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Algebraic-eikonal approach to medium energy proton scattering
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We extend the algebraic-eikonal approach to medium energy proton scattering from odd-mass
nuclei by combining the eikonal approximation for the scattering with a description of odd-mass
nuclei in terms of the interacting boson-fermion model. We derive closed expressions for the transition
matrix elements for one of the dynamical symmetries and discuss the interplay between collective
and single-particle degrees of freedom in an application to elastic and inelastic proton scattering
from Pt.
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I. INTRODUCTION

High energy scattering of nucleons &om a collective nu-
cleus involves the excitation of a large number of strongly
coupled states as well as that of virtual intermediate
states. The efI'ects of channel coupling become partic-
ularly important for large momentum transfer, where
the scattering cannot be treated in the distorted-wave
Born approximation (DWBA), but requires calculations
to higher order in the channel coupling [1]. The stan-
dard approach is that of a coupled channels calculation,
which becomes complicated when the number of chan-
nels that have to be included is large. An alternative to
this approach is provided by the eikonal approximation,
which in combination with the interacting boson model
(IBM) [2] allows the calculation of the scattering to all
orders in closed form for even-even nuclei [1,3, 4]. This
method, also known as the algebraic-eikonal approach,
combines the strengths of an algebraic description of the
target dynamics with those of the eikonal approximation
in the adiabatic limit. In the case of odd-mass nuclei
the complications of the channel coupling approach are
even greater, because of the interplay between collective
and single-particle degrees of freedom and the increase
in the number of open channels in the system. On the
other hand, the interacting boson-fermion model (IBFM)
has provided a tractable model of odd-mass nuclei and
its usefulness for the classification and understanding of
nuclear structure data has been tested in numerous ways
[5]. Among the most interesting aspects of this model is
the possibility of the occurrence of boson-fermion dynam-
ical symmetries as well as supersymmetries, the latter of
which link the properties of neighboring nuclei.

The purpose of this paper is twofold. First we show
that the algebraic-eikonal approach for medium energy
proton scattering can be extended to odd-mass nuclei
in a simple fashion by describing the target nucleus in
terms of the IBFM. Next we consider the particular case
of one of the dynamical symmetries of the IBFM, the
SO(6)SU(2) limit, to derive closed expressions for the
transition matrix elements. As an example we discuss the

application to elastic and inelastic proton scattering &om
Pt, which is considered to be a paradigm of dynamical

boson-fermion symmetry, in terms of energy systemat-
ics, electromagnetic decay properties, and single-particle
transfer [6]. We consider in particular the interplay be-
tween the coupling to collective and single-particle de-
grees of freedom for the excitation of the lowest negative
parity states in Pt by medium energy protons.

II. EIKONAL APPROXIMATION

For medium and high energy proton-nucleus scattering
the eikonal approach is a good approximation for elastic
and inelastic scattering. The Hamiltonian is in general
given by

h k2
H = + Ht(() + V(r, (),

where H& describes the dynamics of the target nucleus
and V(r, () represents the proton-nucleus interaction.
The projectile coordinate r is measured from the cen-
ter of mass of the target. The internal coordinates of
the target nucleus are collectively denoted by (. If the
kinetic energy of the projectile is much larger than the
interaction strength, and is also sufFiciently large that the
projectile wavelength is small compared with the range
of variation of the potential, one may use the eikonal ap-
proximation to describe the scattering. If, in addition,
the projectile energy is large compared with the nuclear
excitation energies, one can neglect Ht (adiabatic limit).
Under these approximations the scattering amplitude for
scattering a projectile with initial momentum k from an
initial state ~i) to final momentum lc' and a final state

~ f)
is given by

(2)

where q = k' —k is the momentum transfer and y(b, () is
the eikonal phase that the projectile acquires as it goes
by the target,
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y(b, $) = —
2 dz V (r", () .h'k

In the derivation of the scattering amplitude the projec-
tile coordinate is written as r = b + z, where the impact
parameter b is perpendicular to the z axis, which is cho-
sen along z = (k+ k')/~k+ k'~. In the eikonal approxima-
tion the scattering amplitude is expressed in terms of an
integral over a two-dimensional impact parameter rather
than as a sum over partial waves.

For medium energy proton-nucleus scattering &om
even-even nuclei the eikonal approximation has been ap-
plied successfully to elastic and inelastic scattering to for-
v(rard angles [1,3, 4]. This procedure can be extended to
odd-mass nuclei by considering the coupling of the pro-
jectile to both the collective and the single-particle de-
grees of &eedom. If the range of the projectile-nucleus
interaction is short compared to the size of the nucleus,
the potential can be expressed in terms of the projectile-
nucleon forv(rard scattering amplitude f [1],

&(~,0 = —— (~(")
2vrh f

+ (Qa (~, e + Q» (~, ()I &~ (~) )
Here p()") is the nuclear density for the distorting or op-
tical potential, and Q~(r, () and Q~(r, () denote contri-
butions &om the quadrupole coupling of the projectile
to the collective (bosonic) and single-particle (fermionic)
degrees of &eedom of the odd-mass nucleus.

