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Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear
matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker-like mass
formulas to extract saturation properties of nuclear matter from nuclear masses. In particular, the
saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock
calculations. For the first time using nuclear mass formula, the radius constant rp=1.138 fm and
binding energy per nucleon a„= —16.11 MeV, corresponding to the infinite nuclear matter, are
consistently obtained from the same source. An important off-shoot of this study is the determination
of nuclear matter incompressibility K to be 288 + 28 MeV using the same source of nuclear masses
as input.

PACS number(s): 21.65.+f, 21.10.Dr

I. INTRODUCTION

The binding energy, saturation density, and compres-
sion modulus of infinite nuclear matter are fundamental
constants of nature. Traditionally, the first two quanti-
ties, termed saturation properties, are determined from
two di8'erent sources, namely, the volume coefBcient a
of the Bethe-Weizsacker- (BW-) like mass formulas and
the electron scattering data on heavy nuclei, respectively.
Although the Coulomb coefficient a~(= 0.6e /ro) in BW-
like mass formulas specifies the density p = 3/(47rros), it
is not accepted as the density of nuclear matter. This is
because the corresponding radius constant rp 1.22 fm
obtained [1, 2] in a totally free fit is much higher than
the value 1.12—1.13 fm obtained &om the electron scat-
tering data [3] on heavy nuclei and Hartree-Fock (HF)
calculations [4]. As yet no mass formula fit to nuclear
masses has yielded a value of rp in this range. This is
the so-called "rp paradox, " which has been a subject of
investigation [5] over the years by many. Since the two
properties are highly interrelated, the above constrained
practice of their determination &om two diferent sources
has been a serious drawback in our understanding of nu-
clear dynamics. Coupled to this, the incompressibility of
nuclear matter has posed a serious problem with regard
to its determination, both theoretically and experimen-
tally.

In this work, we report our attempt to determine all
three properties of nuclear matter using a single model
and one kind of experimental data, namely, the nuclear
masses, which are abundant in nature and are the best
known properties of nuclei. We use the infinite nu-
clear matter (lNM) model [6] based on the generalized

Hugenholtz —Van Hove (HVH) theorem [7] of many-body
theory, whose success has been well tested through its
unique ability to predict masses of nuclei far &om sta-
bility [6], masses of Na isotopes and other light nuclei,
and finally through the 1986—1987 mass predictions [8]
of the entire periodic table. In the formulation of the
INM model, it was claiined [6] that this model is more
suitable than the traditional (BW) ones to extract the
properties of nuclear matter, as it is exclusively built in
terms of infinite nuclear matter at the ground state. In
the present work, we have improved the model and show
conclusively, starting &om a two-body effective interac-
tion within the energy density formalism, that the satura-
tion properties derived through this improved model are
closer to the true properties of nuclear matter than those
derived using BW-model-based mass formulas. Then this
model is fitted to the experimental masses, which yields
a value of rp of 1.138 fm, in close agreement with that
obtained &om the electron scattering data and with the
empirical value found through many-body mean-field ap-
proaches [9]. Further, using these saturation properties
determined &om the same set of data on nuclear masses,
we arrive at a value of about 288 MeV for the incompress-
ibility K, which is of equal fundamental importance in
the realm of nuclear physics and astrophysics.

In Sec. II, the improvements we have made in the
INM model are presented. In Sec. III, we show at a
microscopic level that the improved INM model is more
appropriate than the BW-like model for the extraction of
saturation properties of infinite nuclear matter &om the
nuclear masses. Determination of such properties is pre-
sented in Sec. IV. In Sec. V, the value of the nuclear com-
pression modulus is determined &om the nuclear masses.
Finally, we conclude in Sec. VI.
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II. IMPROVED INM MODEL

