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A many-body calculation of Li is presented where the only input is the well-tested, finite-range
D1S effective interaction of Gogny. The nucleus ground state is modeled as a generator coordinate
method configuration mixing of Hartree-Fock-Bogolyubov states generated with a constraint on the
mean square radius. Pairing correlations are computed from the two-body interaction itself. The
kinds of correlations included in this way are found to play an important role in describing the large

Li radius. A substantive underlying Li core of Li is found, which has a different density profile
than a free Li nucleus. The relations of this work with other approaches are discussed.

PACS number(s): 21.60.Ev, 27.20.+n, 21.10.Gv

I. INTRODUCTION

With the recent advent of secondary beam facilities
there has been a large research interest in nuclei near
the drip lines. These exotic nuclei oÃer opportunities to
study many-body effects under unusual conditions. An
example of such can be related to the nucleon-nucleon [N
N] interaction. While the free N Ninteract-ion appears
to be well understood, the role of the N-N interaction
in microscopic nuclear structure is far from being clear.
(One example where one would think that the role of the
N-N interaction should be clear but is not is in the H
problem. ) Because nuclei near the drip line have weak
binding energies and hence large density distributions,
the N-N interaction can now be studied in regions of
low nuclear density.

The &ee neutron-neutron [n-n] interaction is attrac-
tive, but the dineutron system is unbound. Migdal and
Watson postulated the possibility that a dineutron may
become bound if placed within the field of a nucleus. Li
among others appears to be such a system, since both

Li and Li are bound while Li is not. Hence, with
this in mind, recent interest in Li has been strongly
addressed within a three-body framework [1—6], where

Li is represented as two neutrons surrounding an inert
Li core. For a recent review of such work, please see

Ref. [1].
The assumption that ~ Li can be realistically repre-

sented as a three-body system is physically appealing and
is confirmed by recent experimental evidence [7,8]. How-
ever, in view of the peculiar structure of halo nuclei, it is
worthwhile to test other approaches that have been ex-
tensively used in the past for "normal" nuclei. Interesting
ones are those based upon many-body theory, since they
obviate the diFiculties that may arise within the three-
body &amework, such as the approximate treatment of
the Pauli exclusion principle and the absence of correla-
tions within the Li core.

The most straightforward way to study Li in an A-

body &amework is to use the Hartree-Fock approxima-
tion, but this was shown for this nucleus [9] to give an
inadequate description. By renormalizing the mean field
potential, several groups [9—11] found that the experi-
mental two-neutron separation energy and the rms radius
of Li could be reproduced, thus indicating the possible
existence of correlations among the outer single-particle
states. Therefore, a description beyond the simple mean
field appears to be required. As a first indication of this, a
study of pairing correlations using a simple contact force
in a three-body calculation showed that such correlations
were necessary to bind the two valence neutrons [12].
Correlations on a much larger scale have more recently
been included in several conventional shell model descrip-
tions employing up to 3hur excitations [13,14]. An efFect
much smaller than the one expected on the Li matter
radius is generally found. The usual interpretation of this
result is that the adopted shell model space is not large
enough [13].

In this paper we introduce long-range correlations by
using a generator coordinate method (GCM) type for-
malism. The nuclear ground state (GS) is represented as
a superposition of Hartree-Fock-Bogolyubov (HFB) nu-
clear states, which are obtained by constraining on dif-
ferent values of the (r2) collective variable. The reason
for choosing this particular GCM variable can be under-
stood in the following way: correlations in the Li GS
are expected to occur because the loosely bound outer
neutrons can occupy a large number of nearly degener-
ate Rydberg-type orbits having a broad range of radial
extensions. One expects that a constraint imposing dif-
ferent values of the total rms radius will act essentially
on the outer neutron's radial distributions and therefore
will be able to generate the kind of configurations present
in the nuclear GS. Therefore, as is usual in GCM cal-
culations, initially, a series of constrained HFB micro-
scopic mean field calculations is performed. In a second
step the coefBcients of the GCM configuration mixing
are computed by solving the coupled equations resulting

0556-2813/95/52(2)/669(9)/$06. 00 52 1995 The American Physical Society



670 C. R. CHINN, J. DECHARGE, AND J.-F. BERGER 52

from the application of a variation principle to the to-
tal nucleus binding energy. In the present work, this is
accomplished in an approximate fashion by reducing the
usual Hill-Wheeler equations to a collective Schrodinger
equation of the Bohr type [15]. Note that this calculation
includes pairing correlations as well as long-range collec-
tive degrees of &eedom as derived from the effective N-N
interaction. Also, the Pauli principle is strictly obeyed
through the use of fully antisymmetrized nuclear states
throughout the whole calculation.