For a strongly absorbing probe the scattering is dom-
inated by peripheral collisions, which allows one to keep
only the leading order term in the expansion of the spher-
ical harmonic around 0 = 7r/2,

Yj„(")= Y2„(b) + O(z/") .

The calculation of the nuclear matrix elements to all
orders in y is a complicated task. The use of algebraic
models to describe the nuclear excitations makes such a
calculation feasible.

III. THE INTER.ACTING
BOSON-PERMION MODEL

In the IBFM the collective and single-particle
quadrupole operators are given by

(r &) = ( ) [s'd+d'sl,"+ ( ) [d'd]„",

Q~, (r, () = ).~.. (r) [o,'oy

+(-1) —'-,' -,]."/(1+ ~„),
v(rith d„= (—1) )'d „and ay ~ ——( 1)~ "a—

y ~. Since
the quadrupole operators are linear in the generators of
the symmetry group of the IBFM, G = U~(6) U~(m)
[vrith m = g .(2j + 1)], the eikonal transition matrix el-
ements can be interpreted as group elements of G. They
are thus a generalization of the Wigner 'V matrices for the
rotation group. In general, these representation matrix
elements can be calculated exactly (albeit numerically) to
all orders in the projectile-nucleus coupling strength, ei-
ther with or without the peripheral approximation. This
holds for any collective nucleus, whether spherical, de-
formed, p unstable, or an intermediate situation between
them. The general result can be expressed in terms of a
five-dimensional integral for the collective part [7] and a
contribution from the single-particle part, which is easily
obtained for a single nucleon. In the peripheral approx-
imation the expression for the scattering amplitude for
scattering from an initial state ~i) = ~n, J, M) to a fi-
nal state

~ f ) = ~n', J', M') reduces to a one-dimensional
integral over the impact parameter:

~ M —M'
(g

.M —M
OO Jl

bdb JM M (qb) e*" ' ) &M M (q)

x(o.', J', M"~e*~ '~+~ ( '~ j~n, J, M") 17M„M( q) —by;—

The projectile distorted wave is given by

2vr f
xopt(b) =

k
dz p(r),

and the boson and fermion eikonal phases by

~ (b &) =q (b) ["d+d"]''+q (b) [d'd]'

q2(b) =

q&, (b) = 2'f

dz n, (r) Q5/4vr,

dz n2(r) Q5/4~,

dz ri, , (r) y 5/4~ . (1O)

&~(b &) = ).q" (b) [o,'o~

+(—1)' ' a, , a, ]o /(1+ byy')

with the eikonal profile functions

Hence the only representation matrix elements that are
needed are those that depend on the z component of the
quadrupole operator. Without the peripheral approxi-
mation the other components have to be included as well.
In the special case of a dynamical symmetry the matrix
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elements appearing in Eq. (7) can be derived in closed
form. In [3] the results for each of the dynamical sym-
metries of the IBM for even-even nuclei were analyzed.
Here we present the first such study for odd-mass nuclei.

One of the best examples of dynamical symmetries in
odd-even nuclei is provided by the low lying negative par-
ity states of Pt, which have been analyzed successfully
in terms of the U(6) SU(2) D SO(6) SU(2) limit of the
IBFM [6]. The odd neutron in Pt occupies the 3pi/2,
3p3/2 and 2 f5/2 shell model orbits with n = 5, which are
treated in a pseudospin coupling scheme as the asiy2,
2d3/2, and 2d5y2 pseudo-orbits with n = n —1 = 4. In
this limit the quadrupole operators are

q~ „=[s'd+ d's]l'i,

(2)

t—Q6/5 [a,/, a, /, + a, /, as/2]„(2)

Therefore there are only two independent eikonal profile
functions, one for the collective part

The classi6cation scheme and the structure of the wave
functions are discussed in detail in [6]. The eigenstates
are labeled by ] [Ni, N2], (o 1, crz, os), (71,72), L, J ). Here
L denotes the pseudo-orbital angular momentum, which
is a combination of the core angular momentum R and
the pseudo-orbital part of the single-particle angular mo-
menta, l. In this classification scheme the states occur
in pseudospin doublets with total angular momentum
J = I 6 1/2 for I, ) 0 or in singlets with J = 1/2 for
I = 0. Some low lying excitations are listed in Table I
together with their B(E2) values to the ground state,
][N + 1, 0], (N + 1,0, 0), (0, 0), 0, 1/2 ).