%le recall here the essential features of the INM
model [6] which we have now improved. In this model,
the ground-state energy E (A, Z) of a nucleus (A, N, Z)
with asymmetry P is considered equivalent to the energy
E of a perfect sphere made up of infinite nuclear mat-
ter at a ground-state density with the same asymmetry P
plus the residual energy g, called the local energy, which

contains all the characteristic contributions like shell, de-
formation, etc. So

(»Z) = EiNM(A Z) + &(A Z)

with EPNM(A, Z) = E(A, Z) + f(A, Z), where

f(AZ) = aA ~ + a&(Z —5[3/(167r)] ~ Z ~ jA ~ + a„A ~ P + a, A ~ —h(A Z) (2)

denotes finite-size effects and E(A, Z) is the energy of the infinite part. The superscript I refers to the INM character
of the coefficients. Here a„a&, a„, and a, are the surface, Coulomb, surface-symmetry, and curvature coefficients.
h(A, Z) is the usual pairing term, given as

&(A, Z) =+AA for even-even nuclei
= 0 for odd-A nuclei
= —AA / for odd-odd nuclei.

Equation (1) now becomes

E~(A, Z) = E(A, Z) + f (A, Z) + iI(A, Z).

Thus, the energy of a finite nucleus is given as a sum of three distinct parts: an infinite part E(A, Z), a finite-size
component f (A, Z), and a local energy part g(A, Z). The term E(A, Z), being the property of infinite nuclear matter
at the ground state, will satisfy the generalized HVH theorem [7]

E/A = [(1+P) -+ (1-P)"]/» (4)

where e„= (OE/ON)z and e~ = (OE/BZ)~ are the neutron and proton Fermi energies, respectively. Using Eq. (3),
the INM Fermi energies e and e~ can be expressed in terms of their counterparts for 6nite nuclei as

e- = ~. —(~f/~N) Iz (~g/~N) Iz—, e, = ~„—(~f/~Z) I~ —(~iI/~Z) I~~ (5)

where e„= (OE /BN)z and e„= (OE /BZ)~ Using.
(3) and (5), Eq. (4) is rewritten as

E /A = [(1 + P)e„+(1 —P)e„]/2 + S(A, Z), (6)

where S(A, Z) = f /A — (N/A) (8f/BN) z—(Z/A) (8 f/OZ) ~ is a function of all the finite-size terms
a„a&, a„, and a, , which are global in nature. As dis-
cussed earlier [6], the g terms in Eq. (6) drop out, which
plays a crucial role in the success of the INM model,
and whose validity has been amply demonstrated [6,
8]. It must be noted that Eq. (6) does not contain
the infinite part E as well as the g terms. Thus,
through Eq. (6), the decoupling of the finite component
f &om the infinite one E has been acheived. The co-
efBcients n„a&, a„, and a, can be determined by fit-
ting the S(A, Z) function with the combination of data
E /A —[(1 + P)e + (1 —P)e„]/2 obtained &om the
nuclear masses. We would like to mention here that in
the earlier work [6], due to the use of the expressions
for Fermi energies, e = E+(N, Z) —E+(N —1, Z) and

E (N , Z) —E (N, Z —'1), a small contribution

a (P —1)/(A —1) survives (of the order of a /A) in
Eq. (6), whereas in the present work by using the better
formulas

OEF
ON

= — E (A+1, Z) —E (A —1, Z),

OEF
OZ

[E~(A+ 1,Z+—1)
2

—E"(A —1, Z —1)],

the following important improvements are acheived.
(i) The decoupling of the infinite part (asymmetry

term) &om the finite part in Eq. (6) occurs up to an
order of a /A, which can be considered perfect at the
numerical level.

(ii) The pairing term b contained in f effectively drops
out in Eq. (6), thereby rendering the determination of
other coefficients with greater accuracy due to less cor-
relation.
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(iii) The exchange Coulomb term of the standard form
O(Z4~sA i~s) [Eq. (2)] exactly cancels in Eq. (6). This
cancellation gives rise to a more reliable determination
of the INM saturation density through a&.

(iv) The other factors which might affect the deter-
mination of the density such as the proton-form factor
[O(Z2/A)] and Nolen-Schiffer anomaly [O(PA), referred
to as the charge-asymmetry energy] also cancel exactly.

