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Halo structure of 14Be in a microscopic 12Be+n+ n cluster model
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The Be nucleus is investigated in the three-cluster generator coordinate method, involving

several Be+n+ n configurations. The Be core nucleus is described in the harmonic oscillator
model with all possible configurations in the p shell. We present the theoretical energy spectrum of

Be up to 5 MeV excitation energy, and show that the matter densities support a halo structure of
the ground state. A strong enhancement of the rms radius with respect to the Be core is obtained,
in agreement with experiment. Our calculation indicates that the Be(g.s.)+n+ n configuration
represents 66'PD only of the total wave function, and that core excitations cannot be neglected. A

comparative study of the Be, Be, and Be nuclei is perforxned with identical conditions of
calculation. We also analyze dipole and quadrupole excitations of the Be ground state, and show

that a significant part of the sum rules for soft modes is exhausted at low excitation energies.

PACS number(s): 21.60.Gx, 21.10.Gv, 27.20.+n

I. INTRODUCTION

Nuclear spectroscopy near the neutron and proton drip
lines has been extensively studied in the latest years [1,2].
The low binding energy of the external nucleons yields a
matter density with a range much larger than in nuclei
close to the stability [3]. This property is responsible for
the strong enhancement of the rins radius [4] and is a
clear signature for the halo structure of a nucleus. Halo
nuclei are also expected to present a significant dipole
strength at rather low excitation energies [4,5]. Theoret-
ical investigations of halo nuclei are made difIicult, since
models should be reliable, not only in the short-range
part of the wave functions, but also in the asymptotic
region, which is characteristic of the halo structure. In
addition, although halo nuclei are generally considered as
inert cores surrounded by one or two external nucleons

[3], this assumption should be treated with much caution
when the core nucleus has a low excitation energy.

The Be nucleus is a good candidate for a halo struc-
ture. The separation energy of two neutrons is only 1.12
MeV [6], and the experimental rrns radius (3.11 + 0.38
fm) is much larger than the rms radius of the expected
2Be core (2.57 + 0.05 fm). Since the first experimen-

tal evidence for the particle stability of Be [7], many
experimental studies have been devoted to this nucleus.
New techniques have provided accurate data, such as rms
radii [8,9], beta-delayed multineutron spectra [10] or two-
neutron removal cross sections [11]. More recently, the
halo structure of Be has been con6rmed by Zahar et al.
[12] in a fragmentation experiment of Be on a i2C tar-
get. These authors suggest a strong correlation between
the two external neutrons.

From a theoretical point of view, most works focus on
the rms radius of i4Be [13—16]. In the present paper, we
investigate difFerent properties of Be in the generator
coordinate method (GCM —see Ref. [17]), where the
wave functions are described in the three-cluster model

involving a Be core and two external neutrons. Core-
polarization efFects are taken into account through ex-
cited states of Be. In this microscopic model, a halo
structure is not a priori included; the basis wave func-
tions involve many spatial configurations, and the struc-
ture of Be is determined by solving the 14-nucleon
Schrodinger equation. The microscopic wave functions
are used to investigate several aspects of the Be spec-
troscopy. In addition to the rms radius, we also cal-
culate proton and neutron densities, both in Be and
in the Be core. These quantities provide more com-
plete information than the rms radius. The existence of
a significant dipole strength at low energies (also called
soft-dipole mode [5]) will be also discussed, as well as the
electric quadrupole excitation.

A further interest for the Be nucleus is the possi-
ble existence of the so-called Efimov states [18]. Efimov
states are expected to occur in three-body systems, where
two-body subsystems are described by s waves with a
separation energy close to zero. Although a recent ex-
periment [19] indicates that the Be ground state is a
5/2+ resonance (8=2) unbound by more than 2 MeV,
we have suggested [20] that a further 1/2+ state (E=O)
might exist and might be located very close to the neu-
tron threshold. The present Be investigation allows us
to gather the difFerent results and to discuss Be and

Be in the same model.
The paper is organized as follows. In Sec. II, we briefly

present the microscopic model, and the conditions of the
calculation. The Be structure is analyzed in Sec. III,
where we describe spectroscopic properties, such as den-
sities, rms radii, and dipole and quadrupole strengths.
The Be and Be spectra are simultaneously discussed.
Conclusions are presented in Sec. IV.