The only input into this consistent A-body calculation
is the well-tested D1S Gogny force. This interaction is a
density-dependent phenomenological parametrization of
the N-N interaction inside the nuclear medium which
includes a spin-orbit term, and is finite-ranged. The pa-
rameters of the interaction have been fixed by matching
the bulk properties of nuclear matter and of a few finite
nuclei, including pairing correlation strengths. This DXS
force has been tested in a variety of applications with
excellent results [16, 17]. It must be noted that this force
gives a very good description not only of medium and
heavy nuclei, but also of very light nuclei. For instance
it describes correctly the binding energy and radius of
the alpha particle. In addition the finite-range, density-
independent part of the force has been set up in order to
roughly simulate a free N-N interaction in the sense that
it gives the correct N-N scattering lengths. These prop-
erties are important in the present context which deals
with a three-proton system where almost free neutron-
neutron interactions are expected to play a crucial role.

With this collective model a qualitative study of cor-
relations in Li is presented. In particular the role of
the Li core is explored, especially its relation to a free
Li nucleus. The validity of the three-body hypothesis is

investigated using a collective A-body model.
In Sec. II the mean field constrained and unconstrained

HFB calculation is described and the results presented.
Long-range correlations using a simplification of the
GCM is described in Sec. III along with the results and
analysis, followed by a conclusion.

II. CONSTRAINED HFB CALCULATION

The constrained HFB A-body calculation is performed
using a 19-shell axially symmetric harmonic oscillator
(HO) basis. In performing tests of the convergence of
the basis, it was found that a 19-shell basis is required
due to the large extension of the neutron matter distribu-
tion &om the center of the nucleus in coordinate space,
and to the inadequate asymptotic behavior of HO states
in r space. The use of a multioscillator basis, i.e. , of a
basis composed of several sets of concentric HO states
associated with diferent lengths, is also used in the HFB
calculation. This kind of basis allows one to extend to
larger distances the radial description of nucleon orbits.
However, in this case only spherically symmetric nuclear
distributions could be described. Time-reversal symme-
try is assumed, so the protons are described by blocking
with equal weights the two j, = +3/2 axial quasiparti-
cle orbitals, thus matching the known ground state spin
of both Li and Li.

For a study of a small nucleus such as Li, it would
be expected that a mean field description would not be
the most appropriate choice. In this case we wish to ad-
dress certain many-body questions and to test assump-
tions about the many-body nature of the problem. With
this in mind as a first step, a mean field calculation using
HFB should be able to address some of these qualitative
concerns.

As explained in the Introduction, the Li nucleus is
expected to be very soft against changes in the density
distribution rms. For this reason a constrained HFB cal-
culation was performed, where the constraint variable
used corresponds to the mean value of (r2):

q= drr pr, where pr = dOpr

When the constraint is switched ofF, one obtains the
mean field representation of the Li GS. As mentioned
in the Introduction, for a study of such an exotic nucleus
as ~Li, the mean field description clearly is not adequate.
It is only for the purpose of comparisons with the config-
uration mixing approach and with the HFB description
of Li that we comment now on the results of the pure
HFB calculation. The total Li rms matter radius ob-
tained with HFB is about 2.80 fm, matching the results
of several other groups [13,9]. The separate proton and
neutron rms radii are found to be 2.30 and 2.97 fm, re-
spectively. For a similar HFB calculation of the Li GS
the rms radii are found to be 2.47, 2.24, and 2.58 fm for
the total, proton, and neutron distributions, respectively.
The rms radii for the protons in Li and Li differ only
by a small amount, resulting from the fact that the three
core protons are not greatly affected by the addition of
two neutrons. Prom this we can deduce that, if there is
a Li core in Li, its proton radius will di6'er from the
free Li one by roughly the same small amount. Let us
already mention that these results concerning the pro-
tons will remain unchanged when GCM correlations are
introduced. Clearly, very diferent results are expected
for the neutrons. It remains to be seen though how large
these differences will be.

