
PHYSICAL REVIEW C VOLUME 52, NUMBER 2 AUGUST 1995

Shell-model Monte Carlo studies of fp-shell nuclei
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We study the gross properties of even-even and N = Z nuclei with 4=48—64 using shell-model
Monte Carlo methods. Our calculations account for all Ohu configurations in the fp shell and employ
the modified Kuo-Brown interaction KB3. We find good agreement with data for masses and total
B(E'2) strengths, the latter employing effective charges e„=1.35e and e„=0.35e. The calculated
total Gamow-Teller strengths agree consistently with the B(GT+) values deduced from (n, p) data if
the shell-model results are renormalized by 0.64, as has already been established for sd-shell nuclei.
The present calculations therefore suggest that this renormalization (i.e., g~ = 1 in the nuclear
medium) is universal.

PACS number(s): 21.60.Cs, 21.10.Dr, 21.60.Ka, 27.40.+z

I. INTRODUCTION AND MOTIVATION

The interacting shell model [1] is generally considered
to be the most fundamental theory of the nucleus short
of an explicit solution of the A-body problem. Indeed,
it is the conceptual basis for most other nuclear models.
But in contrast to the atomic shell model, the residual
interaction among the valence nucleons plays an impor-
tant role. This interaction can be determined either by
adjusting its matrix elements to fit a large volume of data
(as been done successfully for the p shell [2] and sd shell

[3]) or from the nucleon-nucleon G matrix 4].
Due to the combinatorial increase of configurations

with the numbers of valence nucleons and orbitals, the
conventional solution of the shell model by matrix diag-
onalization has been limited in heavier nuclei to trun-
cated calculations. For example, complete 0~ calcula-
tions in the fp shell have been possible only for nuclei
with A ( 48 [5] and, very recently, for the ground-state
energy and Gamow-Teller strength of the nucleus Cr
[61

Conventional studies of fp-shell nuclei with A ) 50
must be performed in severely truncated model spaces.
This is unfortunate as, for example, the nuclei in the
iron region play a crucial role in a supernova, when the
Gamow-Teller strengths determine the electron capture
rate and thus the dynamics of the early collapse. Trun-
cated shell-model calculations, however, recover only in
part the well-established Gamow- Teller quenching [7—9]
and are thus inadequate for predicting the Gamow- Teller
strengths of those nuclei, for which no experimental in-
formation is yet available.

Nevertheless, the conventional calculations performed
for A & 50 support the conjecture that the shell model,
if performed within a complete ORu basis, is able to de-
scribe the fp-shell nuclei. In particular, the systematic
studies of the A = 48 nuclei [5] indicate that the residual
KB3 interaction [10] is well suited to complete fp-shell
calculations. This interaction has been derived by min-
imally modifying the monopole strength in the original

Kuo-Brown interaction [4].
The results we present in this paper support that con-

jecture and demonstrate that complete 0~ calculations
performed with the KB3 interaction are capable of de-
scribing the ground-state properties of even-even and
W = Z nuclei in the fp shell with A ( 64 (for larger
A the gsy2 orbital must be included). Our studies make
use of the recently developed shell-model Monte Carlo
(SMMC) method [11] in which few-body observables are
calculated at finite temperature. The SMMC exploits the
fact that most of the billions of configurations in these
nuclei are quite unimportant for general nuclear proper-
ties, so that only a subset of the relevant configurations
need be sampled. In comparison with the conventional
diagonalization method, the SMMC is not yet capable of
providing detailed spectroscopic information. However,
it has been shown that the SMMC approach is well suited
for studies of both ground-state properties [11—13] (ob-
tained in the low-temperature limit) and nuclei at finite
temperature [14]. In this paper we systematically study
important properties of fp-shell nuclei, including masses,
and Gamow-Teller, E2, and M1 total strengths. As our
results demonstrate, these calculations are in agreement
with experiment for all these quantities over the wide
range of nuclei studied (A=48—64).