Thus all the finite-size coeKcients contained in
S(A, Z), which are global in nature, are determined from
nuclear masses by a fit to Eq. (6). Now, of the three
distinct parts of the energy E+ of a finite nucleus (3),
the infinite part E and the local energy part g remain
to be determined. The infinite part E must satisfy the
generalized HVH theorem (4), whose solution is of the
form

E= —aA+a P A, (8)
where a„and a are the global parameters which can
be identified as volume and symmetry coeKcients corre-
sponding to INM. Using (5) and (8) in the right and left
hand sides of Eq. (4), respectively, one obtains

I 2—a„+a P = — (1+P)e„+ (1 —P)e„

% Df Z Bf
A ON +ABZ

z
where the contribution &om the local energy part (of
the order of g/A) is neglected, which in the limit
of large A goes to zero. Since f is known &om
Eq. (6), the above equation can be used to determine
the two parameters a and a with the combination of
data (1+P)e„+(1 —P)e+ /2 obtained from nuclear
masses. Thus all the global parameters are determined
essentially in two fits: Equation (6) determines the finite-
size coefFicients like ar, a&, etc. , and Eq. (9) determines
the INM coefBcients a„and a . Since the present study
is intended for the determination of the properties of nu-

clear matter, we do not discuss the determination of g
and consequently the masses, the details of which can be
seen in Refs. [6, 8].

III. IMPROVED INM MODEL
VERSUS BW MODEL

In this section, we would like to make a comparative
study of the improved INM model and BW model, in
regard to their suitability for the determination of satu-
ration properties of infinite nuclear matter from nuclear
masses.

As noted in the Introduction, it has not been possi-
ble to determine both the energy and density of infinite
nuclear matter in the BW model based mass formulas.
Further, it has been hoped only that the volume coef-
ficient determined in the BW model corresponds to nu-
clear matter at the ground state. On the other hand, in
the INM model, this fact has been ensured by the ex-
plicit use of the HVH theorem, which is valid only at
the ground state of infinite nuclear matter. Since in this
model the binding energy of a nucleus is written in terms
of the properties of INM, it is expected that the INM
model is well equipped to extract infinite nuclear matter
properties &om nuclear masses. We demonstrate this by
predicting the a priori known INM properties for a given
effective interaction.

In this regard, we make use of the extended Thomas-
Fermi (ETF) calculation [10] of nuclear binding energies
with Skyrme-like forces, which over the years has been
firmly established. In such calculations, one obtains the
smooth part of the energy corresponding to the liquid-
drop nature of nuclei. This smooth part, hereafter re-
ferred to as the macroscopic part, describes the energy
EiN~ of the INM sphere as defined in Eq. (1). For the
purpose of making a comparative study of the INM model
and the BW-like model, the appropriate BW mass for-
mula is

2/3

Z.w=-a„A+a. A& +a~ Z -5~L, 2s
E16vr)

Z'~' A-'~'+ a.'P'A+ a.'.A'~'P'+ a.'„A'~' —b(A, Z). (10)

In the case of the ETF calculations, the nuclear curvature coefFicient comes out to be about 10 MeV as against
the BW-like mass formula fit to real nuclei, which gives a value close to zero. For this reason, we have included
higher-order terms like curvature and surface-symmetry terms in both the INM and BW models.

The macroscopic or the ETF nuclear ground-state energies used here for the comparative study of the INM and BW
models are taken from the calculations of Aboussir et aL [ll]. In their calculation, they used a generalized Skyrme
force SkSC4 of the form

v;~ =t0[l+xDP b(r;~)]+ ti(1+ x,P )[p, b(r;~) + H.c.]/2h + t2(1+ x2P )p;, b(r;~)p;;/5

+(t /6)(1+* P-)[ '(')+ . ( )] b(")+('/&') ~o( '+ ) '. b(') *..

Then, the macroscopic part of the total energy for a
given nucleus is calculated using the energy density for-
malism, i.e. , E = f E(r)dsr, where 8 = r(r) + v(r). The
potential energy density v is derived using the two-body

force given above. For the kinetic part w, they use the
full fourth-order ETF kinetic functional [10]. It must be
noted that realistic nuclear ground-state energies contain
shell effects. To incorporate this characteristic feature in
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TABLE I. Values obtained for the global parameters [Eqs.
(6),(9),(10)] in the infinite nuclear matter (INM) model and
Bethe-Weissacker (BW) mass formula fit using the macro-
scopic part of nuclear energies (see text). Exact values deter-
mined directly using INM and semi-INM calculations are also
given. All quantities are in MeV.