II. THE MICROSCOPIC MODEL

The Be three-cluster wave functions are defined from
a Be cluster and two external neutrons. The three in-
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ternal wave functions are located at Si, S2, and S3,
yielding for the nonprojected Be wave functions:

41.„.„.„,(S„S,S ) = Qp, ', "' (S )p„'~ "'(S )

xP) '(S )

where A is the 14-nucleon antisymmetrization operator.
The i2Be internal wave functions (t),,'n' are defined in the
p-shell harmonic-oscillator model. Taking account of all
configurations allowed by the Pauli. principle leads to two
Ii ——0+ one li ——1+, and two Ii ——2+ states. This de-
scription is identical to that used in our Be study [20].
All the clusters are described with the same harmonic-
oscillator parameter (t)=1.6 fm), in order to avoid spuri-
ous c.m. problems.

After projection of basis functions (1) on total angu-
lar momentum J and parity vr, the project GCM wave
functions read [21]:

4~. . . ,» (B,, B„a)= —f DM ~ (B)'R ('B) (1 + wP)

x C I, ,„, , (Si, S2, Ss)dO, (2)

where 7Z (0) and 17M~(O) are the rotation operator (as-
sociated to the angular momentum J) and the Wigner
function, both involving the Euler angles 0; P is the
parity operator. The definition of the generator coordi-
nates (Ri, R2, n) is illustrated in Fig. 1: Ri refers to
the distance between Be and the c.m. of the external
neutrons, R2 is the distance between these neutrons, and
n is the angle between both directions. In (2), K is the
spin projection over the intrinsic z axis which we choose
along the Ri coordinate. In order to reduce computer
times, and since we are mainly interested here in the 0+
ground state, we restrict ourselves to K = 0. Total Be
wave functions are defined by a linear combination of
basis states (2):

) ) J'I,„„„,K(Ri, R2, o.')
I1v1vg v3K R1R2cx

(3)

The 14-body Hamiltonian involves the Volkov V2 force
[23] with a zero-range spin-orbit component [24]. The
amplitude of this spin-orbit force is chosen as So——30 MeV
fms, a value used in our Be investigation [20], and stan-
dard for p-shell or sd-shell nuclei. The Majorana param-
eter is fitted on the Be binding energy with respect to
the 2Be+n+n threshold; this yields m=0. 5975, which is
very close to the standard value m=0. 6 [23]. Notice that
the Majorana parameter is almost identical to that used
for Be (m=0.60) and, consequently, the properties of
the Be core can be qualitatively transposed from those
of Ref. [20].

The GCM basis states are defined by different sets of
(Ri, R2, n) coordinates (see Fig. 1). A preliminary study
indicated that R2 values (i.e. , distances between external
neutrons) larger than 4 fm do not bring any significant
improvement to the Be wave function. Three R2 values
(0, 2, and 4 fm) have been selected, with three difFerent
angles (n=0, 45', and 90 ). For the Ri generator coor-
dinate, we take five values from 2 to 10 fm with a step
of 2 fm. These choices provide 34 sets of generator coor-
dinates, which are expected to cover reasonably well all
the three-body spatial configurations.

III. THE ~4Be NUCLEUS

A. Energy spectra

Before using the complete Be basis, we start with
a preliminary investigation, where a restricted basis is
employed. This procedure should first provide a quali-
tative information on the Be structure. In Fig. 2, we
fix Ri and R2, and mix the difFerent o. values. Ener-
gies obtained by diagonalization of this limited basis are
plotted as a function of Ri and R2. These curves can
be approximately seen as Be + dineutron potentials,
since the presence of several o. angles simulates a projec-
tion over the spin 0+ of the dineutron. Figure 2 shows
that the lowest binding energies are obtained with R2 ——2

fm; this is consistent with the fact that, in the GCM, the

where the generator functions f are obtained from the
Hill-Wheeler equation [22] involving the Hamiltonian and
overlap kernels. The calculation of these kernels is ex-
plained in Ref. [21], where they are shown to involve
three-dimensional integrals of matrix elements between
unprojected basis functions (1). The calculation there-
fore requires rather large computer times, but this prob-
lem can be overcome by an efIicient vectorization of the
codes.
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FIG. 1. Three-cluster description of Be.