II. THE SHELL-MODEL MONTE CARLO
METHOD

The shell-model Monte Carlo method is based on a
statistical formulation. The canonical expectation value
of an observable A at a given temperature T is given by
[15,11,12,16] (P = 1/T)

Tr~ (e —~~)

where U = exp( —PR) is the imaginary-time many-body
propagator and Tr~U is the canonical partition function
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for A nucleons. The shell-model Hamiltonian H can be
cast in the form

H=) (e0 +e 0 )+ —) V (0,0 ), (2)

where e are the single-particle energies and D represent
a set of one-body density operators (0 denotes the time
reverse of 0). The Hamiltonian in Eq. (2) is manifestly
time-reversal invariant if the parameters V that de6ne
the strength of the residual two-body interactions are
real.

The key to the SMMC method is to rewrite the propa-
gator U as a functional integral over one-body propaga-
tors. To achieve this goal, the exponent in U is split into
N, time slices of duration AP = P/Nq,

(3)

Tr~(Ae ~~) jD[a]W(a)4(a)(A)
Tr~(e —~H) jD[0]W(0)4(o).

where the metric is

D[a] = II „[da „da*„APlV l/2'],

and. the approximation becomes exact as Nq ~ oo. The
non-negative weight is

W(a) = l((a) I
exp ——) .IV- lla-I'&P

)
(6)

where ((a) = Tr~U is the partition function of the
one body propagator U = U~, - Uq, with U
exp( —APh„), and the one-body Hamiltonian for the nth
time slice is

6„=) (e* + s V a „)0 + (e + s V o*„)0, (7)

The many-body propagator at each time slice is lin-
earized by a Hubbard-Stratonovich transformation [17];
i.e., it is transformed into an integral over a set of one-
body propagators that correspond to noninteracting nu-
cleons in fluctuating auxiliary fields de6ned by complex
c numbers 0 „(n = 1, ..., Nq). The expectation value of
A then reads

realistic nuclear interactions such as KB3, about half of
the V 's are positive generating a sign problem (where
the uncertainty in 4 is larger than (4')). To overcome
this problem, we extrapolate observables calculated for a
family of good-sign Hamiltonians IIs (with g & 0) to the
physical Harniltonian at g = 1 [12].

The results presented in this paper correspond to var-
ious observables of the nuclear ground state: the energy
(II), the total B(M1) and B(E2) strengths, and the
Gamow-Teller strength. The total B(M1) strength is
defined as B(M1) = (P2), where the magnetic moment

tr is given by tt = P, ttrv (gti + g, e), ttg is the nuclear

magneton, and g~, g, are the &ee gyromagnetic ratios
for angular momentum and spin, respectively (gi = 1,
g, = 5.586 for protons, and g~ —— 0, g, = —3.826
for neutrons). The total B(E2) strength is given by
B(E2) = (Q ), where the quadrupole operator is defined
by Q = e„Q„+e„Q„with Q„~„l = e„~„lg,. r, Yz (0;, tt;);
the sum runs over all valence protons (neutrons). The
e8'ective charges e„account for coupling to the giant
quadrupole resonance outside our model space. For the
oscillator length, we used. b = 1.01A / fm. The total
Gamow-Teller strength is given by B(GTg) = ((ax~) ).
We also explore the isovector monopole pairing in the
ground states, as described below.

The SMMC studies presented below have been per-
formed in the complete set of Ofqy2 sy2 —1psy2 iy2 can-
figurations using the modified Kuo-Brown KB3 residual
interaction [10]. Each calculation involved 4000—5000
Monte Carlo samples at each of six values of the cou-
pling constant g equally spaced between —1 and 0; ex-
trapolation to the physical case (g = 1) was done by
the method described in Ref. [14]. In many cases the
assumption of a linear dependence on g resulted in ac-
ceptable fits (y per degree of freedom less than one).
However, we have estimated the errors in our calculation
conservatively by adopting a quadratic extrapolation in
g. For the Hamiltonian we have made use of the varia-
tional principle which ensures that (H) has a minimum
at g = 1 [12]. The calculations were performed at P = 2
MeV (which is sufficient to guarantee cooling within a
few hundred keV of the ground state for even-even nuclei
[14]), and Nt ——64 time slices (which results in negligible
discretization errors).

with 8 = +1 for V (0 and. 8 =+i for V ) 0. The
"sign" is 4t(a) = ((a)/l((a)l and the expectation value
of A with respect to the auxiliary field a is

III. R,ESULTS

A. Comparison with direct diagonalization

(A) = Tr~AU /((a).