Parameters

+ss

Exact values
15.8?
0.757
17.3
27.0
-16.0
11.1

INM
15.925
0.7360
18.10
29.80
-31.37
5.06

BW
14.769
0.6945
11.15
25.41
-17.77
16.43

a self-consistent way, a Hartree-Fock calculation is per-
formed for the same generalized Skyrme force. Now, us-
ing the single-particle states obtained within the HF ap-
proximation, the shell corrections can be calculated by
directly making use of the Strutinsky procedure. Then,
the total energy is given as the sum of the macroscopic
part and these shell corrections.

We have made an exhaustive study using those macro-
scopic energies provided by them for 1492 nuclei. We
fitted both the INM formulas given by (6) and (9) and
the BW one by (10) to the above macroscopic part of the
nuclear masses to determine the corresponding global pa-
rameters. The results so obtained are given in Table I.
The values obtained directly by Aboussir et a/. with the
SkSC4 force performing nuclear matter and semi-infinite
nuclear matter calculations for the various coefIicients
(hereafter referred to as exact values) are also presented
in Table I. It is gratifying to find that the values obtained
in the INM fit for the principal coefIicients like a„, a, , and
a& agree better with the exact values, compared to that
of the BW fit. The symmetry coefIicient a& agrees reason-
ably well with the exact value, although it is somewhat
inferior to the BW value. Even though the agreement of
the higher-order terms like surface-symmetry and curva-
ture in the BW fit agree better, it must be noted that,
because of correlations among the coefFicients, they sig-
nificantly affect the principal term like surface and to a
lesser extent the other ones also. In case of the INM
fit, since the infinite and finite parts are determined in
two separate its, the principal coefIicients are not inHu-
enced by the higher-order terms. In any case, these two
coefIicients contribute insignificantly in real nuclei, and
are normally ignored. Thus, the saturation properties
of nuclear matter, which are a priori known for a given
effective interaction like SkSC4, are relatively well repro-
duced by the INM model than the BW-like model. This
gives us more confidence in the INM model in extract-
ing real saturation properties &om experimental nuclear
masses which is done in the next section.

The success of the INM model over that of the BW-
like model is essentially due to the following. As also
discussed in Ref. [6], the BW-like mass formulas use only
the average property of nuclear matter, namely, the av-
erage energy per nucleon. However, as demonstrated

by Hugenholtz and Van Hove [12], an interacting Fermi
system has an additional property, namely, the single-
particle property. Such a system has one true single-
particle state, i.e., the Fermi state, which has infinite
lifetime, while other low-lying ones are metastable. In
other words, the lifetime of the single-partcle state ap-
proaches infinity in the limit k: k~. This important
property is additionally taken into account in the INM
model, which is not present in BW-like mass formulas.

IV. DETERMINATION OF NUCI. EAR
MATTER SATURATION PROPERTIES

Before coming to the actual determination of the var-
ious parameters of the INM model, and thereby the sat-
uration properties of nuclear matter, it is essential to as-
sess the relative importance of the possible higher-order
terms, which is somewhat different in this model.

The two saturation properties, namely, the density p
given by c& and the volume energy a, are determined
in thoro different fits: Eqs. (6) and (9) respectively. The
first fit determines the crucial quantity a&, and hence, it
is imperative that we analyze the role of other finite-size
effects which may inHuence the determination of the satu-
ration properties. The finite-size terms which are directly
related to the Coulomb effect are the exchange Coulomb,
proton-form-factor correction, and charge-asymmetry en-
ergy. It may be recalled here that in the INM model the
binding energies and Fermi energies are used in the par-
ticular combination E /A = [(1+P) e + (1—P)e„]/2, in
Eq. (6), as dictated by the HVH theorem. As a result, the
above stated three effects exactly cancel in Eq. (6), ren-
dering a clean determination of a& and hence the density
p . This is indeed a very fortunate situation.

