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Multiband theory for heavy-ion neutron-pair transfer among deformed Gd nuclei
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In this paper our microscopic wave functions for Gd isotopes are applied to calculating neutron-pair
transfer probabilities in heavy-ion collisions. The ~2600-term wave functions come from Hamiltonian
matrix diagonalization of systems of 12 Nilsson neutron orbitals, nearly half-filled. We use the lowest
five bands in initial and final nuclei and calculate transfer for all even spins from 0 through 30.
Results for the sudden approximation (in6nite moment-of-inertia) for neutron-pair extraction from

Gd by Ni at near Coulomb barrier energy, and extraction by Pb are shown. Next neutron-pair
deposition by the Ni and Pb projectiles is calculated. Finally, a finite moment-of-inertia semiclassical
calculation is formulated and performed on the Gd + Pb system for n-pair transfer in both
directions. The results are compared with experimental results. It is clear that the inclusion of the
additional bands above the lowest two is important. Theory and experiment agree qualitatively on
the rise of population above the yrast line at higher spins.

PACS number(s): 21.10.Re, 21.60.Ev, 23.20.Lv, 25.70.Hi

I. INTRODUCTION

In another paper [1] we expanded and applied a
large-matrix diagonalization approach to the micro-
scopic structure of spheroidal Gd nuclei. Now we
wish to apply these wave functions of good parti-
cle number and angular momentum to nuclear reac-
tions amenable for study in modern large-multiplicity
gamma detector arrays like GAMMASP HERE or
EURO GAM.

Neutron-pair transfer reactions have attracted great
interest over the years as a probe for the important pair-
ing properties of nuclei. In particular, the ground-to-
ground (p, t) and (t, p) cross sections of even-even nuclei
show a large enhancement of order (6/G)2, where 6 is
the gap parameter and G the pairing force strength. The
fact that some transfer strength goes to excited states is
often described in terms of a pairing vibrational strength.
The (p, t) and (t, p) reactions have been important probes
for the low-spin states. Shihab-Eldin et al. [2] have made
a study of these reactions among 0+ states of deformed
rare-earth nuclei. They used a prototype model that
laid the groundwork for the present study. This earlier
work diagonalized Hamiltonian matrices of 126 x 126 us-
ing near half-6lled sets of nine Nilsson orbitals about the
Fermi energy. The appeal of pair transfer using heavier
ions is the possibility of studying the pairing structure of
higher spin states. The long-range Coulomb force in the
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heavy-ion collision excites the deformed collision partner
ground rotational band, so that near closest approach,
the neutron pair tunneling probes the structure of ro-
tationally excited states. Indeed, it was hoped [3] that
heavy-ion neutron-pair transfer could be a simple meter
of the Coriolis antipairing efFect, where the pairing cor-
relation gradually decreases with increasing spin.

Egido and Rasmussen [4], using HFB/RPA wave func-
tions, explored the patterns of heavy-ion neutron-pair
transfer among spheroidal rare earths up to high spin.
The decreasing transfer to yrast states with increasing
spin could be seen, as could systematic occurrence of
transfer strength to yrare near the band-crossing region.

Theoretical studies [5] uncovered a new complication
(richness) to the process, whereby the ground-to-ground
pair transfer matrix elements in many cases did not,
as spin increased, monotonically tend toward zero but
passed through zero and changed sign to negative. This
behavior was found theoretically to be closely related to
the sharp band crossing (backbending) phenomena asso-
ciated with the spin-alignment of an i~3~2 neutron pair.
Ideas emerged of a Berry-phase interference as reaction
paths streamed around both sides of "diabolic" points,
where the lowest energy sheets touched in the angular
momentum vs particle-number plane. First theoretical
calculations of cross sections indicated rather large ef-
fects depending on whether or not a diabolic point was
between the A and A + 2 nuclei involved in the reaction
[6—8]. Later work [9, 10], including the two lowest (yrast
and yrare) bands in the theory instead of just the low

est, showed the efFect on cross sections to be less and the
experimental measurement of this "nuclear SQUID ef-
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feet" to be more diKcult. Whether inclusion of just two
bands, an idealized aligned band and ground band, is ad-
equate for the calculation, is to be addressed in this pa-
per. The need for better description of several of the low-
est rotational bands for these transfer studies inspired the
HMD (Hamiltonian matrix diagonalization) calculations
of is4 Gd in Ref. [1]. The 2600-configuration micro-
scopic wave functions of that work, augmented by HMD
calculations on reaction partners, constitute the main in-
put for the reaction calculations of this paper. For prac-
tical reasons of vanishingly small cross sections, neutron-
pair transfer cannot be studied much below the Coulomb
barrier, and the theorist is forced to deal with nuclear-
optical-potential complications of the near-barrier data.