Both ((a) and (A) can be evaluated in terms of the
matrix U that represents the evolution operator U in
the space of N, single-particle states. In the applications
discussed below the trace is canonical corresponding to
a nucleus with a fixed number of nucleons [16]. Details
of the transformation &om the residual particle-particle
interaction to the V used above can be found in [11].

If all V & 0, then the sign is (4) = 1. However, for

A few of the nuclei we consider here with SMMC meth-
ods have previously been studied by direct diagonaliza-
tion using the same residual interaction. In all cases,
the results obtained by these two very di8'erent methods
agree.

Poves and collaborators calculated Gamow- Teller
strengths of B(GT+) = 1.263 for Ti, 4.13 for Cr [5],
and 3.57 for OCr [6], while our SMMC calculations yield
1.13 + 0.18, 4.37 + 0.35, and 3.51 + 0.27 for these nuclei,
respectively. For the two iron isotopes Fe and Fe,
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with exact diagonalization results with realistic interac-
tions are given in Ref. [19].

B. Energies
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m
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In this subsection we compare our calculated binding
energies for the various nuclei with experimental data.
The Coulomb energies, which are not included in the KB3
interaction, are calculated (in MeV) as [5] (vr = number
of valence protons, v = number of valence neutrons, n =
sr+ v)

2.0
0 10

~(~ —1)Hc „) —— x 0.35 —nv x 0.05 + 7r x 7.289. (9)
2

FIG. 1. Comparison of the total Gamow-Teller strengths
B(GT+) for ' Fe in a series of direct diagonalizations with
decreasing level of truncation [6] with present full fp-shell
result (solid symbols plotted at t = 10). The open symbols
at t = 10 show the extrapolated no-truncation result of [6].

Follow'ing Ref. [5] we have added to the calculated energy
expectation values an energy shift of 0.014 x n(n —].)
MeV to correct for a "tiny" residual monopole defect in
the KB3 interaction. Note that the KB3 interaction uses
the single-particle energies from the experimental levels
in Ca. Thus, our energy scale is set by e = —8.363 MeV

Caurier et al. [6] calculated the Gamow-Teller strengths
in a series of direct diagonalizations with a decreasing
level of truncation. In Fig. 1 we compare the results of
these truncation series with our full 0~ SMMC results.
Our results (6.05+0.45 for s4Fe and 3.99+0.27 for Fe)
agree with the values obtained by Caurier et al. upon
extrapolation to no truncation (5.5 + 0.5 and 3.7 6 0.5
for Fe and Fe, respectively). Figure 1 also clearly
demonstrates that complete (Oku) shell-model calcula-
tions recover significantly more quenching of the Gamow-
Teller strength than truncated calculations. Note that
the single-particle estimate for the total Gamow-Teller
strength in both nuclei is B(GT+) = 10.3.

For the total B(E2) strength from the ground state
we can compare our results with those of conventional
shell-model calculations for the nuclei Ti [5] and Cr
[18]. Using the effective charges e„=1.5e and e„=0.5e
for protons and neutrons, respectively [5], these authors
find B(E2) = 583.5 e fm for 4sTi, while we calculate
630 + 55 e fm . For later reference it is noteworthy that
roughly 80% of the strength lies in the transition from
the ground state to the first 2+ state [5], in agreement
with experiment. For Cr, Poves et al. calculate the
total B(E2) strength of 1280 e~ fm [18], in agreement
with our SMMC result of B(E2) = 1375 + 110 e fm .