In Fig. 1 the results of the constrained Li calculation
are shown as a function of the constraint variable, q. A
similar spherical Li calculation is also shown. As q is
increased, the Li curve is much softer than Li in the
sense that the slope is much less steep. One then expects

Li to involve significantly more configuration mixing
than Li. Such mixing contributions have been included
and will be discussed in detail later.

The difference between the unconstrained total binding
energies in the Li and Li calculations gives the mean
field HFB value of the two-neutron separation energy,
S2 . One finds 910 keV, a value nearly three times larger
than the experimental one (340 keV). This is another in-
dication that correlations must play a role, at least in

Li. Clearly, a much better evaluation of S2~ would be
to use the GCM lowest ground state energies for both Li
and Li. This is not done in the present work where the



52 CORRELATIONS IN A MANY-BODY CALCULATION OF "Li 671

-40.0

—42.0

OI
-44 0

I
Kl
U

I

I

l

l

I

l

1

I

l

l

I

8.0

7.0

6.0

~ 5.0

E 4.0

3.0

—46.0 2.0

0.0

—48.0
2.0

I

3.0 4.0
(r,) (fm)

5.0 6.0 7.0

FIG. 1. The total Hartree-Fock-Bogolyubov energy as a
function of the constraint variable (r ) for Li and Li is
shown. The Li result is taken from a spherically symmetric
HFB calculation.
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GCM calculation (a large scale computer one) has been
performed only for Li. Actually, it is well known that
a certain amount of configuration mixing is necessary in
light odd nuclei such as Li in order to accurately repro-
duce GS masses, spins, and deformations [18, 13]. For
this reason, the HFB calculation of Li will be used here
only for the purpose of comparing the nucleon density
profiles of a free Li nucleus with the Li core extracted
from Li. In making this comparison we shall rely on
the reasonable assumption that the overall shape of GS
density distributions in Li is not significantly afI'ected
by the configuration mixing present in this nucleus.

The rms radii for the neutron and proton distributions
are shown in Fig. 2(a) for the constrained HFB results as
a function of (r, ,) t, q ~

= ~q. As expected (see the Intro-
duction) the proton rms is unaffected by the constraint,
while the neutron (r, ,) varies linearly. In other words,
the curve confirms that the potential between the pro-
tons and outer neutrons is not strong enough to prevent
the two distributions flom decoupling.

The independent nature of the proton and neutron
sectors is also evident in the pairing energy shown in
Fig. 2(b). The protons consistently have zero pairing as
a function of q. The neutrons have strong pairing for
q & 3 fm indicating the onset of a significantly high neu-
tron level density at the Fermi surface.

Since the protons do not exhibit pairing there must
be a sizable gap at the Fermi surface. This is shown in
Fig. 3(a), where the protons occupy the 1s 1/2 and 1p
3/2 states. There is a gap of about 6 MeV between the
lp 3/2 level and the higher single-particle levels and this
gap remains for all q considered. The relative energies
of the occupied levels do not change significantly as a
function of q, confirming the negligible influence of the
constraint on the proton mean field. Note that, since
the lp 3/2 level does not shift a great deal, the blocking
approximation used here to account for the odd number
of protons should be reasonable.

In Fig. 3(b) the corresponding neutron single-particle
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FIG. 3. The energies for some of the lowest single-particle
states are plotted for the protons and neutrons in the upper
and lower panels, respectively, for the constrained HFB cal-
culation as a function of (r ).

FIG. 2. In the upper panel the separate rms radii for
the proton and neutron distributions are plotted for the con-
strained HFB calculation as a function of the square root of
the constraint variable, the rms radii of the total matter dis-
tribution. The lower panel plots in a similar fashion the BCS
pairing energies for the neutron and proton sectors.
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levels are shown. The lowest six neutrons are almost
completely contained in the ls 1/2 and lp 3/2 orbitals.
Due to pairing correlations the last two neutrons are dis-
persed throughout the higher levels. There is almost no
gap between the 1p 1/2 level and the higher levels, and
for large q these levels cross. The levels higher than 2d
3/2 are not shown. The level density at the Fermi sur-
face is very high, indicating that con6guration mixing,
i.e., the existence of correlations, is widespread.

This result is an indication that the model space re-
quired to describe the Li GS in an extended shell model
calculation is much larger than generally assumed [13].
According to the present calculation levels above the
f shell surely contribute to the GS description.