In Sec. II the matrix elements for two-neutron transfer
are formulated, first by sudden approximation and then
by a modified semiclassical time-dependent Schrodinger
(SCTDS) method [11].In Sec. III the transfer formalism
is applied to two-neutron pickup and. stripping reactions
involving a Gd target. We show examples for two dif-
ferent projectiles, Ni and Pb, both at near-barrier
energies. The sudden approximation is appropriate for
cases where the deformed nucleus rotates only slightly
during the course of the collision. As applied here the
sudden approximation is the same as the classical-limit
S-matrix (CLSM) method [8]. The method has great
simplicity and allows for intuitive pictures of collision
paths at diferent orientations of the symmetry axis of
the spheroidal partner. As we shall apply it, the electro-
magnetic (E2) interaction is distributed over the path asr, but the neutron transfer is assumed to take place
entirely at the closest approach. The sudden approxi-
mation is decreasingly applicable to heavier projectiles,
such as Pb, since the Gd will appreciably rotate during
the collision. Thus, we show in this paper in sudden ap-
proximation only the Ni on Gd, where the approximation
should be quite good.

The modified SCTDS calculations are more compu-
tationally intensive and less intuitive, but they can be
applied widely, including for the heaviest systems. Here
we include also the nuclear optical potential efFects, im-
portant at near-barrier energies of most transfer exper-
iments. We also have the transfer process distributed
along the path, rather than confining it to closest ap-
proach. In the limit of small rotational spacing the
SCTDS calculations should agree with the sudden ap-
proximation, a limit, we have found useful in checking
the codes.

The calculation of two-neutron transfer in full rigor is a
formidable challenge, even for light projectiles on spheri-
cal nuclei; thus, a wide range of approximations must be
considered to make the calculation practical. We shall
restrict ourselves to consideration of two-neutron trans-
fer between heavy even-even nuclei in head-on collisions.
Furthermore, we will not attempt to calculate absolute
cross sections but only the relative cross sections among
rotational states in the lowest five bands of the deformed
partner. We are aware of, but will not consider, recoil
corrections due to the change in masses of the collision
partners after transfer. A useful review of two-nucleon
transfer for (p, t) and (t, p) reaction was given by Towner

and Hardy [12]. For a critical review and presentation of
the two-nucleon transfer theory between heavy ions, one
should consult the 1975 paper of Gotz et ol. [13].

We need for our calculations efI'ective pair-transfer ma-
trix elements &om particular Nilsson levels in the de-
formed partner, taking into account only implicitly the
sum over states in the spherical partner for the 1n-
transfer intermediate and the sum over pairing configu-
ration admixtures in the initial and final even-n systems
in the spherical partner. Von Oertzen and colleagues in
a series of papers have nicely showed, especially in their
study of two spherical partners, how multinucleon trans-
fer probabilities have distance-of-closest approach depen-
dences that generally go as the single nucleon transfer
probability raised to the power of the number of nucle-
ons transferred. However, they often find enhancement
factors (EF), which they can relate to coherence effects
&om sums at 1n, 2n, . . . ,xn stages of the process [14—17].

In the literature, particularly in papers attempting to
reproduce absolute pair transfer cross sections, there has
been attention to the question of simultaneous vs sequen-
tial transfer for two-nucleon transfer processes [18, 19].
The most detailed work we have found deriving and test-
ing an effective first-ord. er pair-transfer matrix element,
based on a microscopic description, is that of Lotti et al.
[20]. See also Dasso et al. [21].

Let us make a few estimates of the time scales in-
volved in the heavy-ion transfer we focus on in this paper,
namely, the near-barrier Pb + Gd system. For a
pure Coulomb potential at a touching distance of 16.26
fm (radius constant ro —— 1.44 fm) the Coulomb bar-
rier is 465.0 MeV. The repulsive Coulomb force at this
touching distance is 28.6 MeV fm . This force divided
by the reduced mass gives the classical acceleration a
of 3.092 x 104s fm sec 2 (= 3.43 x 10 4c2 fin i). For
an average neutron binding energy of 7 MeV, the char-
acteristic tunneling length xq for a neutron will be 1.72
fm. We may thus estimate a characteristic time inter-
val over which most transfer will take place. This time
tt, „will be twice the time the collision system needs to
move &om closest approach to a distance 1.72 fm out.
Assuming uniform acceleration a, tt, „——6.67 x 10
sec. The "Q window" is 5 divided by this time, or = 1.0
MeV. (If we take into account the tail of the attractive
nuclear potential at closest approach, which would lower
the acceleration at the turning radius, the collision time
for tunneling will increase and the Q window will nar-
row, going to very small values as the turning radius
approaches the top of the barrier. )

The usual interpretation of the Q window is that the
kinematics of the reaction will favor single-neutron trans-
fer to states within the energy window (here 1.0 MeV)
around the Anal state (or virtual state) with Q = 0. The
Pb spherical partner Pb is so close to the 126 closed
shell that pair addition mainly involves pqy2 orbital in-
termediates and the pair removal mainly fs~2 and psy2
orbitals. For the pair removal reaction from i Gd the Q
value is —0.87 MeV, and the single-neutron removal to
the odd-A ground states is —1.80 MeV. Other intermedi-
ate 1n-removal states have even more negative Q values,
all of them larger than the Q window. Thus, it seems
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justified to consider simultaneous transfer, with its sim-
pler radial dependence, to be dominant. Since we do not
purport to calculate absolute transfer cross sections, we
need only be concerned that the dozen Nilsson neutron
orbitals nearest the Fermi energy have nearly equal pair
transfer probabilities when averaged over the spheroidal
nuclear surface. That is, there should be strong damping
of residual Brink rules for matching tangential velocities
of transferred nucleons at the touching surfaces. This
point needs further theoretical and experimental study,
but our rough estimates of the angular window for neu-
tron transfer in these heavy nuclei is that the Brink ve-
locity rules would be strongly damped. .