From Ref. [5] we deduce the energies (H) = —24.5
MeV and —32.9 MeV for Ti and Cr, respectively.
Our SMMC results for these quantities are —23.9 + 0.4
MeV and —32.3 + 0.4 MeV, respectively. For Cr we
calculate (H) = —40.0 + 0.4 MeV, while Caurier et aL
[6] give —40.57 MeV. The slight underbinding we find is
expected, as our calculations have been performed at the
finite temperature T = 0.5 MeV and therefore should
contain a small excitation energy of a few hundred keV
[14].

More details of the comparison of SMMC calculations
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FIG. 2. Upper panel (a): Comparison of the mass excesses
AM as calculated within the SMMC approach with the data.
Lower panel (b): Discrepancy between the SMMC results for
the mass excesses and the data, b&M. The solid line shows
the average discrepancy, 450 keV, while the dashed lines show
the rms variation about this value.
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for the f7~2 orbital, obtained &om the neutron separation
energy of Ca.

The nuclear mass excesses AM obtained this way (rel-
ative to 4 Ca) are compared to the data in Fig. 2(a).
The results obtained are very satisfactory, as can also
be seen in Fig. 2(b), which shows the discrepancy bAM
between our calculation and data. Considering that our
finite-temperature calculation includes a small internal
excitation energy of a few hundred keV, the reproduc-
tion of the mass data by the shell model using the KB3
interaction is better than is suggested by Fig. 2(b).

Two remarks can be made about our energy results.
First, the accuracy of our choice of Coulomb energy (9)
can be estimated by comparing the mass difI'erences LM
for the mirror nuclei ( Fe, Cr), ( Fe, Cr), and ( Fe,
s4Ni). We find deviations between 0.1 MeV (A = 48) and
0.5 MeV (A = 54) showing that our parametrization is
suKciently accurate, but might become less reliable with
increasing Z. Second, in contrast to the other nuclei
studied, the SMMC overbinds the Nickel isotopes, as mell

as Fe and Cr. As these nuclei have semimagic proton
or neutron numbers (N = 28), our results indicate that
the KB3 interaction slightly overemphasizes the N = 28
shell closures. Indeed, the overbinding is strongest for
the double-magic nucleus Ni.

C. The B(Ml) and B(E2) strengths

We have calculated the total B(M1) strengths of the
various nuclei using free nucleon g factors, as listed in

Table I. Unfortunately, the known Ml transitions in the
fp-shell nuclei are mainly to low-lying states that ex-
haust only a small &action of the total strength, so that
a comparison to data is not possible in most cases. How-
ever, for a few of the nuclei studied here, Richter and
collaborators [20—22) have used high-resolution electron
scattering to study the B(M1) strength in an energy win-
dow large enough to contain most of the strength. For
the %=28 isotones (in units of p2~) they find B(M1) =
4.5+0.5 ( Ti) 8.1+0.8 ( Cr) and 6.6+0.4 ( Fe) for ex-
citation energies between 7 and 12 MeV [21]. If one con-
siders that this energy window should contain about 75%
of the total strength [21], our SMMC results [B(M1) =
12.5+ 1.0 ( Ti), 18.9+ 2.2 ( Cr), 16.5 + 2.8 (s4Fe)]
are roughly twice the observed B(M1) strength for these
nuclei, supporting the idea that the spin g factors are
renormalized in the nuclear medium [23].

We note that both the independent particle and. 1p-
lh shell models, discussed in Ref. [21] predict a linear
rise of the total B(M1) strength with the number of va-
lence protons in the N=28 isotones. Our SMMC cal-
culation does not support this trend, as the calculated
B(M1) strength in Fe is no larger than that for s Cr,
in agreement with experiment [21]. We also note that
the SMMC results might be tested by comparing the iso-
tone pairs ( Cr, Fe) and ( Cr, ss Fe)—the calculations
predict roughly the same B(M1) strength in the iron iso-
topes, but a significantly smaller B(M1) strength in Cr
than in Cr.