The eikonal transition matrix elements can be obtained
by expanding the wave functions of the initial and fi-
nal states into the direct product of collective (boson)
and single-particle (fermion) basis states [6]. The boson
part of the transition matrix element can be expressed
in terms of Gegenbauer polynomials using similar tech-
niques as for proton scattering from even-even nuclei in
the SO(6) limit [3]. The fermion part is easy to evaluate
for a single uncoupled nucleon. For elastic transitions we
find

g (b) = (b)

g2(b) = 0 ,

and one for the single-particle part

(12)

4!N!
o ~Uei(b) = (N + 2) cos Fy' CN (cos e~)N+2 N+4!

[(N + 4) cos(E'gy —EF) —2] Civ i(cos E~)(3)

gi/z, s/2 = —Q4/5 ez (b),

gl/2 5/2 ——Q6/5 eP (b) (13)

The latter values are a consequence of the pseudospin
coupling scheme for the single-particle orbits [6].

(14)

The matrix elements for transitions to excited states can
be derived in a similar way. The matrix element to the
first excited pseudospin doublet in the ground state band
[N + 1,0], (N + 1, 0, 0), (1,0), 2 is given by

U2, (s~, ey') = (3N + 2) (N + 5) i si n eF CN (cos e~)
~ ~ (~)

(N+2)(N+4! 5 N+ 1 N+5

+3(N + 4) (N + 5) i sin(sp —op) Civ (cios p)s+ 12(N —1)i sin eg cos EF CN 1 (cos Eii)(3) (4)

+ 12zsicso [5 —(X + 4) coo(so —so)] C~ z(coo so))(4) (15)

The first excited state in 1 Pt belongs to the pseudospin doublet characterized by [N, 1], (N, 1,0), (1,0), 2. The

TABLE I. B(E2) values leading to the ground state in Pt, calculated vrith eB = 0.184 (eb)
and eF = —0.257 (eb). The number of bosons is N = 6.

Initial state B(E2)
Theor.

J (keV) B(E2) (e' b')
Expt. [8] Calc.

[7,0],(7,0,0),(1,0),2,J (NeB + &F) 5(N+1) 3/2 (211)
5/2 (239)

0.240(25)
0.210(23)

0.225
0.225

[6,1],(6,1,0),(1,0),2,J 2w(a+3)
5(N+1)(N+2) 3/2-(99)

5/2 (130)
0.085(20)
0.066(10)

0.075
0.075

[6,1],(6,1,0),(l,l),1,J 1/2
3/2 (199) 0.019(5)
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transition matrix element to this doublet is given by

4!N! 2 (N —1)! . (3! ~ (~)
U2, (off ey') = N(N —1)'LslnEy' C~ (cost~) + (N+4)(N —5)i sin(egg ty') C~ ~(coseff)N+4! 5 N+3!

—6(ice —i)i sioeocos conies e(coseo) —Gesioeo(5 —(N+4)cos(eo —Eo)) Cs, s(coseo)](4) . ~ (4) (16)

In the peripheral approximation the states with odd val-
ues of the (pseudo-orbital) angular momentum L (such
as the pseudospin doublet with L = 1 in Table I) cannot
be excited,

Ug(b) = 0 .

For e~ ——e~ ——e the quadrupole operator becomes a
generator of the SO(6) group and can therefore connect
only states belonging to the same SO(6) representation.
Using a recurrence relation for the Gegenbauer polyno-
mials

-C.'"'(*)= 2. *C.'",'(*)—C.'",'(-),
it is easy to show that in this case the above transition
matrices reduce to the expressions derived for proton
scattering from even-even nuclei with SO(6) symmetry

U )(6) = Cfv+i(c™)
3!(N + 1)! (2!

%+4 t

4!N!"()=
(N+4)

U3, (t)) =0 .

5(N + 1) . . (3)(ising) Cfv (cos e),%+5

rv. A.PI r,XCm xOX ro»'P Y

d(7(0, 1/2 —+ I, J~q) 2J+ 1 do(0 m L~q)
dO 2(2L + 1) dO

(20)

Hence the summed DCS shows the same dependence

The mass region of the Pt isotopes is known as a com-
plex transitional region of the nuclear mass table between
deformed and p-unstable nuclei. Nevertheless, some of
the best examples of dynamical symmetries of the IBM
in even-even nuclei (

9 Pt) and of the IBFM in odd-
mass nuclei ( Pt) are found in this mass region. In [9]
the even-even Pt nuclei were studied in proton scatter-
ing. Here we present the first results of calculations for
the scattering of 800 MeV protons &om Pt.

The low lying negative parity states of Pt show a
very small splitting between states belonging to the same
pseudospin doublet (too small to be resolved experimen-
tally in proton scattering) (see Table I). Therefore we
calculate the differential cross section (DCS) for a given
pseudospin doublet which is summed over the contribu-
tions of the individual states. Under the assumption of
a pseudospin coupling scheme for the single-particle or-
bits, the angular distributions for the excitation of the
individual states of a pseudospin multiplet characterized
by I are identical up to a statistical factor

on momentum transfer as the individual contributions.
However, if the pseudospin assumption is broken signifi-
cantly, the predicted narrow oscillations are likely to be
washed out.