We will be numerically solving coupled time-dependent
Schrodinger equations of Alder-Winther-deBoer type,
and the space-time dependence of our transfer matrix
elements will be of the first-order form of simultaneous
pair transfer.

In taking the pair transfer operator as only creating
(annihilating) pairs in given Nilsson orbitals we are fol-
lowing a traditional assumption in treating two-nucleon
transfer involving spheroidal nuclei. We will go beyond
most previous studies in that we will use not only the

I

L = 0 part of the pair creation (annihilation) operator
but also the L = 2 and L = 4 parts.

II. MATRIX ELEMENTS FOR
TWO-NEUTRON TRANSFER

The formulation for pair addition and pair removal is
very similar, and therefore only the derivation for the
pair addition transfer process is shown in this paper. For
clarity let the target be the deformed nucleus, and. the
projectile be the spherical partner, although experiments
may be run inversely. Only head-on collisions are treated,
and the excitation of the projectile and its internal micro-
scopic structure is ignored. The origin of the laboratory
coordinate system is at the center of the target nucleus,
and the projectile trajectory is along the z axis to closest
approach and then back along the z axis (i.e. , 180' scat-
tering). Let R be the distance between the two nuclear
centers. Then Bz is the location of the center of the pro-
jectile, where z is the unit vector along the z axis. For
pair addition, the pair bound in the projectile potential
well can be considered in Born approximation for the pair
transfer reaction. Then, the transition matrix elements
Mt„(R) can be approximated as follows:

Mq„(R) = ( 4&
' (N + 2)

~ ) V';(r; —Rz)P~(r1 —Rz)P„(r2 —Rz)-~ 4',. 's(K) ),
i=112

where V, is the nuclear potential of the projectile nucleus for particle i,; P„and P„- denote the single-particle wave
function and its time-reversed state bound in the projectile nucleus, and % is the initial particle number of the target.
The brackets ( ) imply integration of r1 and r2 over all space, but since the square shell-model potential V; vanishes
unless both rq and r2 lie within the spherical surface, the integral is only over the limited volume. Let us ignore the
broken pair contributions in Eq. (1) because their transfer probabilities will not receive the coherent pairing force
enhancement and should thus be less important in these calculations. Then, evaluation of Mt„reduces to the task
of evaluating the overlap integral of the pair wave functions &om the projectile and the target nucleus. First, rotate
gnarl(r), the orbital wave function of target nucleus, from the body-fixed frame into the laboratory frame. This gives

@,ll(r) = 2j+1
2 2l+1 RNi(r)Ylp(r) 17', (oi)o.1 + 17', ((u)o 1 + ) Yi

mgo
(2)

where o.1 and o 1 are the up and down components of the spin vector In Eq. . (2), we do not include m g 0
2

components, since the small range of 0 contributing to the integral makes m g 0 components negligible. Indeed, these
components vanish for j = I/O bound states in the projectile. The RNl(r) is the radial wave function, Yip a spherical
harmonic, and 17, (oi) the symmetric top wave function of Eulerian angles u. While 0 is a good quantum number

for Nilsson orbitals, the j is only an approximate quantum number, as is well known. The quantum numbers N and
l depend on j. In the subsequent derivation the Nilsson level will be labeled by (jA), since j and 0 are frequently
needed in the expressions. Next we write the antisymmetric pair wave function in the laboratory kame as follows:

I 2j+1
2

[0jB(rl)@j—A(r2) 0 jB(r2)@j—B(rl)] ~Nl(rl)~Nl(r2)Ylp(rl)Ylp(r2) 21+ 1

x — 17', (~)17', ((u) —17', (u)) 17', ((u) x S.F.

+ ) Yl (r1)Yi (r2) .
m, m'go

2j+1
N/( lr) ~ lN( 2r) lY(p1r) lY(pr)2) )2l+ 1

(2~+~)~110~~gg0~1po(~)f~ j w)(j j w)

+ ) Yitn (r1)Yifn' (r2)
m, mego
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where S.F. represents the normalized singlet spin function. Then the overlap function for the pair of (jO) level and
the pair wave function of the projectile can be written as

Mt (R) = ( [@i&(»)&2-&(»)—&i&(r2)@2 —&(ri)l ).&'(r' —»)&p(ri —»)&p(» —») )
i=&,2

= &0&(,n) (R) ) . T& &00(~)2 (jQ)

%=0,2,4 "

where T& and gizrij(R) are defined as follows:

(4)

X(,-n) (R)= RNl(r)RN l, (r )Pl (cos 8, )Pl(cos 8) sin 8, d8, r, dr

where r = gi 2 + R2 —2r, R cos 8„8= tan i [r, sin 8, /
(R —&, cos8, )], no is the well depth for the projectile,
r, and 0, are the coordinates centered at the spherical
nucleus for integration, rp, z is the radius of the spherical
nucleus, and N', /' are quantum numbers for the projec-
tile single particle levels. Note that the integration for
yU&j(R) is over the volume of the projectile. With all
the pair overlap integrals calculated, the transfer opera-
tor can be de6ned:

where m„ is the reduced neutron mass, Eb;„g is the neu-
tron binding energy of the target, and C„, is the nor-
malization constant. Namely,

y~jli~(R) = y(R) = viR(R —rppoj)