The other two higher-order terms which may indirectly
affect the value of a& are the curvature a, and surface-
symmetry a„coefIicients. In real nuclei, the curvature
coefIicient comes out to be nearly zero, and is normally
not included. So we have dropped it. In regard to the
surface-symmetry coeIHicient n„, it has been recognized
that its values is somewhat difFicult to determine from
nuclear masses. Even at the theoretical level, the val-
ues of al, determined [10] from various effective interac-
tions differ widely. Further, in the modern BW-like mass
formulas [13, 14], this coefficient is fixed from consider-
ations other than the ground-state nuclear masses, such
as fission barrier heights. Since in the present study we
address ourselves to the determination of the properties
of INM at the ground state, it is essential that we only
use the ground state masses, and not any other property
which may drift the system from the ground. -state and
jeopardize the determination of a„and a&. Therefore,
in the present context, it is proper that the important
coefIicients are treated as &ee parameters to be fixed by
nuclear masses through Eq. (6).

But, fortunately, the surface-symmetry coefricient a„
cancels to a major extent ( 66%) due to the partic-
ular combination of data used in Eq. (6). Although
this does not fully cancel like the exchange Coulomb,
protron-form-factor correction terms, etc. , a„being a
second-order term, such cancellation renders it relatively
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TABLE II. Values obtained for the global parameters [Eqs. (6),(9)] in the present study using
the experimental data [15] on nuclear masses are given for the various sets of data. All quantities
are in MeV.

No. of nuclei
1085
1191
1252
1294
1371

Ia„
16.101
16.115
16.112
16.096
16.108

Ia&
0.7592
0.7596
0.7589
0.7572
0.7593

19.18
19.25
19.23
19.23
19.27

24.65
24.56
24.66
24.32
24.06

insignificant as compared to a, . At the numerical level,
it may be considered to be virtually canceled. Neverthe-
less, since our main goal is to determine the saturation
properties of nuclear matter, which are of fundamental
importance, we are anxious to check if any semblance of
the survival of the a„ term can acct the results.

Hence, we carried out calculations retaining this term
as a Bee parameter in our fit to Eq. (6). It is found that
while the values of the other coefficients remain almost
unaltered, the value of a„widely varies &om —30 MeV
to —11 MeV with an accompanied error of about 50—
100% as the number of data varies from 1085 to 1371.
This fact is also true when one uses presupposed values
for a„, while other coefficients are being fitted to the
1371 masses. As the value of a„ is varied from —10 MeV
to —30 MeV, it was found that g, , shows a minimum
at a„~ —12 MeV. However, this optimum value of a„
Huctuates with the variation of the number of data, re-
sulting in no definite value. These two features are rem-
iniscent of its insignificant presence in Eq. (6). Hence
we have omitted this term. The same is true also for
the curvature term. Therefore, the optimum representa-
tion for the finite-size function f (A) defined in Eq. (1 is
f(A Z) = a A'~ + a (Z' —5[3/(167r)]'~'Z'~ )A

Now coming to the actual determination of the satu-
ration properties of INM, we use all the nuclear masses
with experimental error & 60 keV from the recent mass
table of Wapstra and Audi [15]. There are 1371 cases,
which have been used in our study. As mentioned earlier
the universal parameters in this model are determined
in a two-step process. In the erst step, we determine
the finite-size coefficients a& and a, by making a least-
squares fit to Eq. (6) using all 1371 masses. Then these
parameters so determined are further used in the second
step to obtain the coefficients corresponding to the infi-
nite parts ar and a@1, by a fit to Eq. (9) using the same

a„= 16.108 MeV and

rp ——1.138 fm and
a~ = 0.7593 MeV,

p = 0.1620 fm

We quote no errors for our parameters as they are firmly
determined, say, with errors less than 1%. The satura-
tion properties a„= 18.335 MeV and a& ——0.841 MeV,
determined earlier [6], are inaccurate due to the use of
the expressions e+~ ——E (N, Z) —E (N —1, Z) and
ef, = E (N, Z) —E (N, Z —1) for finite nuclei Fermi
energies. It is indeed remarkable that the saturation den-
sity p = 0.162 fm and the corresponding rp = 1.138
fm found here agree quite well with that obtained from
the 6t of electron scattering data. This value of rp is