In Fig. 1 we show the DCS for the scattering of 800
MeV protons kom Pt which, as mentioned before, is
the best known example of an odd-mass nucleus with
SO(6) (3 SU(2) symmetry. The three curves represent
elastic scattering and the excitation of two low lying pseu-
dospin doublets with L = 2 (see Table I). In the calcu-
lations we assume a Woods-Saxon form for the nuclear
density with a nuclear radius of 1.2A /' = 6.96 fm and a
diffusivity of 0.75 fm, normalized to the total number of
nucleons A = 195. For the collective transition density
we use the derivative of the nuclear density (Tassie form)
and for the single-particle transition density a product
of radial wave functions for the pseudo-oscillator orbits.
We note that in the pseudospin coupling scheme there
is a single transition density for the fermion quadrupole
operator of Eq. (11). The transition densities are nor-
malized to the B(E2) values in Table I. The forward
proton-nucleon scattering amplitude is f = i,ko/4fr, in'
which the isospin averaged proton-nucleon cross section
was taken as 0 = 46(1 + 0.38i) mb [3].

The DCS's of Fig. 1 incorporate the effects of the in-
terplay of the coupling to the collective and the single-
particle degrees of freedom in the target nucleus. In
Figs. 2—4 we gauge these effects by comparing the results
of the full calculation (solid lines) with those of a calcu-
lation in which the coupling to the single-particle degrees

j.o6

ioo-

] o 2

iO-6
j. 2 3

momentum transfer (1/fml

FIG. 1. Differential cross sections in mb/sr for elastic scat-
tering (solid line) and the excitation of the pseudo-orbital
doublets with [7, 0], (7, 0, 0), (1,0), I = 2, J (dashed line) and
[6, 1], (6, 1, 0), (1, 0), L = 2, J (dotted line) in Pt by 800
MeV protons.
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FIG. 2. Elastic difFerential cross section in mb/sr calcu-
lated with and without the coupling to the single-particle de-
grees of freedom (solid and dashed lines, respectively).

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented an extension of the
algebraic-eikonal approach to medium and high energy
proton scattering &om odd-mass nuclei described by the

102

1Oo-

A
I

C)

0

10—2

of freedom is turned off (dashed lines). The elastic scat-
tering (L = 0) is completely determined by the collective
part. Whereas the excitation of the I = 2 doublet which
belongs to the ground band [7, 0], (7, 0, 0) is still largely
determined by the collective part, for the excitation of
the L = 2 doublet with [6, 1], (6, 1, 0) we predict a large
contribution &om the single-particle part as well. Note
that the scale is logarithmic, so there is almost a factor
of 2 difference between the two curves in Fig. 4.

FIG. 4. DifFerential cross section in mb/sr for
the excitation of the pseudo-orbital doublet with

[6, 1],(6, 1, 0), (1,0), L = 2, J calculated with and without the
coupling to the single-particle degrees of freedom (solid and
dashed lines, respectively).

interacting boson-fermion model. The algebraic struc-
ture of the IBFM makes it possible to calculate the
eikonal transition matrix elements exactly to all orders
in the projectile-nucleus coupling strength. This holds
for any type of collective nucleus, whether spherical, de-
formed, p unstable, or any intermediate situation be-
tween them.

In the special case of a dynamical symmetry all tran-
sition matrix 'elements of interest can be obtained in
closed form. We have discussed in particular an appli-
cation to the negative parity states in Pt, which are
described in terms of the SO(6) SU(2) limit of the
IBFM. The analytic expressions for the eikonal transi-
tion matrix elements allow the study of various effects
in a straightforward way. As an example, we showed
that, whereas the excitation of the states belonging to
the [K + 1, 0], (N + 1,0, 0) ground band is largely domi-
nated by coupling to the collective degrees of &eedom, the
excitation of the [N, 1], (N, 1, 0) sideband depends sensi-
tively on the interplay between the coupling to the single-
particle and collective degrees of &eedorn. It would be
of interest to experimentally test the pseudospin symme-
try assumption discussed in this report through proton
scattering &om Pt.

Finally, we remark that the formalism presented here
can be used to derive closed expressions for the transition
matrix elements for other dynamical symmetries of the
IBFM, and can be extended to odd-odd nuclei as well.

1 2 3
momentum transfer (1/frn)

FIG. 3. Differential cross section in mb/sr for
the excitation of the pseudo-orbital doublet with
[7, 0], (7, 0, 0), (1,0), I = 2, J calculated with and without the
coupling to the single-particle degrees of freedom (solid and
dashed lines, respectively).
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