Then the two-neutron transfer operator can be written
as follows:

V't„(R) = ) M,„(R)atnat
(~&)

= o ).&(,n) ( ) ): g'"' oo( ),'na'.
(~&)

x(—1)2

Vt„(R) = noy (R) ) ) Ti 2700(cd)a.~a (—1)
(jA)

A. Sudden apprawimatian

(1o)

Note that a time-reversal phase factor is inserted, since
the time-reversed particle creation operator is used in the
expression. The y~jlij(R) can be expressed as a product:

X(j0)(R) —&1~Nl (R rproj )

The factor vq has the dimensions of energy times volume,
which we take to be an arbitrary parameter. Absorbed
within vq are all of the spectroscopic factor complica-
tions of the spherical partner. The target radial wave
function, R~~, decreases exponentially outside the nu-
cleus; thus, the main contribution to the overlap integral
comes &om integrating near the surface of the projectile,
namely at R —r&, , Most of the contributing orbitals

I
Nl jA) will have similar neutron-pair separation ener-

gies. Thus, the wave function R~~ of the Nilsson orbital
will here be replaced by an average s-wave, single-neutron
wave function with asymptotic form

R(r) = C„, exp[ —+2m Eb;„s r/h]/r,

The wave function of the target nucleus comes from the
Hamiltonian matrix diagonalization (HMD) calculations
and can be expressed as follows:

I IMnN) = JVI) 'DNIIc ((u)b; (I, )p;

where the normalization constant Aq = I+ —/(27r),
the p; is the basis configuration with the index i run-
ning over the various combinations of Nilsson orbital pair
occupations. The b, (I, n) is the corresponding ampli-
tude of the eigenstate spin I, and band o, . Here, the
particle number N must be used to label the wave func-
tion, since we are dealing with wave functions of various
particle number. Let us use the notation as in Eq. (11)
to label the eigenstates. For head-on collisions the sud-
den approximation transfer amplitude &om ground state

I
OOON) to

I
Ion%+2) is given by

+0 0 NwI a N+2

) ) (Ionm+2lut II on m+2)(I on m+2lm„(R ) II on ~)(I on m lul ooom)
I1,n1 I2)n2
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The pair transfer is calculated only at closest approach,
Ro. In head-on collisions, the quantum number M (spin
projection on the z axis in the laboratroy kame) does
not change, and since the ground state has M=O, M
remains zero throughout the reaction. The operators M

and Qt represent the time propagator for incoming and
outgoing paths. The time when the projectile is at closest
approach, Bo is defined as t = 0. Then M and Mt take
the form

incoming: 0 = expI —— V(~, R(t)) dt
Ih

outgoing: Mt = exp
I

—— V(ur, R(t)) dt
I

( i
h ()

' )
(14)

For the sudden approximation calculation, only the
quadrupole Coulomb interaction is included, and the nu-
clear potential is ignored. The monopole interaction
should be excluded from V(~, R), since its effect is al-
ready taken into account in calculating the trajectory.
So V(u, R) can be written as

/ q p2rbj @2+00(~)
2B~

where Q2 is the quadrupole moment (in laboratory
frame) of the deformed nucleus and Zz, j is the atomic

I

number for the projectile. Furthermore, the time inte-
gration along the Rutherford trajectory can be carried
out analytically as

~ 0 Z e
V((u, R(t))dt = i ~'—'

2 'L)()o((u),
6hz ao'

(16)

M = Mt = QZ), 17()o((d),

with the coeKcient Zp simply

i Z -~e2

The matrices X, Y, and Z are defined slightly difFer-
ently in Ref. [22]. They have no relation to spherical
harmonics Yj nor to charge Z.

For clarity the integral in each of the three steps in
Eq. (12) is shown separately as follows.

(i) Incoming path:

where ao is half the distance of closest approach and v

is the velocity of the projectile at in6nity. Let us express
M and Mt in terms of a multipole expansion as follows:

(Ir Oar Or
~

(I
~

0 00 A) =AlrAIo ) f DD», (a)'Do», (a') ) . ZrDoo(a) da b; (Ir, ar) b(0,0),.

z A

= +2I, +. 1 Z I, XI (0, 0; Ig, n) ),

where X& (I), n), I2, nz) is the overlap integral for the intrinsic functions with the inelastic excitation of multipolarity
A:

Xg (I),n), I2, n2) = ) (—) I 0 0 0 II ~ ~ 0 ~ ) b; (I), n))b, (I2rn2)8(K, K,) . (20)

(ii) Transfer at closest approach:

(120 A+2~br, (IIo) ~I 0 A)=AI, AI, ) ). f'D', ( )'D ( )D' ( )da
A i,i'

x b, ,
+ (I2, n2)b, (Iq, nq. ) ) voy (Ro)T& (y, ,

+ Ia&a, Ip; )(—1)2
(~n)

= vog (Ro)g(2I) + 1)(2I2+ 1) ) Y& + (I), n)', I2, n2), (21)

where V&~ + (Iq, n), I2n2) is defined as the overlap integral of the pair transfer with multipolarity A:

Yq + (I)my,. I2, n2) =) (—) I 0 0 0 I I ~ ~ 0 I) b;, + (I2, a2)b; (I), ng)h(%2K;)

x ):T&' '(()."'+'
I a','„ I((,")(—1)' ".