For 5sNi Mettner et al. determined a total B(M1)

TABLE I. Total B(Ml) (in p~), B(E2) (in e fm ), and unrenormalized B(GT~) strengths as
calculated in the SMMC approach. For comparison the experimental B(GT+) strengths [24—26,9]
aud the B(E2) values for the Oi ~ 2i transition [27,29] are also given.

Nucleus
]

48T
"Ti
52T
54T.
48'
50'
52C
54C
56C
52F
54F
58F

Fe
60F
56N.

Ni
60N.

Ni
Ni

60z
62z

ZD

+ 1.2
+ 1.0
+ 1.0
+ 1.5
+ 1.7

3 ~ 2
+ 2.2
+ 2.5
+ 2.0
+ 1.4
+ 2.8
+ 3.0
+ 3.0
+ 3.1
+ 1.2
+ 2.0
+ 2.5
+ 2.9
+ 2.7
+ 1.2
+ 2.2
+ 2.2

B(M
10.2
12.5
12.5
13.5
13.8
14.7
18.9
13.0
16.2
18.9
16.5
20.4
20.3
17.3
23.0
20.0
22.0
19.6
18.9
19.5
19.0
23.6

B(E2) (SMMC)
i

455 + 25
415 + 50
465 + 55
450 + 80
945 + 45
890 +90
645 +75
890 +90
840 +90

1055 + 50
750 + 80
990 + 65
1010 + 65
1105 + 65
515 + 40
960 + 75
1065 + 75
1010 + 85
1165 + 75
1335 + 50
1350 + 70
1225 + 65

B(E2) (exp)
~

720 + 40
290 + 40) 250

1330+200
1080+60
660+30
870+40

620+50
980+40
1200+40
930+180
600+120
695+20
935+15
890+25
760+80

1230+90
1440+120

B(GT+) (SMMC)
]

1.13 + 0.18
1.47 + 0.16
1.11 + 0.16
0.97 + 0.21
4.37 + 0.35
3.51 + 0.27
3.51 + 0.19
2.21 + 0.22
1.50 + 0.21
7.10 + 0.42
6.05 + 0.45
3.99 + 0.27
3.06 + 0.28
1.80 + 0.24
9.86 + 0.38
6.72 + 0.50
5.18 + 0.39
3.43 + 0.40
1.73 + 0.29
8.13 + 0.39
5.60 + 0.50
4.13 + 0.34

B(GT+) (exp)
1.31+0.2

3.1+0.6
2.85+0.3

3.76+0.4
3.11+0.08
2.53+0.07
1.72+0.09
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strength of 16.9+3 3, while the SMMC result is 20 + 2.
Within the large (experimental and theoretical) errors,
these results are compatible with a significant renormal-
ization of the (spin) g factors.

Table I also lists our calculated total B(E2) strength
for transitions from the ground state. We have calculated
these quantities by adopting the same efFective charges
used in a recent truncated shell-model calculation of Fe
[7] (ez ——1.35e and e = 0.35e). For comparison Table
I also lists the measured B(E2) values for the 0~ ~ 2+~

transitions in these nuclei; in even-even nuclei this tran-
sition typically exhausts about 70—80 % of the total
strength. For example, from the (e, e') data [28] we cal-
culate ratios between the total observed B(E2) strength
and the experimental B(E2,0& —+ 2z ) by factors of 1.35,
1.14, and 1.20 for the nickel isotopes ' ' Ni, respec-
tively, while our SMMC results exceed the experimental
B(E2, 0+& m 2z ) values by 1.38, 1.14, and 1.53. The
overall level of agreement is illustrated in Fig. 3, where
we compare the total calculated B(E2) strength with the
experimenal B(E2, 0+& ~ 2z ) values for those fp-shell
nuclei with either semimagic proton or neutron number
N = 28. A similar comparison has been presented in
Ref. [29] based on a strongly truncated shell-model cal-
culation and a difFerent residual interaction. To achieve
overall agreement with the data, Ref. [29] used somewhat
larger efFective charges (e„=1.4e and e = 0.9e) in order
to compensate for correlations missing in the truncated
model space. Note that the use of the larger efFective
charges would increase our total B(E2) strengths for the
nickel isotopes by more than 60%.