In Fig. 3(b) it is clear that there is a large gap between
the six inner neutrons, which represent a Li core, and
the outer two valence neutrons. The calculated occupa-
tion probabilities for the core neutrons are almost always
between 1.00 and 0.99 with a minimum of & 0.987. This
is true for all q considered. Because of these features, a
Li core wave function can be projected out by taking the

constrained HFB Li solutions and explicitly setting the
first six neutron levels to have one occupation probability
and the other neutron levels to be empty. As evidenced
by the fact that the core neutron probabilities are not ex-
actly one, this is an approximate procedure, but clearly,
because of the large energy gap, this should be a very
reasonable representation. Let us mention that we use

this procedure only for the purpose of comparing the Li
core density distribution with the free Li one.

In Fig. 4 the neutron density profiles are shown for
the unconstrained HFB calculations of Li and Li, and
for the Li core projected &om Li as explained above.
At the center of the nucleus the free Li neutron density
is sizably larger than the Li core neutron density, and
accordingly, the Li core extends somewhat further in r.
More precisely, the central neutron density of Li (short-
dashed curve) is about 15'Po larger than that of the Li
core (long-dashed curve). A similar difference was found
for the protons. This is more easily seen when the tail
is expanded in a logarithmic plot. The Li core neu-
tron density does not fall off as rapidly beyond r = 7 fm.
Already one can see evidence, even in the simple HFB
approach, for the beginning of a halolike structure. This
clearly can be traced back to the fact that the extra two
neutrons occupy weakly bound single-particle levels hav-
ing a large spatial extension.

III. CALCULATION INCLUDING
CONFIGURATION MIXING

Prom the evidence shown in the previous two sections
it is clear that a pure single-particle model is inadequate
to describe Li. To provide a more sophisticated rep-
resentation, a correlated ground state wave function is
constructed as a superposition of the HFB nuclear states
in the following GCM form:

1.2
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FIG. 4. The neutron radial densities for the unconstrained
HFB calculation are shown as a function of r. The solid
and short-dashed curves correspond to the calculated neutron
densities of Li and Li, respectively. The long-dashed curve
represents the neutron density for the Li core projected from

Li. The lower panel is a logarithmic plot of the upper panel
with the x axis extended.

iso) = dqfo(q) I4,), (2)

where ~Pz) is a product of HFB quasiparticle states for
deformation q, fo(q) is a weight function, and q is the con-
straint variable. In the GCM formalism a Hamiltonian
kernel is constructed with the GCM wave function. By
applying the variational principle, an equation is derived
from which the weight functions can be calculated. A
Gaussian overlap approximation (GOA), where the over-
lap between any two HFB states is approximated by a
Gaussian in the collective variable [15], is applied to sim-
plify these equations, deriving a Bohr Hamiltonian ex-
pression. The solution of the Bohr Hamiltonian equation
gives the weight function, fo(q). These techniques have
been thoroughly tested in many instances [19]. It may be
that the GOA is not as accurate for smaller nuclei as in
previous experience, but for the investigative study being
performed here, this should be more than adequate.

The resulting ground state collective wave function,
J'o(q), has a corresponding total binding energy. As men-
tioned previously, to properly calculate the two-neutron
separation energy S2 one should first perform a similar
collective GCM calculation for the free Li nucleus and
obtain a corresponding total binding energy. Such a cal-
culation, somewhat beyond the scope of the present study
devoted to Li, could nonetheless be valuable since it
may give indications about the relevance of the collective
degrees of freedom included in the GCM method. For
instance it may indicate that the present GCM calcula-
tion does not completely describe the important physics
and that additional collective degrees of freedom should
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FIG. 5. The proton radial density profiles are shown as a
function of r. The solid and short-dashed curves correspond
to the unconstrained HFB calculation for Li and Li, respec-
tively. The lang-dashed curve is the result from the correlated
GCM-type calculation. The lower panel is a logarithmic plot
of the upper panel with the x axis extended.

be included.
The ground state correlated density is calculated &om

(2) in the following fashion:

FIG. 6. The neutron radial density profiles are shown as a
function of r. The solid and short-dashed curves correspond
to the unconstrained HFB calculation of Li and the pro-
jected Li core of Li, respectively. The long-dashed and
dot-dashed curves are the result from the correlated GCM-
type calculation for Li and the projected Li core of Li,
respectively. The shaded, fat long-dashed curve represents
the difference between the long-dashed and the dot-dashed
curves, thus corresponding to the two outer valence neutrons.
The lower panel is a logarithmic plot of the upper panel with
the x axis extended.

where po(r) is the radial density operator obtained after
angle averaging.