(jA)

(iii) Outgoing path:

(22)

(I O+ ~201a) Irr O2ar A+2) =ArJVr, ) fDo» (a) Do» (a) ) Z&Doo(a) da b+(I, a) b+(Ir, ar),. ,
A

= Q(2I+. 1)(2I2+ 1) ) pZ„X(I , 2nI2, )n. (23)
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Finally the transfer amplitude in Eq. (12) can be expressed simply as

Appiv~r~N~2 —y(Rp)+2I+ 1 ) (2I, + 1) Zg, XP(0, 0;Ii, ni) ) (2I2+ 1)
I1,n1 I2,cx2

&& Q Y„(Ii,ni,.I2, n2) ) Zp, X~ + (I2, n2, I, n) .

B. Semiclassical time-dependent
Schrodinger method

The treatment of the semiclassical time-dependent
coupled Schrodinger equation (SCTDS) is well docu-
mented [23] but will be briefly discussed here so the rele-
vant formulation can be introduced. The time-dependent
Schrodinger equation is written as

(25)

where

number does not change, and the derivation is similar to
Eq. (23), namely

(n
l
V(t)

l
m) = (I20n2 N

l V(t)
l
Ii Oni K)

= g(2I, + 1)(2I, + 1)

x ) Z'„(t)X„(I„,; I, ), (31)
A&p

where Z&(t) is the A multipole interaction when the pro-
jectile is at R(t), as written below:

H(t) = Hp + V(t), (26)
Z — V~ Rt 'V (ed~ (32)

where Ho is the Hamiltonian of the deformed target nu-
cleus and V(t) is the interaction between target and
spherical projectile. In this simple picture, the excita-
tions of the spherical projectile are ignored. As discussed
in Sec. II A, the monopole Coulomb interaction is used to
calculate the classical Rutherford trajectory and should
thus be excluded from V(t). Let us expand 4(t) in terms
of eigenstates of the target nucleus, namely

For transfer Alth.ough the transfer is evaluated for
the entire trajectory, it is significant only for distances
near closest approach. In this case the particle number
changes by two, and the derivation is similar to Eq. (21),
namely

(n
I V(t) I m) = (I2 0 n2 K+21 V(t) I

I'i 0 ni W)

= iipg (R(t)) g(2Ii + 1)(2I2 + 1)

@(t) = ) a„(t)
l
n)e (27) (33)

where
l
n) is the eigenstate of Hp and E is the cor-

responding eigenvalue. Then, we have a set of coupled
diBerential equations:

iha„= ) (n
l

V (t) l m) exp[i(E„—E )t/5] a (t) .

where the overlap y(R(t)) is evaluated when the projec-
tile is at R(t), as discussed in Eqs. (6) and (9).

III. NUMERICAL APPLICATION
OF TRANSFER, CALCULATIONS

The energy difFerence (E —E ) in Eq. (28) includes
the reaction Q&„value. These equations are solved with
the initial condition at t = —oo, where the projectile is
far away and the target is entirely in the ground state,
namely

a„( oo) = 8(O—, n) . (29)

Then, the final excitation amplitude is given by a (oo).
There is a standard method [ll] to integrate Eq. (28).

For our transfer calculation, however, the task is to cal-
culate the matrix elements (n lV'(t)

l m) using the mi-
crostructure wave functions. The perturbation V(t) in
this case contains two terms, one for inelastic excitation
and one for transfer:

V(t) = V((u, R(t)) + V,„(R(t)),

In this case, the particle

where R(t) prescribes the Rutherford trajectory as a
function of time. The evaluation of the matrix elements
is similar to those shown in Sec. II A in sudden approxi-
mation.

Eor inelastic excitation.

First, we shall show the results of the pair transfer the-
ory at various stages for the sudden approximation. In
the sudden approximation of the classical limit S ma-
trix (CLSM) the transfer reaction Q value, Qq„, is zero,
all excited state energies are zero, and the transfer pro-
cess takes place at the distance of closest approach. No
nuclear optical potential is included, though it could be
added. Three reactions on a Gd target are shown in
Figs. 1—3. The Ni neutron-pair extraction is shown in
Figs. 1. The Pb n-pair extraction is shown in Figs. 2,
and the Pb n-pair deposition is shown in Figs. 3.
The upper left figures (a) show the absolute value of the
yrast rotational-state amplitudes at closest approach. In
Fig. 1(a), for the Ni projectile, the most probable spin
state is 6h, whereas in Fig. 2(a) and the identical Fig. 3(a)
the most probable rotational state is spin 125, with an
appreciable amplitude tailing into the yrast-yrare band-
crossing region around spin 16—18h. (It was felt that
the detection of Berry-phase interference associated with
diabolic points where the spin-aligned band crosses the
ground band might be possible with a Pb projectile, since
the Coulomb excitation on the incoming path can pump
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the rotational states up to the crossing region. Prom
such considerations came the main motivation for the
Oak Ridge experiments of Helrner et al. [24]). The usual
interference oscillations are seen in the population pat-
tern in yrast states, though we shall see that the efFects
of absorption by the imaginary optical potential damps
the oscillations for near-barrier energies.