While our calculation apparently compares nicely with
data for the nuclei in the middle of the shell (see also
[30]), our B(E2) values as listed in Table I appear too
low for some chromium ( Cr) and titanium isotopes
( Ti). For these nuclei larger effective charges are re-

quired, perhaps indicating a greater importance of sd-
shell configurations at the beginning of the shell.

D. Cammv- Teller strength

In previous publications [12,13] we have shown that full
0~ shell-model calculations recover significantly more
quenching in fp-shell nuclei than truncated 2p-2h, cal-
culations; a finding that is in agreement with the recent
work of the Strasburg-Madrid group [5,6]. Our work sug-
gested that isoscalar proton-neutron correlations [31]and
proton and neutron pairs coupled to nonzero angular mo-
menta [32] are mainly responsible for the quenching of
the Gamow-Teller strength in the ground states. How-
ever, we also observed, by performing calculations for two
difFerent residual interactions (the Brown-Richter inter-
action and the original Kuo-Brown interaction), that the
calculated Gamow-Teller strength is rather sensitive to
the residual interaction [13]. Moreover, no systematic
trends between the calculations using these forces and
the data could be detected. As we demonstrate in the
following, the situation improves significantly if one em-
ploys the modified Kuo-Brown interaction KB3.

Our results for the total Gamow- Teller strengths
B(GT+) = ((oT+) ) are listed in Table I. [As our cal-
culation obeys the Ikeda sum rule, values for B(GT )
are readily obtained by adding 3(N —Z) to the B(GT+)
values. ] We observe that the calculated values are sys-
tematically larger than the B(GT+) values deduced from
intermediate-energy (n, p) charge-exchange cross section
data at forward angles, which are known to be domi-
nated by the GT+ operator and currently provide the
only experimental determination of the Gamow-Teller
strength function. However, such a systematic overes-
timation of the Gamow-Teller strength by shell-model
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FIG. 3. Comparison of experimental B(E2I 0+~ m 2+~)
strengths with the total B(E2) strength calculated in the
SMMC approach for various fp-shell nuclei w'ith either proton
or neutron number N = 28.

FIG. 4. Comparison of the renormalized total Gamow-
Teller strength, as calculated within the present SMMC ap-
proach, and the experimental B(GT+) values, deduced from
(n, p) data [24—26,9,36]. Note that the two measurements of
B(GT+) for Fe summed the strength up to 8 MeV (3.1+0.6I
[25]) and up to 9 MeV (3.5 + 0.7, [36]).
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FIG. 5. Unrenormalized total Gamow-Teller strength for
various isotope chains as a function of the number of neutron
holes (1V —20) in the fp shell.

calculations is familiar from work in the sd shell and can
be attributed to an in-medium renormalization of the
axial-vector coupling constant g~ [3]. Since the (n, p)
data are usually normalized to low-energy beta-decay
rates, they are therefore indirectly also subject to any
renormalization of g~. To account for this renormal-
ization the shell-model results are usually multiplied by
(g&+/g~) = (1./1.25) = 0.64 [5,6]. If we apply this
rescaling to our B(GT+) results for the fp shell we find
good agreement between the SMMC calculations and the
data, as is shown in Fig. 4. For Ti and Ni our renor-
malized B(GT+) values deviate slightly from the mea-
sured Gamow-Teller strengths, indicating possible limits
of the present model space. The slight discrepancy in the
case of Ti might be of some importance for shell-model
calculations of the double-beta decay rate of Ca [33].

From Fig. 4 we conclude that (i) full OR@ shell-model
calculations describe the systematics of the Gamow-
Teller quenching in the fp shell; (ii) reproduction of the
data requires a renormalization by 0.64, in agreement
with the usual assumption of an in-medium modi6ca-
tion of g~, and (iii) these results for the fp shell are
consistent with those deduced previously for the Sd shell
and indicate that both conclusions (i) and (ii) might be
universal. If one accepts these conclusions, the agree-
ment between data and theory suggests both that the
(n, p) experiments do not miss any significant strength
at higher energies and that the KB3 interaction well de-
scribes isoscalar correlations in fp-shell nuclei.