In Fig. 5 the proton density profile is shown from the
unconstrained HFB calculation of Li and Li along with
the GCM-type collective result for Li. As is apparent
here the Li and Li proton profiles are not equivalent,
implying difFerences between the &ee Li nucleus and the
Li core of Li. The correlated Li proton density is

very similar to the uncorrelated Li result, which should
not be surprising in light of the unchanging single-particle
spectrum in Fig. 3(a). For the protons the correlations
have little eKect upon the density distributions both near
the central part and along the tail. It appears clear that
there are few correlations in the Li proton sector.

The various neutron distributions are shown in Fig. 6.
As in the unconstrained HFB case an approximate rep-
resentation of the Li core can be projected out from the

Li calculation including configuration mixing. This is
performed by setting the neutron occupation propabili-
ties in the constrained HFB solutions to be either one
or zero and then using these density matrices with the

weight function, fo(q), obtained in the collective Li cal-
culation. As for the proton case the inHuence of correla-
tions on the Li core appears quite small. The collective
long-range correlations represented by the GCM there-
fore have little eKect on the Li core as a whole.

This inHuence is much bigger on the full Li neutron
distribution, that is when one includes the two extra neu-
trons. The surface of the neutron distribution of Li
is at about 2.5 fm, which is much further extended
than the surface of the proton distribution at 1.8 fm.
Correlations slightly reduce this difFerence. Substracting
the Li core neutron distribution from the Li neutrons
gives the structure of the two valence neutrons. The two
neutrons have zero density at the origin due to the Pauli
blocking &om the core and extend in a halolike structure.
At the surface the collective valence structure causes the
collective calculation to have a different neutron density
profile than the unconstrained HFB neutrons.

This is most easily seen on the logarithmic plot in the
lower part of Fig. 6: the HFB and GCM GS Li neutron
densities strongly differ beyond q = 6 fm. At this point
it must be emphasized that an unphysical ledge appears
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and 4.0 fm, respectively.

2pE
h2 (4)

in the GCM densities beyond q = 7 —8 fm. This ledge is
small in amplitude, but it aKects greatly the calculated
rms radius since it extends very far out. The origin of this
ledge can be traced back to the structure of the HFB con-
strained solutions included in the configuration mixing.
In Fig. 7 the neutron densities obtained in constrained
HFB calculations using the 19-shell basis at q = 3.4 fm
and q = 4 fm are shown. Also shown are the same re-
sults using a multioscillator spherical HFB basis. This
particular multioscillator basis uses three concentric sets
of eight shell bases with three di8'erent oscillator lengths.
This basis corresponds to a very large single oscillator
basis ( 60 shells). Clearly, a ledge appears in the HFB
densities which depends on the basis. With the large
multioscillator basis the ledge appears 2 orders of mag-
nitude smaller and at larger r. This ledge is a result of
the constraint on (r ), that tends to push up the density
at large r, but then is restricted by the local nature of
the harmonic oscillator bases. One in fact observes the
parabolic fall of the densities in the 19-shell HO basis,
characteristic of the HO asymptotic behavior at large r.
A similar parabolic fall of the multioscillator densities is
also observed at very large r (30 fm). Both the property
of r to be unbounded and the use of a restricted HO
space may be responsible for this phenomenon.

Since there clearly exists a great deal of configuration
mixing in Li due to the radial extension of outer neu-
trons, one would also like to be able to extract a reason-
able asymptotic tail for the GS wave function. This is
necessary to get a reasonable estimate of the GS neutron
rms radius. The single-particle wave functions should
asymptotically be proportional to

This form has been used to extrapolate the densities ob-
tained in the multioscillator basis for values of r beyond
the values where the unphysical ledge begins. The pa-
rameters o,q, bq, and cq were obtained by using a y
fitting routine. »(q) was chosen to match the small r
density pro6le at r0, where the tail was attached to the
single oscillator calculation, typically at about 7 fm. The
off-diagonal terms in the correlated densities (3) could
then be computed from

(~'l~(r)l~) ~ e ( ~ ) bq& col 6q cq1+ + —-- 1+ —+-
r2 r r2 r r2

There is a great deal of freedom in the choice of the tail
parameters and hence we were able to obtain various dif-
ferent parameter sets, depending on how we chose to
fix things. The o,q parameters were set to be between
0.10 —+ 0.15, which corresponds to energies of about
—0.21 + —0.47 MeV.