Examination of Figs. 1—3(b), which display in gray
scale the population probabilities in various states at
closest approach before transfer, shows the main pop-
ulation in the yrast band, but also some population in
the higher bands, especially near the band-crossing spins
14—18h. In the low-spin region, where the wave functions
change only slowly with increasing spin, the orthogonal-
ity of states keeps the M(E2) transition matrix elements
small.

The lower left Figs. 1—3(c) show the probabilities in
gray scale at closest approach, but after pair transfer.
The energy levels in Figs. 1(c) and 2(c) now corre-
spond to the final nucleus 4Gd, with its sharp cross-
ing of yrast and yrare. Neither of the two lowest bands
beyond spin 18h show much population, though some
goes into still higher bands. It was pointed out in the
Ref. [1] that beyond spin 18h both the lowest two levels
have strong neutron spin-alignment, and the extension
of the ground band properties goes to higher levels. The
soft-crossing Gd final states are shown in Fig. 3(c).

The energy-level and population patterns somewhat dif-
fer from Fig. 2(c) for i54Gd. In both cases the transfer
has spread the population into the higher bands also at
low spins.

The lower right Figs. 1—3(d) show the populations after
the collision partners have receded and further Coulomb
excitation has taken place. This final stage pumps con-
siderable population into the band-crossing region in the
case of the Ni projectile Fig. 1(d), and it pumps popula-
tion into very high spins for the Pb projectile Figs. 2(d)
and 3(d). As earlier calculations of Canto et aL [6, 8]
show, the sudden approximation result of this final stage
in the Pb + rare-earth reaction is completely unrealis-
tic. In the CI SM picture the nuclei in high-spin states
over-rotate in the final stage, such that little change oc-
curs due to Coulomb excitation in the final stage. The
sudden-approximation final stage may be more realistic
for the lower-Z nickel projectile. The best comparison to
experiment for the higher-Z Pb projectile might be the
populations after transfer but before the final stage of
Coulomb excitation.

From a purely theoretical standpoint Figs. 2(d) and
3(d) are interesting in that the population pattern at
highest spins may be an indication of the strength func-
tion of the extension of the less-aligned ground band. In

Gd the ground-band extension seems to center on the
fourth band up, whereas in Gd it is on the second
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4
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10
Spin (A)
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FIG. 1. Theoretical HMD sudden-
approximation amplitudes in pair extraction
transfer reaction 58Ni+ 5 Gd ~ Ni
+ Gd. (a) yrast bands and (b) all-band
population in Gd from Coulomb excita-
tion at closest approach but before transfer.
(c) population in Gd at closest approach
immediately after pair transfer, and (d)
population in Gd after collision partners
have fully separated. The gray scale gives
a semiquantitative overview of the transfer
pattern. The gray-scale code is divided log-
arithmically, and the scale can be inferred
from the yrast band of the upper right plot
compared with the linear upper left plot, giv-
ing Coulomb excitation on the inward path.
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Spin (h)
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(yrare) band. We shall discuss this further at the end of
this paper.

To get a more realistic theory for high-Z projectiles like
Pb, it is necessary to go beyond the sudden approxima-
tion, as in Refs. [9,10]. That is, use a modified semiclassi-
cal time-dependent perturbation theory in the rotational
amplitudes. Such codes can take into account the ener-
gies of excited states and the Qq„values for transfer reac-
tions. To keep the number of rotational amplitudes from
being too large, we restrict the calculation to head-on
collisions, which means for the initial spin-zero collision
partners only M = 0 amplitudes are considered.

We repeat the Gd+Pb cases previously shown in the
sudden approximation. The neutron-pair transfer is not
restricted to closest approach but spread over separation
distance with an exponential fallofF corresponding to the
square of the one-neutron falloIII'. Since we are dealing
with 5 bands, 16 spin states, and 2 nuclei, there are 160
coupled first-order di8'erential equations in the sum of
Eq. (28) to be integrated. In Refs. [9, 10] the E2 excita-
tion and I = 0 transfer matrix elements were taken &om
a simple two-band mixing model of an idealized ground
and neutron-spin-aligned band with constant mixing ma-
trix element, V; . The excitation matrix elements used
now in this five-band. calculation involve the overlap val-
ues of the approximately 2500 term configuration-mixed

wave functions of the Hamiltonian matrix diagonalization
(HMD) method discussed in Ref. [1]. The transfer matrix
elements, as described in Eq. (33), involve a similar kind.
of operation of the pair creation (annihilation) operator
summed over all the Nilsson orbitals. In this work we
have extended the pair-transfer operator &om the usual
L = 0 to include also L = 2 and 4 transfer. To calculate
nonzero L transfer without vast additional complication
we need to associate j values with all neutron orbitals in
the system. For this purpose we have assigned the dom-
inant j value in the Nilsson orbital, rather than using j
admixtures. Since in pair transfer there is a good deal
of averaging over Nilsson orbitals near the Fermi energy,
we believe the assignment of j values to orbitals for this
purpose is justified.