set of data. The y, , 's obtained for these two fits are
371 keV and 372 keV, respectively, which are substan-
tially lower than the corresponding ones 460 keV and
506 keV obtained in the earlier study [6, 8]. The lower-
ing of y, , is almost entirely due to the improvements
made in the model, and not as the result of the use of
recent masses. To check the goodness and the stability of
the parameters obtained in our fits, we have carried out
Bve sets of calculations by varying the number of data
randomly considered throughout the mass table, choos-
ing them on the basis of experimental error ranging from
20 keV to 60 keV, and these are presented in Table II.
One can clearly see that almost all four parameters are
quite stable in spite of widely varying data. Especially
remarkable is the stability of the two crucial nuclear pa-
rameters, namely, the Coulomb coefficient a& and the
volume coefficient a„. It is satisfying to note that the
degree of stability of these two important parameters, in
which we are specifically interested, is relatively better
than in a, and a&. The final values obtained for these
two coefficients with a maximum number of data (1371
nuclei), and the corresponding values for ro and p are

TABLE III. Values obtained for the parameters [Eq. (10)] of the BW model using the experi-
mental data [15] with a varying number of higher-order terms in the model (see text). All quantities
are in MeV.

No. of parameters
5
6
7
8

L

-15.80
-15.64
-15.48
-12.66

L

18.4
18.2
17.2
-10.6

aL

23.0
26.6
26.3
21.7

ae
0.733
0.713
0.707
0.651

11.9
11.2
11.2
10.7

L
+ss

-22.3
-21.9
-7.9

L
Gcv

1.5
102.7

L
+GC

-12?.3
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TABLE IV. Same as Table II, but using
a Bethe-Weizsacker-like mass formula. Values obtained for
incompressibility A using those in Eq. (11) together with
the values from Table III for the corresponding set of data are
given. All quantities are in MeV.

No. of nuclei
1085
1191
1252
1294
1371

a~
15.648
15.640
15.651
15.634
15.635

ac
0.7142
0.7134
0.7141
0.7128
0.7131

K
291
290
297
303
288

also close to the 1.13 fm obtained in the HF studies,
which has been widely accepted in the literature [4]. It
may be noted that our value of rp is quite similar to
the value 1.140+0.005 obtained &om the fit of nuclear
charge radii [9] extracted from the recent electron scat-
tering data [16]. Thus, the two important ground-state
properties, i.e., a„and p, which are interrelated, are
consistently determined &om one kind of data using a
single model.

V. INCOMPRESSIBILITY OF
NUCLEAR MATTER

To determine K, we note that INM model determines
the binding energy per nucleon a„and saturation density
p at the ground state. The BW-model-based mass for-
mulas give the value of a at a difFerent density pp cor-
responding to their a, since they do not have any ingre-
dient to ensure that these parameters pertain to nuclear
matter at the ground state. Hence, using the values of a
and densities &om the INM model as well as &om BW
formulas, one can determine K using the relation

a„(p ) + (K /18)(po/p —1) = a„(po), (11)

as shown in Ref. [17).
In order to determine the optimum number of param-

eters in the BW mass formula given by Eq. (10), we have
carried out a least-squares fit with a varying number of

parameters, the results of which are presented in Table
III. We have used the same 1371 nuclear masses men-
tioned in our earlier section. It can be seen that the
values of the principal five coeKcients are not afFected
when the surface-symmetry a„and curvature a, terms
are successively included. Hence, the a„ term is well sup-
ported and should be retained. The curvature term, in
spite of its smallness and relatively large error, can be in-
cluded as it does not afFect the leading terms much. How-
ever, the inclusion of the Gauss curvature aG& term, the
next higher-order term in the model, completely desta-
bilizes the fit by violently disturbing the leading-order
coefFicients. The surface coeKcient has even become neg-
ative. This may be due to the very small value [13, 14]
of this term ace, which is of the order of 6 MeV.

Quite importantly, the above result is contrary to
the common belief that the inclusion of more and more
higher-order terms in a liquid-drop model like expansion
would result in progressively refined values of the leading-
order terms. Therefore, one should be judicious in retain-
ing higher-order terms in such models. In the present
study, we consider Eq. (10) having six parameters to be
the optimum representation, where we have dropped the
curvature term as it comes out to be nearly zero.