FIG. 2. Be energy (with respect to the Be+n + n
threshold) as a function of Ri, for difFerent Rq values (in
fm).
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dineutron energy is minimum near B2——2 fm. In 4Be,
the minimum, located below Bi —4 fm, is rather Qat.
Configurations with strongly correlated (Bq ——0 fm) or un-
correlated (R2——4 fm) neutrons yield higher i4Be binding
energies. These components are however kept in the total
basis, to simulate distortion eKects in the wave functions.

In Fig. 3, we analyze the sensitivity of the 4Be binding
energy with respect to B2 and o. values. All the Bi gen-
erator coordinates are included in the restricted bases.
This simplified approach is intended to investigate the
geometrical structure of the external neutrons. On the
left side of Fig. 3, A2 is Axed and binding energies are
plotted as a function of the angle o.. For B2——0, there is
of course no o. dependency. As suggested by Fig. 2, the
minimum is obtained with B2——2 fm and o.=0. For B2——2
fm, the couphng between the difFerent o, values is stronger
than for other B2 values. If the Be basis is restricted to
B2——2 fm only, the binding energy is —0.46 MeV; the ad-
ditional B2 values therefore improve this energy by 0.66
MeV. As expected &om Fig. 2, energies obtained with
B2——4 fm are noticeably higher; in that case, o;=45 cor-
responds to the minimum. On the right side of Fig. 3, we

display spectra for fixed o. values. In all cases, B2——4 fm
yields rather high Be energies. For o.=0 and o.=45',
the minimum is obtained with B2——2 fm. Notice that no
single set of (B2, n) values (with a mixing of different
Bi) provides a negative binding energy of i4Be. This
means that the mixing of several spatial configurations is
important for a realistic description of Be.

The GCM energy spectrum is shown in Fig. 4, where
the full Be basis has been used. We find a 2+ resonance
located 0.7 MeV above the neutron threshold. This result
is in good agreement with the shell-model calculation of
Poppelier et al. [25], who find 0.83 MeV for the first 2+
excited state. Natural-parity states only are found below
5 MeV.

2
O

Ld 2

0
90

0,45,90
0,45

0

+=0' & =-4~ n =90'

FIG. 3. Be energies for different choices of restricted
GCM bases (see text). Labels on levels represent n values (in
degrees —left side) or Rs values (in fm —right side). The

Be+n + n threshold is represented by dotted lines, and the
lowest energies (obtained from a mixing of the three config-
urations) by dashed lines. The central spectrum corresponds
to the full basis.
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FIG. 4. Theoretical energy spectrum of Be.
Be+n + n threshold is represented by a dotted line.

The

B. Spectroscopy of the Be ground state

In Fig. 5, we present the neutron and proton densi-
ties of the Be ground state. They are calculated as
explained in Refs. [26,21]. The wave function involves all
spatial configurations described in Sec. IIA. The upper
panel of Fig. 5 refers to the densities of Be compared to
the corresponding quantities in the Be core. Since the
ground state of both nuclei has a spin 0+, the densities
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FIG. 5. Upper part: monopole densities for neutrons (full

lines) and protons (dashed lines) in Be and Be. Lower
part: integrals I(r) [see Eg. (4)] .
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present a monopole component only. For protons, they
are very similar in Be and Be; small differences arise
from Be components where the Be core is in an ex-
cited state. On the contrary, neutron densities are quite
different; whereas neutron density in Be is nearly pro-
portional to the proton density, the neutron contribution
in i Be has a very long tail, as shown in the insert (loga-
rithmic scale). This long-range neutron density is typical
kom halo nuclei and yields fairly large rms radii. In the
GCM, the neutron and proton radii of i4Be (see Table I)
suggest a neutron skin of about 0.7 fm, larger than the
experimental counterpart ( 0.2 fm). Notice that the
experimental radii are partly model dependent and, for

Be, present rather large error bars. In agreement with
the distribution densities shown in Fig. 5, the theoretical
proton radii of Be and Be are similar. The strong dif-
ference in the experimental data cannot be explained by
the present model. The clearest signature for a neutron
halo is probably the difFerence between the neutron radii
of Be and of Be. The good agreement between the
GCM and experimental values (0.62 fm and 0.57 fm, re-
spectively) indicates that the microscopic wave function
of Be should be fairly reliable.