Histograms of the final excitation amplitudes of vari-
ous spin states in the five bands of Gd, following the

Pb two-neutron stripping reaction, are shown in Fig. 4.
These use the P = 0.23 basis wave functions f'rom our ear-
lier structure calculations [1]. We see, analogous to the
sudden approximation results of Figs. 2(c,d), that the
yrast band above the crossing (aligned band) gets almost
no population. This illustrates a point made by Dasso
and Winther [6] about transfer population avoiding the
aligned band in sharp-crossing cases. As in the sudden
case, there is appreciable population in the first three ex-
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FIG. 2. Same as Fig. 1, but for Pb pro-
jectile.
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FIG. 3. Same as Fig. 2, but the transfer
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cited bands beyond the crossing spin of 18h. In Fig. 5
we show corresponding histograms for the Gd, where
the calculations used the larger deformation basis of
P = 0.28. (We should note that these larger-deformation-
basis calculations were not fine-tuned to produce as sharp
a band crossing as seen in experiment, although that
could have been done by slight change of deformation
in the basis. ) There is clearly more transfer to the yrare
band over a wide range of spins for the P = 0.28 calcula-
tions than for those at smaller deformation. The corre-
sponding histograms for the five bands of Gd, follow-

ing the Pb two-neutron addition reaction, are shown
in Fig. 6. The pattern is markedly difFerent &om Figs. 4
and 5 for Gd in that the yrast population continues
smoothly declining beyond the soft crossing around spin
185. There is an appreciable population in the yrare
band, centering around spin 20h, but the higher bands in
58Gd get relatively less population than those in x54Gd.

IV. COMPARISON WITH EXPERIMENT

The most comprehensive direct comparison of theory
with the experimental results of Helmer et al. [24) is
through the so-called "HK plots. " In these contour plots,
the horizontal axis is the number (fold) of gamma rays
detected in a transfer reaction event in the 4m Oak Ridge

I a I
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I I E a
I

I I I

1
I & I I I

0

0 10 20 30
spin (h)

FIG. 4. Histograms show Gd rotational bands popu-
lation amplitudes from HMD-SCTDS calculation of pair ex-
traction transfer reaction Pb + Gd + Pb + Gd.
These calculations use the Gd HMD wave functions calcu-
lated from the smaller-deformation basis single-particle levels
(P=0.23). The deformed Woods-Saxon optical potential pa-
rameters used [8] were as follows: V = 40 MeV, W = 40 MeV,
ro ——1.2 fm, difFuseness a = 0.65 fm, potential deformation
parameter P = 0.277. The center-of-mass head-on collision
energy of 474 MeV was chosen to give the same distance of
closest approach as in the experimental conditions of Helmer
et aL [24).
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FIG. 5. Same as Fig. 4, except that the larger-
deformation basis wave functions (P = 0.28) were used for
th '"Gd.
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FIG. 7. Gray-scale plot of Fig. 4 for comparison to the
experimental HK contour plot for Gd, with P = 0.23 basis
wave functions.

array (15 Ge and 55 NaI detectors), and the vertical axis
is the sum of energies of all detected coincident gamma
rays. This plot should be directly comparable with gray-
scale plots of the type in Figs. 1—3. In Figs. 7 and 8
we replot the histogrammed results of Figs. 4 and 5 for

Gd as gray-scale plots, and in Fig. 9 we do the same for
the histogram of Fig. 6 for transfer in the other direction
to Gd. These gray-scale plots may by qualitatively
compared with the HK experimental plots (Fig. 3 of
Helmer et aL [24]). Monte Carlo analyses of the response
relating spin and fold by the experimenters for similar
systems are shown in Juutinen et at. [25].

There is a qualitative agreement of our theory with ex-
periment. That is, (1) the population ridge bends upward
away &om yrast at highest spins, showing the important
roles of higher bands; (2) there is but little population
to higher energy, low-spin states. Our theoretical results
do not have the "rippling" of apparent peaks and sad-
dles along the ridge, as appears notable, especially in the

Gd experimental data.
Another less direct, but more exacting, comparison

10 20 30
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FIG. 8. Gray-scale plot of Fig. 5 for comparison to the
experimental HK contour plot for Gd with P = 0.28 basis
wave functions.
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FIG. 6. Histograms show Gd rotational bands popula-
tion amplitudes from HMD-SCTDS calculation of pair deposit
transfer reaction "Pb + '"Gd ~ '"Pb + '"Gd.
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FIG. 9. Gray-scale plot of Fig. 6 for comparison to the
experimental HK contour plot for Gd.
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V. CONCLUSIQNS

It is fascinating to view the broad pattern in both
the experimental HK contour plots (transfer injection
point energy vs spin) and our theoretical plots with

10'-

10-'-

(b)

10A-2
I I I I I I I I I I I I I ~ I I ~ I I I I I I I

2 6 10 14 18 22 26 30 2 6
Spin (II)

10 14 18 22 26 30
Spin (8)

FIG. 10. Comparison with yrast gamma transition inten-
sities for Gd: (a) new five-band, with basis deformation
0.23; (b) old two-band calculations from Ref. [10]. Experi-
mental data have been normalized to match theoretical results
at spin 8.