The unrenormalized B(GT+) strengths for the various
isotopic chains are plotted in Fig. 5. As predicted by
the simple single-particle estimate [34,35], the B(GT+)
strength i.s roughly constant in the titanium isotopes,
corresponding to a quenching factor of 3. For the other
isotopic chains our calculation is in agreement with a
recently suggested systematics of the experimental data
[34] in which the total B(GT+) strength for mid-f p-shell
nuclei is proportional to the numbers of valence protons

and neutron holes in the fp shell. As can be seen in
Fig. 5, the linear proportionality to the number of neu-
tron holes is also found in our Monte Carlo results. We
also observe that the Gamow- Teller strength in the nuclei
with 12 neutron holes, corresponding to the magic neu-
tron number N = 28, is larger than the trend in the nuclei
of the same isotope chain, which might further indicate
an overestimate of the shell closure by the KB3 interac-
tion. From the slopes of the B(GT+) strengths for the
various isotope chains we find that B(GT+) scales with
the number of valence protons, as expected.

For the even even N = Z nucleus Ge we And an un-
renormalized total Gamow-Teller strength of B(GT+) =
7.91 + 0.54. For the odd-odd N = Z nuclei we calcu-
late B(GT+) values of 8.1+2.5 ( Mn), 9.1+1.7 (s4Co),
6.6 + 2.8 ( Cu) and 9.1 + 2.2 ( Ga) . The large uncer-
tainties prohibit us from drawing any meaningful conclu-
sions from these values.

E. Proton-proton and neutron-neutron pairing
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FIG. 6. Expectation values for the proton (upper) and neu-
tron (lower) pairing fields, as calculated in the even iron,
nickel, and zinc isotopes. The values of (AtA) for the in-
dependent particle model have been subtracted.

It is well known that pairing between like nucleons
plays an essential role for the ground-state properties of
even-even nuclei. In a first approximation the pairing can
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be described by the BCS model, which assumes that like
nucleons are coupled to J = 0 pairs. We have studied the
BCS-like pairing content of the ground states by measur-
ing the expectation values for the pairing fields, (4 4),
for proton-proton and neutron-neutron pairing. Here the
pair operator is deflned as 4 = P. )oa. a. , where+t
m is the time-reverse orbit of m. 0'or a Fermi gas with
occupations n~ = P (a. az ) we note that

n'-

(
'

) = ) - 2(2, + 1)
2

(1O)

8.0

]
"Fe

The results, obtained after subtraction of the indepen-
dent particle model values (10), are shown in Fig. 6 for
three difFerent isotope chains. As expected, the excess
pair correlations are generally quite strong and exceed
the independent particle model values by factors of 2 to
4, reflecting the known coherence in the ground states of
even-even nuclei. It is interesting to note that the proton
pairing fields are not constant within an isotope chain,

but usually increase with neutron number, showing that
there are important neutron-proton correlations present
in these ground states. The shell closure at N = 28 is
manifest in the neutron pairing. For ' Fe and Ni
the neutrons prefer to take advantage of closing the f~/2
subshell, making the excess neutron pairing rather small
(about a factor of 2 compared to the independent par-
ticle model). But once there are extra neutrons outside
the closed subshell, the excess of pairing increases drasti-
cally. As is demonstrated in Fig. 7 these strong changes
are not present in the average occupation numbers n~.
For example, the proton occupation numbers show lit-
tle variation within the iron chain Fe, although the
occupation of the f7/2 orbit is la. ge."t in the semimagic
nucleus Fe. A similarly smooth behavior is found in
the neutron occupation numbers, where the additional
neutrons are, on average, added to the lowest possib&e
orbital. It is interesting to note that, in ' Fe, as a re-
sult of a strong f7/2 fs/2 c-oupling, the occupation of the
energetically unfavored fs/2 orbital is larger than that of
the p3g2 orbitals. The presence of neutron pairs in the

p3/2 orbital, as in ' Fe, also increases the occupation
number for protons in this orbital, at the expense of the
occupation of the ground-state orbital. The comparison
of Figs. 6 and 7 is yet another example for the impor-
tance of nucleon correlations in the ground state beyond
the mean field level.