In the lower panel of Fig. 5, we display the quantity

TABLE II. Energies (in MeV) and (L, S) components (in
%%uo) in Be, and amplitudes (6) (in %%uo) in Be.

I1
0+
0+

2
1+
2+

1
2+

—57.31
—40.46
—44.37
—54.87
—47.86

128

(o,o)
90.3
9.7

(l, l)
9.7
90.3
100
14.9
85.1

(2,o)

85.1
14.9

148

c(Ii)
65.8
13.6

7x10
16.8
3.8

@JM~ ~ gJM~
I1

I1
(5)

the physical 0i and 2& states, the S=1 component is
of the order of 10% in the GCM. It is known [27] that
some low-lying states of Be are of (sd) configuration
relative to Be. However, the extension of the present

Be+n+ n three-cluster model to 8d configurations of
Be would considerably increase the computation times.

Furthermore, these configurations are not expected to in-
fluence significantly the Be properties.

The Be wave function (3) can be rewritten as

r
I(r) = Q4~ p(s)s ds,

0

where Ii refers to the Be state. We define the ampli-
tude of the Be(Ii) + n+ n configuration as

TABLE I. Proton, neutron, and matter radii (in fm) of
Be. Experimental data are taken from Ref. [8].

GCM

2.20
2.33
2.29

12B

Expt.
2.49 + 0.06
2.65 + 0.06
2.59 + 0.06

GCM

2.28
2.95
2.78

148
Expt.

3.00 + 0.36
3.22 + 0.39
3.16 + 0.38

where the monopole density p(s) is normalized in such a
way that I(r) tends to the nucleon number when r tends
to infinity [26]. The radius riy2, where this integrated
density is one half of the maximum, provides a useful
information on the spatial extension. For protons, we
have r&y2 ——2.0 fm, both in Be and Be. For neutrons,
these values are 2.1 fm in Be and 2.5 fm in Be.

In order to go further in the interpretation of the Be
wave function, we analyze now its components in the dif-

ferent Be(Ii)+n+n configurations. This analysis is in-

tended to show whether the Be core can be considered
as inert (i.e. , in the ground state only), or not. As said in
Sec. II, shell-model configurations of Be, restricted to
the p shell, yield two states with Ii——0+, one with Ii ——1+,
and two with Ii ——2+. These states are obtained &om a
mixing of diA'erent configurations in the (L, 8) coupling
mode [20]. Their energies and amplitudes are given in Ta-
ble II. The 2i+ excitation energy (2.44 MeV) is consistent
with experiment (2.10 MeV), but lower than the value

predicted by Fortune et al. [27] using the Cohen and Ku-
rath method [28] (4.3 MeV). Notice that the 02, 1+, and
22+ Be states do not have an experimental counterpart,
but introduce distortion effects in the wave function. For

(6)

Notice that the different components are orthogonal to
each other, since Ii arises from the coupling of proton
angular momenta in Be. Accordingly, the sum over
the five Ii possibilities is exactly unity. These values are
given in Table II, and show that, although the Be(0& )+
n + n configuration is dominant, excited configurations
cannot be neglected. The 2i first excited state of Be
contributes for 16.8% in the i Be wave function, and the
0+2 pseudostate for 13.6%.