with data is with the relative intensities of Ge-resolved
yrast gamma cascade transitions. Figures 5 and 6 of
Helmer et aL [24] make such a comparison with the the-
ory Rom the simple two-band mixing model [10]. In that
case there was remarkable agreement for Gd, except
for the 4 —+ 2 transition, which was 1.5 standard devi-
ations high. There was a systematically greater falloK
of theoretical gamma intensities with spin, as compared
to experiment, for Gd, although the deviations were
less than two standard deviations. To make these com-
parisons with our present five-band theory is more com-
plicated. We had to calculate the 2500-term overlap
functions for the B(E2) values of transitions cascading
down to the yrast band. We assumed only I -+ I —2
E2 transitions, weighted by transition energy to the fifth
power, and ignored internal conversion transitions.

The comparison for yrast gamma transitions for Gd
is shown in Fig. 10(a), plotting the new five-band theory
for deformation 0.23 basis. The older two-band calcula-
tions [10] are shown in Fig. 10(b). The dashed line in
Fig. 10(b) is for the diabolic case and the solid for the
nondiabolic. (Recall that the diabolic point is so close to
the sharp-crossing Gd that this is an unfavorable case
for testing diabolic effects. See discussions of Ref. [10].)
In Fig. 10(a) we have not plotted for the larger deforma-
tion 0.28 wave functions, since they were not fine-tuned
to give the sharp band crossing of experiment. Certainly
the experimental HK contour plots show that we are cor-
rect in predicting excited-band population predominance
for spins greater than 16h. The corresponding plot for

Gd is shown in Fig. 11. Here the five-band theory re-
produces the intensity data very well, while the two-band
theory of Ref. [10] falls off too rapidly, perhaps an indi-
cation of the importance of including higher bands than
yrast and yrare.
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2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30
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FIG. 11. Same as Fig. 8, but for Gd.

eight bands (sudden) or five bands (time-dependent
Schrodinger codes). Here we may view also our corre-
sponding calculations on pair transfer among Dy nuclei
160, 162, and 164 [26). The overall pattern is that the
ridge of maximum pair transfer cross section lies on a
parabola that rises above the yrast envelope with increas-
ing spin. It is reasonable to associate this parabolic ridge
with the &action of the nuclear moment of inertia not due
to the aligning i~3y2 orbitals, since the Coulex torque acts
directly on the charged rotor core and not at all on the
x y3/2 neutI OIls.

There is potentially other interesting microscopic infor-
mation in the HK contour plots of neutron-pair transfer
excitation distributions. We know from Bohr and Mottel-
son [27] (section 6-3f on pairing gauge transformations)
about the patterns of pair transfer around closed shells.
Pair-transfer strength away &om the closed shell is con-
centrated in ground-to-ground transitions, while transfer
into the closed shell as Anal state has substantial trans-
fer strength split between ground and first excited state.
We have observed similar patterns at neutron subshells
in our calculations with thorium systems [22] with ar-
tificially bunched Nilsson neutron orbital energies. The
work of Shihab-Eldin et al. [2] showed such patterns for
(p, t) and (t, p) reactions among 0+ states in the rare
earths.

The extension of these subshell patterns to heavy-ion
transfer is to be expected in that secondary ridges of
population in the HK planes may appear for transfer
into closed subshells of the final nucleus. Bunching of
Nilsson levels further from the Fermi energy could also
give rise to coherence in pair transfer and still higher-
energy ridges.

Many of these generalizations about pair transfer pat-
terns have been drawn from assumptions that pair trans-
fer is dominated by transfer of pairs coupled to zero an-
gular momentum. To be sure, with the usual consid-
erations for monopole-paired BCS systems the coherence
enhances L = 0 transfer most in ground-to-ground. How-
ever, both quadrupole pairing efFects and L ) 0 pair
transfer for deformed nuclei remain an area for further
exploration.

What about the question of Coriolis anti-pairing or
"pairing collapse?" How are these properties manifested
in the heavy-ion pair-transfer cross sections? We believe
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that the progressive broadening of the parabolic ridge of
transfer yield is the real measure of pairing loss. The
coherent ground-state pairing strength gets &agmented
onto many bands at higher spin. We do not expect, in
any event, any sudden pairing collapse in nuclear systems
with so few particles participating in the pairing correla-
tion. When pairing fluctuations are folded onto the static
pairing, the loss of pairing has a smooth dependence on
spin. The broadening of the experimental and our five-
band theoretical transfer yield parabolic ridge is indeed
gradual. The aligned band strength function moves Rom
band to band with increasing spin, eventually dominat-
ing the yrast above spin 18, and there is very little pair
transfer associated with aligned-band strength.

In this paper we have taken the first steps to explor-
ing the above effects, but there is need for continuation
of formal and systematic numerical exploration that ex-
tend, as does our paper, beyond monopole pairing. Up
to now the HK plot resolution of 4m gamma arrays has
been limited by the low resolution of scintillation coun-

ters. With the new generations of 4vr gainma arrays (EU-
ROGAM, GAMMASPHERE, etc.) there is hope that
higher-resolution data can further test, challenge, and
guide theoretical calculations of the type presented here.
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