With these fitted tails Fig. 8 is obtained. Diferent
sets of fitted tail parameters are labeled by a, b, c, d, e.
They give slightly but not very diferent values for the

0.8

0.6

0.4

0.2

0.0
0.0

I

1.0 2.0 3.0 4.0 5.0 6.0

0-

10

E

CL

10

10
0.0 10.0 20.0

r (fm)

30.0 40.0

FIG. 8. The collective neutron radial densities from the
GCM-type calculation are shown, where the artificial tails of
various listed categories were used for the densities calculated
in the constrained HFB calculations.

where E is the single-particle energy. For large but 6nite
r a polynomial in 1/r should be included. Therefore, one
expects the HFB neutron density to behave for large r,
r &r0 say, as

- 2
bq c1+ —+-
r r2
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TABLE I. The calculated rms radii for the neutron, proton, and total matter distributions of
Li, Li, and the Li core projected from the Li calculation are listed. The results from the pure

mean field HFB and the correlated calculations are used.

Type of calculation
Li nucleus, unconstrained HFB

Li nucleus with correlations
Li core projected from

Li in unconstrained HFB
Li core projected from

Li with correlations
Li nucleus, unconstrained HFB

Li, experiment [7]
Li, experiment

(r,...l) (fm)
2.80
3.42

2.59
2.47

3.12(0.16)
2.32 (0.02)

(&proton) (™)
2.30
2.31

2.30

2.31
2.24

2.88(0.11)
2.18(0.02)

(&neutron) (fm)
2.97
3.75

2.67

2.72
2.58

3.21(0.17)
2.39(0.02)

extrapolated density above 10 . Note that here the tails
extend further out than for the unconstrained HFB case.

Let us now turn to the results concerning the rms radii.
In Table I the rms radii for the various densities of Figs.
4, 5, and 6 are shown. The correlations change the calcu-
lated rms radii for the Li core by only about 2%, which
is consistent with the previous observation that correla-
tions have a negligible efFect upon the core. In this change
the tail correction made above plays almost no role. As
to the difFerences in the rms radii between the Li nu-
cleus and the values calculated for the Li core, they are
about 5% for both the protons and the neutrons. This
efFect upon the rms radius appears to be small, but the
comparison of the density distributions made in the pre-
vious section yields a more pronounced difFerence. One
may say that the Li system is slightly inBated when
two extra neutrons are added. This comparison assumes
that the Li nucleus ground state wave function is not
significantly infIuenced by correlations, which certainly
is reasonable in view of the insensitivity of correlations
on the Li core. Again, the comparisons made for the
nine-nucleon systems do not depend on the tail correc-
tion introduced previously. One may conclude that in
this many-body calculation of Li there appears to exist
a substantive Li core which notably difFers from a free
Li nucleus. One expects that these difFerences may have

a non-negligible efFect upon the mean field felt by the two
outer neutrons.

Going to the full Li rms radii, the value listed in
Table I with correlations included, but without tail cor-
rection (3.42 fm), clearly is overestimated. In Table II

the rms radii obtained without and with the various
parametrized tail corrections are listed. The largest
(r, ,)t t using a fitted tail is case a with 2.88 fm. In the
calculations performed here, the increase in rms radii due
to correlations is between 0.04 —+ 0.08 fm with realis-
tic tails. This result is somewhat disappointing in view
of the amount of complexity put into the GS wave func-
tions. The total and neutron rms radii, although not far
from being consistent with the experimental error bars,
appear Oe2 fm smaller than the nominal experimentally
extracted values.

At this point, one may note that the present radius
results probably represent lowest values. In fact, when
using the multioscillator basis the resulting potential en-
ergy surface appears somewhat Qatter than the 19-shell
basis shown in Fig. 1. This indicates a fully realistic
calculation, where density tails would be correctly de-
scribed, would also yield a much softer collective poten-
tial and therefore a stronger configuration mixing. Hence
efFects of correlations larger than those derived here, es-
pecially with respect to the rms radius predictions, would
certainly be found.

It should be realized that since the proton sector was
calculated with a blocking approximation, the ground
state spin of the nucleus has been artificially set. In
Table III calculated axial proton quadrupole moments

TABLE III. The calculated axial quadrupole moments in
millibarns for the neutron, proton, and total matter distri-
butions of Li, Li, and the Li core projected from Li
calculation are listed. The results from the axial HFB and
GCM calculations are used.