C. Discussion of the ~~Be nucleus

We have recently investigated the Be spectrum in
the two-cluster Be+n microscopic model [20]. In that
work, the nucleon-nucleon interaction was adjusted on
the energy of the 5/2+ resonance, well-known ta be un-

bound (+ 2.01 MeV) with respect to the neutron thresh-
old [19]. The GCM wave function was tested on the neu-

tron width, whose theoretical value nicely agrees with
experiment. The main conclusion of the Be study is
that a 1/2+ (E=O) state is predicted below the experi-
mentally known 5/2+ resonance and should be located
very close to the neutron threshold.

The present Be investigation offers the opportunity
to gather the spectra of different neutron-rich Be iso-
topes, with the same nucleon-nucleon interaction. We
present in Fig. 6 the Be and Be GCM spectra, where
energies are given with respect to the ~2Be binding en-

ergy. For the sake of completeness, we also present the
isBe(5/2+) state, whose energy is experimentally known.
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FIG. 6. Energy spectra of Be, Be, and Be. The ex-
perimental data are taken from Ref. [19].

In this figure, no parameter is 6tted on Be properties,
since the nucleon-nucleon force has been determined on

Be. It turns out that the GCM can reproduce the
Be(0+) and Be(5/2+) energies simultaneously. This

result strengthens the conclusion of Ref. [20] which pre-
dicts a 1/2+ state in Be near the neutron threshold. As
in Ref. [20], we find a slightly negative energy (—19 keV),
but this small value is far beyond the accuracy level of
the model. We do not conclude on the particle stability
of isBe, but we think that the existence of a 1/2+ state
has rather strong theoretical grounds. The Be nucleus
should therefore be a good candidate for the so-called
Efimov states [18].
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D. Soft modes of Be
FIG. 7. Dipole transition probabilities (?), nonenergy

weighted sum rules (8), and energy-weighted sum rule (9)
in Be.

It has been suggested [4] that halo nuclei should
present a large dipole strength at low excitation ener-
gies. This effect, often called the soft dipole mode [29],
has been extensively studied in the He [29—31] and Li
[5] nuclei. Those theoretical works did conclude to the
existence of a soft dipole znode (SDM) in He and Li,
at an excitation energy of a few MeV.

Here, we investigate dipole and quadrupole excitations
of Be. For an electric multipole of order A, the reduced
transition probability Rom the ground state to an excited
state J; reads:

N

B(EA, E ) = ) B(EA, O+ w 1,")

and.

N

S(EA, E ) = ) (E; —Eo+)B(EA, O -+ J, ),

(8)

(9)

where M& is the electric multipole operator. Of course,
excited states J, lie in the continuum, and a rigorous
treatment of their wave functions should require scatter-
ing boundary conditions. However, it has been shown
[29,31] that this calculation can be replaced by a simpli-
fied approach, where @ ' states are discrete, and corre-
spond to the eigenstates of the Hamiltonian.

Let us first discuss dipole excitations, illustrated in
Fig. 7. The E1 amplitudes show a strong maximum
for the first eigenvalue (i = 1) near E =2.8 MeV. The
nonenergy weighted sum rule (NEWSR) B(EA) and en-
ergy weighted sum rule (EWSR) S(EA) are respectively
de6ned as

where N is the number of eigenstates located below E .
They are shown in Fig. 7 for 4 = 1. For the El multipole,
the EWSR involving all states is well known [32] to be

9 52e~ KZ
4 2 N A

(10)

where mN is the nucleon mass, N and Z the neutron
and proton numbers of the nucleus (A = N + Z). This
expression does not depend on the model; for Be, it
provides S(E1) = 42.4e MeV fm2. A similar expression
for the NEWSR cannot be obtained without a model
assumption. If the halo nucleus is described by an inert
core with external neutrons, the NEWSR involving all
states reads [29]
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B(E1)=

where index c refers to the core, n is the number of exter-
nal neutrons (n=2 here), and g(p~) is the mean distance
between the core and the center of mass of the external
neutrons. In (11), the second term of the rhs assumes
that the core wave function is described in the harmonic
oscillator model with parameter b. Notice that we have
slightly improved Suzuki's expression [29] by explicitly
introducing the charge radius g(rz)„of the core. In the
present GCM study, we have B(El) = 5.0e fm, if we

take g(p~)=4 fm, which roughly corresponds to the Rq
value where the binding energy is minimum (see Fig. 2).

