
6'1 —6' g 1 1

A6
1 + e'& 1+ e'3

the integral over ss is evaluated using formula (Bl) as

is obtained. If further change of variable u = s/(1 —x)
is applied to the last term of the right-hand side of the
equation, both integrals become dilogarithms, and the
result is given by

Iiio(si) =(a) 1 2
de 2 ln1+ e~~ 1+ e~&

Iiip(si) = ln2 ln —dilog(1+ x)1+x

1 2t
dt ln1+t x+t (A7)

where t = e ". This integral is integrated by parts and
the variable is again changed to 8 = 1 + t, and

2x——ln(1 —x) ln
12 1+x

1+x . 2
+dialog —

dialog1 —x 1 —x (Ag)

Using formulas (B7) and (BS) and also the relation (B10)
it is simpli6. ed as

Iii, ol(s, ) = ln2 ln 1+x
f lns

ds
i(s —1

(As)

Ii io (Ei):dllog z 2dllog(a), . 1+x
2

(A10)

Using Eqs. (5.37), (5.15), and (5.17) the integral Iiii(si)
is expressed in terms of previously obtained integrals

ill( 1)
(a) Ippo(si) 3Iioo(si) + 3Iiio(si)1+x

1 2 1+x
31n2 lnx+ —(lnz) + 3dilog x —6 dilog + 3 dilog(l + x) +

2 2 12
(A11)

2. Process (6) The next integral

The integral in the process (b) is defined as shown by
the simplest case

ioo( 1) =(b)

0
1

xb(si + E2 —Es —E4) 1+e ~

Oii( 1) =(b)

is obtained as

(A16)

1 1
dG'2 dE'3

. + e~s 1 + e~1+~2 —~3

1 1+t
dt 2ln —lnt

1 —t 2

&1+&2

1+ e~~
(A12)

Ipi, (si) = 2dilog —dilog x+ (ln 2) .(b) . 1+x 2

2
(A17)

The integral is calculated quite in the same procedure as
in the case of Iy00 and the result is given by

110(s)(b)
OC) 6'1 +62 1 1

1+ e~& 1+ e~3

dt ln
/

p 1+ t (1+zt)
and the anal result is given by

7r2
Iitp(si) = —ln2 lnx + —.

12

The second integral is calculated as

(A13)

The Anal integral is

Iiii(si) = — —xIipo(si) + 2zIiip(si) + Ipii(si)(b) 1 (b) (b) (b)

1+x-
1 2 7r'

(1+x)(ln2) + xln2 lnx ——x1+x 12

+2x dilog 1+x +—
12

Iiio: (lil 2) dllog(b) 1 2 . 1+x

7r2
+dilog(l + x) + —.12' (A15)

1+x—dilog x+ 2(l —x)dilog
2

(A18)
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The first integral

8. Process (e) APPENDIX 8: INTEGRAL FORMULAS

The following integral is useful in our calculation:

gives the result

I,00(e1) = —dilog(1+ x).

The next integral

OO 82 —81

110( 1) =(e)

C1 0

1 2
dt t+ — 1+ t

1 1
dG'3 1+ e'2 1+ e~3

becomes

2

I (e1) = —(ln2)(e) 1
110 12

1+x
+dilog —dilog(1+ *).

2

The integral

Io~~(E1) = dE2 f dES f &4
0 0 0

I,o()(~, ) = d~, f de, J d~a(e)

0 0 0
1

xb(e1 —e3 + e3 + e4)
1 + ec2

1
dE'3 1+ e~2 (A19)

(A20)

(A21)

(A22)

(1+ t)e+
de = +ln

0 1+be+ 1+ be+ (B1)

For the integrals appearing in Sec. V and Appendix A
the dilogarithms de6ned by

lnt
dilog x = dt

1 1 —t (B2)

whose convergence region is 0 & x & 2. The relations

and

1 . 1
dilog —= —dilog x ——(ln x)x 2

(B4)

dilog(1 —x) = ——ln x ln(1 —x) —dilogx (B5)
6

are useful, and the following speci6c values are often
used:

dilog 0 = —, dilog 1 = 0, dilog 2 = ——. (B6)6 12
It is convenient to express the results in terms of the fol-
lowing four dilogarithms: dilog x, dilog +2, dilog z+

2
and dilog(1+ x) + 12 which vanish at x = 1. Other dilog-
arithms appearing in the integrals are also expressed by
these four functions:

are necessary [18]. This is expanded in power series
around x = 1 as

dilog x = ):(1 —*)"

1 1
x h(E'1 —e2 + e3 + e4) (A23)1+ e'3 1+ e'4

is easier to integrate first over e2 to yield

2 = 1 1+
dilog — = ——+ ln ln

1 —x 6 2 2

1( 1 —x)'
+dilog ln

2 2 ( 2 ) (B7)

() OO 1 1
I011(e1) — de3 de41+e 3 o 1+e 4

= (ln2) . (A24)

The last integral is given by

dol +
1 —x

1 —x 2x= ——+ ln ln
6 1+x 1+x

2x 1 f 1 —xl
+dilog ——

~

ln1+x 2 g 2 ) (B8)

I111(e1)=(e)

g. Process (f)

I(f) (e, ) = I(f) (e, ) = 0 . (A26)

(e) (e) (e)
1+x [ 100( 1) 110( 1) 011( 1)]

1
(1 + x) (ln 2) 2

1+x 12

1+x 7r'
+2 dilog —dilog(1 + x) ——

2 12

(A25)

1
dilog = ——+ ln(1 —x) ln x

1 —x 6

+dilog x ——[ln(1 —x)]
1 2

2
(»)

The four functions are not independent and the following
relation holds:

1+x . 2x 7r'
dilog x —dilog —dilog + dilog(1 + x) +—

2 1+x 12
1 ( 1+x)= —

~

ln
~

—lnxln(1+ x).
2 E 2 ) (B10)

By changing variables the left-hand side of the equation
is expressed in terms of integrals whose integral range is
between 1 and x,
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f in t * ln[(1+ t)/2]
d

a 1 —t x 1 —t

f i
ln dt

1 1 —t 1+t) 1+t
lnt—ln z ln(I + 2:) + 1+t (B11)

The integrands containing 1/(1 t—) cancel each other and
the remaining integral is reduced to the right-hand. side
of the equation. Therefore the three functions dq(x) =
dilog(x), d2(x) = dilog( + ), ds(x) = dilog(1+ x) +

2
are used as basis functions, and together with loga-

rithms all integrals are expanded.
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