With fitted tail
Li nucleus, HFB

Li with correlations
Li case a
Li case b

Li case c
Li case d
Li case e

&tot

2.80
3.42
2.88
2.84
2.85
2.86
2.87

~prot

2.30
2.31
2.31
2.31
2.31
2.31
2.31

&neut

2.96
3.75
3.07
3.02
3.03
3.04
3.05

TABLE II. The calculated rms radii in fm for the neutron,
proton, and total matter distributions of Li including cor-
relations are tabulated using various fitted asymptotic tails. Type of calculation

Li unconstrained HFB
Correlated GCM Li
Li core projected from
Li unconstrained HFB
Li core projected from
correlated GCM Li
Free Li, HFB, D1S

Li, experiment [20]
Li, experiment [20]

proton

(mb)
-31.20
-31.13

-31.20

-31.13
-43.46

-31.2 (4.5)
-27.4 (1.0)

neutron

(mb)
-11.08
2.87

-54.94

-53.76
-96.24
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(Q2o) are displayed for Li, the Li core, and the free
Li. The HFB and correlated GCM calculations are seen

to give approximately the same charge quadrupole mo-
ment for Li and for the Li core. This feature indicates
that the proton sector is not greatly affected by corre-
lations in Li. The calculated value is in remarkably
close agreement with the experimental result well within
the experimental error. Concerning the free Li, it is
seen that HFB overpredicts by a factor of almost 2 the
experimental result. This shows that configuration mix-
ing involving for instance Ip I/O proton states certainly
would be important for reproducing (Q2o) in sLi. As an
indication of the sensitivity of this quantity to the model
used in Li, let us mention that performing the blocked
HFB calculation in spherical symmetry instead of axial
symmetry changes (Q~2o) from —43.5 mb to —20.4 mb. In
the case of Li, a similar HFB calculation increases the
value —31.20 mb given in Table III to only —29.2 mb.

IV. CONCLUSIONS

A microscopic many-body approach of the ground
state stucture of Li is presented. Correlations be-
yond the mean field are introduced by means of a GCM-
type configuration mixing of constrained HFB states.
The constraint employed is the mean square nuclear ra-
dius. The long-range correlations included here there-
fore are those associated with a change in the nuclear
volume. The sole input into the calculation is the well-
tested, finite-range DVS e8ective interaction introduced
by Gogny, which has been devised in order to account for
both the average and pairing fields in nuclei. For this rea-
son, pairing correlations are included in the constrained
HFB approach in a completely parameter-&ee manner.

It is found that the long-range correlations taken into
account are restricted almost exclusively to the sector
occupied by the two valence neutrons. The correlations
have a significant effect and play an important role in de-
scribing Li. The Li experimental proton quadrupole
moment is remarkably well reproduced. The GCM mix-
ing calculation yields a correlated GS wave function with
a very large (rms) radius (3.42 fm) which is found to be
mainly unphysical due to diKculties associated with the
description of HFB quasiparticle states at large distance.
When corrections are made to recover proper asymp-

totic behaviors, the obtained (rms) radius falls in the
range 2.84—2.88 fm, which is somewhat smaller than the
3.12+ 0.16 fm deduced &om experiment. Although this
result probably represents a conservative figure, one may
conclude that the kind of correlations included here do
not fully account for the observed Li halo.

By separating out the six most bound neutrons in Li,
a well-defined Li core can be recovered, whose structure
is almost independent of the amount of correlations intro-
duced in Li. Although the (rms) proton and neutron
radii of the Li core found in this way appear close to
those of a free Li nucleus, there is a significant diÃer-
ence in the matter density profile of the two systems.
Namely the central density of the former is depressed by
about 15%. This figure does not appear to depend on
the detailed procedure adopted to define the Li core.
These results clearly support the three-body picture of

Li. They also clearly indicate that the underlying Li
core of Li cannot be identified with the GS of a &ee Li
nucleus.

Finally let us mention that the diKculties encountered
in describing the large distance behavior of quasiparticle
states could not be completeley alleviated with the use
of a multioscillator basis with three oscillator lengths. It
seems in this respect that an accurate ab initio descrip-
tion of the structure of halo nuclei, and more generally of
drip line nuclei, requires one to extend considerably the
numerical techniques presently employed. One way to do
this would be for instance to make use of the collocation
basis-spline technique [21] in a very large spatial box.
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