Using the GCM sum rules given in Fig. 7, we find that,
at 5 MeV, the NEWSR (8) exhausts 26%%uo of the total sum
rule (11) and the EWSR (9) exhausts 10% of (10). These
values are fairly large, and consistent with a low-energy
giant dipole resonance. It is customary [29,31] in studies
of SDM, to divide the total sum rules (10) and (11) in
two contributions: one arising Rom the core, and another
one from the relative motion between the core and the
halo neutrons. The latter part is believed to be a good
estimate of the sum rule for the SDM. One has

nuclei such as He (2.5 MeV —Ref. [31]).
In Fig. 8, we show E2 transition probabilities, studied

in the same way. Two 2+ eigenstates (E =1.8 MeV and
E =6.6 MeV) play a major role in the sum rules. The
first one corresponds to the predicted first excited state
(see Fig. 4). Neglecting c.m. effects, the EWSR for E2
excitation reads [32]

4' 2m~
(15)

50 h e
S(E2, SQM) = — [Z(r )„—Z, (r, )„],4' 2m~

(16)

which gives 118e MeV fm . Prom Fig. 8, it turns out
that a significant part of this sum rule is exhausted at
low excitation energy (68% at E =20 MeV). This result
supports the existence of a soft quadrupole mode in Be.
An estimate of its energy is

S(E2, 20 MeV)
B(E2,20 MeV)

(17)

which yields here S(E2)=1716e~ MeV fm~. Figure 8
shows that, near E =20 MeV, 5%%uo of this value is ex-
hausted. A modified sum rule, adapted to soft modes,
can be deduced, as for El multipoles, by subtracting the
core contribution in (15); we have

B(El,SDM) =
~

'
(p )4' q A IV. CONCLU SION

and

ge~ h~ nZ~
S(E1,SDM) =

4z 2m~ AA~

S(El, 20 MeV)
B(El,20 MeV)

(14)

This low value is similar to that obtained in other halo

Notice that these expressions are model dependent, and
assume that (i) the core nucleus is in the ground state
and, (ii) the wave function can be factorized into a core
wave function and individual wave functions of the va-
lence neutrons. These requirements are not fulfilled in a
microscopic model, where antisymmetrization makes core
and valence neutrons indistinguishable. In addition, we
have shown in Sec. III B that the ground-state wave func-
tion of ~zBe contributes to 66% only of the Be ground
state. From these arguments it results that Eqs. (12) and
(13), often used in nonmicroscopic approaches, should
be used here for qualitative information only. They pro-
vide, in the present model: B(E1,SDM) =1.3ez fm, and
S(E1, SDM)=2.8 e MeV fm . The GCM sum rules
shown in Fig. 7 therefore exhaust nearly 100'%%uo of the
NEWSR and represent twice the EWSR in this approxi-
mation. Even if this paradox is consistent with the non-
validity of the assumptions used for (12) and (13), it con-
Rrms, in a qualitative point of view, the existence of a
low-energy soft mode. If we take 1 eigenstates up to 20
MeV, an approximate energy for the giant dipole reso-
nance is provided by

This work aims at investigating the Be nucleus in a
microscopic three-cluster model. From the neutron and

70.
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w 1Q.

2 4 6 8 10 12 14 16 18

16:
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12:
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12
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8
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2
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I . . I . . I

0 2 4 6 8 10 12 14 16 18

E„(Me V)

FIG. 8. See Fig. 7 for quadrupole excitation.



710 P. DESCOUVEMONT 52

proton densities, it confirms the existence of a neutron
halo surrounding a Be core. However, our calculation
indicates that core excitations are important in the Be
wave function since the Be(g.s.)+n + n configuration
represents 66% only of the total wave function. An in-
vestigation of the Be spectrum confirms that only the

ground state is bound with respect to neutron decay. A
simultaneous study of the Be and Be nuclei supports
the existence of a Z = 0 state in Be, close to the neu-
tron threshold. We have analyzed dipole and quadrupole
excitations, and showed that a significant percentage of
the sum rules are exhausted at low excitation energies.
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