6.0 j
. '. : 'I 56Fe

Fe
IV. CONCLUSIONS

4.0

2.0 Neutrons

0.0

I::P

I

Protons

0.0
I 3/2 5/2 P1/2

FIG. 7. Occupation numbers of the various orbitals iri the
iron isotopes Fe, as calculated in the present SMMC ap-
proach. For clarity the proton occupation numbers of the
p3/21 f5/'2) and pr/z orbitals have been multiplied by a factor
of 5.

Using the recently developed shell-model Monte Carlo
approach we have studied the gross properties of even-
even nuclei in the mid- fp shell within full Ohcu shell-model
calculations. Our studies use the KB3 interaction, a
minimally corrected version of the original Kuo-Brown
t -matrix interaction. Conventional diagonalization ap-
proaches have already established that shell-model cal-
culations using this KB3 interaction give a very satisfy-
ing description of nuclei at the beginning of the fp shell
I5,6]. The present calculations supplement these studies
and show that shell-model calculations, using this physi-
cal interaction, satisfyingly describe the gross properties
of (even-even) nuclei throughout that part of the fp shell
(A ( 64) where the influence of the gs/2 orbital should
still be small. We view this reproduction of such a large
body of data, as presented in this paper, as a remarkable
success of a microscopic model.

We recall that performing full (ORu) calculations of
mid-fp-shell nuclei, as discussed in this paper, was un-
thinkable only two years ago. Thus, the present studies
and their results are also a successful conBrmation of the
Monte Carlo approach to the nuclear shell model, and
establish it as a powerful tool with which to study gross
nuclear properties. It is certainly a useful complement
to the conventional diagonalization approaches, which
remain the method of choice for detailed spectroscopic
properties.

Our calculations have shown that shell-model calcula-
tions with the KB3 interaction describe the binding en-
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ergies of even-even and N = Z nuclei with 4=48—64 to
within 1 MeV or better. We are quite aware that shell-
model calculations often do even better. It is conceivable
that an improved reproduction of experimental masses
requires the correction of tiny residual monopole defects
in the KB3 interaction, as suggested in Ref. [5]. Such
an optimization of the interaction is beyond the scope of
the present calculation, but is conceivable with present
computer capabilities. Our studies also indicate that the
KB3 interaction slightly overemphasizes the N = 28 shell
closure.

Using conventional efFective charges that account for
coupling to the giant quadrupole resonance outside our
model space, our calculated R(E2) strengths apparently
reproduce the trend in the data suggested by the exper-
imental H(E2) values for the transition from the ground
state to the first 2+ state. This transition exhausts typ-
ically 70—80 Fo of the total B(E2) strength in even-even
mid- fp-shell nuclei.

The most important result of our present study is a
clarification of the Gamow- Teller quenching puzzle in the
astrophysically important mid-fp-shell region, which has
been the focus of attention for several years. While sev-
eral mechanisms for the Gamow-Teller quenching have
already been identified [31,32,13], we are, for the first
time, able to demonstrate that the experimentally ob-
served quenching is consistently reproduced by the corre-

lations within the full fp shell, if the standard renormal-
ization factor of 0.64 is invoked. We find that the com-
plete Oku calculations recover significantly more quench-
ing than truncated shell-model studies. Our results
are consistent with previous (Oku) calculations of sd-
shell nuclei [3] which established that the Gamow-Teller
strength is quenched by an additional renormalization
factor 0.64 beyond the many-body correlations within
that full model space. Thus, this additional renormal-
ization of the Gamow-Teller strength appears to be uni-
versal and likely originates outside of nuclear configura-
tion mixing within one major shell; it is consistent with
g~ ——1 in the nuclear medium.
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