With this view, we carried out a least-squares fit to
Eq. (10) (without the curvature term) using the same
1371 masses. As in the case of INM model calculations,
we have varied the number of data to arrive at stable
values of a„and a&, with similar accuracies of second
and third decimal places, respectively, since the value of
K is sensitive to these values. The results are given
in Table IV. Now, K is computed using these values in
Eq. (11) together with the values of aI and ai& from Table
II for the corresponding set of data, and are presented in
the last column of Table IV. It is remarkable that in spite
of the variation of the number of input data ranging &om
1085 to 1371, the value of K comes out to be in between
288 and 305. The average value thus obtained in Table
IV is about 294 MeV which is very close to 288 MeV
obtained with the maximum number of data used in the
fitting procedure, which futher substantiates the stability
of our result with respect to the variation of data.

TABLE V. Values of K obtained with inclusion or noninclusion of higher-order efFects like
curvature a, , proton-form factor (PFF), and exchange Coulomb. INM4 stands for the INM model
mass fit with four parameters, namely, a, a, a, and az. And BW6 stands for the BW model
fit with six parameters; the two additional parameters in this case are the pairing A and sur-
face-symmetry a„ terms.

With exc. Coul.
Model set

INM4 and BW6
INM4 and BW6+a,

INM4+PFF and BW6 + PFF

K
288
302
326

Without exc. Coul. INM4 and BW6
NM4 and BW6+a

INM4+ PFF and BW6 + PFF

303
309
330
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We then attempt to get an estimate of the error in
this value of K arising out of the limitations of the
model, which may be due to the inclusion or noninclusion
of higher-order terms like curvature, exchange Coulomb,
and proton-form factor. The results of our calculation of
K with inclusion or noninclusion of these three effects
are presented in Table V. We have calculated the error y

optusing the expression y = ~ Z~
z (K' —K &t), where

K = 288 MeV, N = 5, and i stands for the five values,
other than K P, tabulated in Table V. The error thus
calculated comes out to be 28 MeV.

The recent BW-model-based mass formulas usually use
a presupposed value of ro determined &om other consid-
erations. The one which treats ro as an adjustable pa-
rameter and more or less looks similar to Eq. (10) is by
Myers and Swiatecki [1],where ro is determined by using
the data on both the nuclear masses and fission barri-
ers. Using their values of a„and the density, and the
present values of INM, we obtain K to be about 299
MeV. Hence, we would like to firmly state that, if one
allows ro as a &ee parameter in the fit to nuclear masses,
one would invariably arrive at a value of about 288 + 28
MeV for K

VI. CONCLUSIONS

In conclusion, we have improved the INM model by
using better Fermi energies for the neutron and pro-
ton, which has resulted in a cleaner decoupling of the
finite-size effects and the INM part of the ground-state
energies of nuclei. Unlike in the BW-like mass for-
mulas, the Coulomb-related higher-order terms such as
exchange Coulomb, proton-form-factor correction, and
charge-asymmetry energy cancel exactly, rendering an
accurate determination of the most important quantity,

namely, the saturation density. More importantly, we
have demonstrated at a fundamental level, starting with
an effective two-body interaction, the appropriateness of
the INM model over that of the BW-like models to de-
termine the ground-state properties of INM.

The saturation density p and binding energy per nu-
cleon a„of nuclear matter, the two highly interrelated
quantities, are extracted consistently for the first time
&om a single source, i.e., nuclear masses, through a mass
formula. It is particularly satisfying to find that the
radius constant corresponding to p determined here
agrees quite well with that obtained &om electron scat-
tering data and Hartree-Fock calculations. These have
been possible because of taking into account additionally
the single-particle property of the interacting Fermi sys-
tem through the use of the generalized HVH theorem in
the INM model. Thus, the ro anomaly is resolved here
satisfactorily.

An important offshoot of this study is the determi-
nation of the value of nuclear matter incompressibility
starting from nuclear masses, which are the best mea-
sured and most abundant data in nuclear physics. The
value so obtained for K is 288+28 MeV. We finally
comment that inclusion of the surface-symmetry term
a„ leads to Huctuation of the value of K to a larger
side of the above value.
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