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Neutron-rich B isotopes studied with antisymmetrized molecular dynamics
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Structure of odd-even B isotopes up to the neutron drip line is studied systematically with the
antisymmetrized molecular dynamics (AMD). The AMD method has already proved to be a powerful
theoretical approach for the systematic study of nuclear structure in extensive region including exotic
neutron-rich nuclei as well as ordinary nuclei. It is owing to its Bexible nature free from any model
assumptions such as the existence of clusters. The energies and other observed data of B isotopes
are reproduced well. Especially very good reproduction of electromagnetic properties is obtained.
The systematic behavior of the electromagnetic properties is explained in relation to the drastic
change between clustering structure and shell-model-like structure. This explanation gives us an
important indication that clustering structure in neutron-rich B nuclei is strongly suggested by the
experimental data. It is shown that the structure change with increase of the neutron number is
largely governed by the shell effect of neutron orbits. Exotic structure with new type of clustering
is suggested to evolve in neutron-rich nuclei near the drip line.

PACS number(s): 21.10.—k, 02.70.Ns, 21.60.—n, 27.20.+n

I. INTRODUCTION

Experimental information about nuclei far from the
stability line has been largely increased by means of un-
stable nuclear beams [1—7]. In those newly observed data,
there remain many to be studied theoretically [1—4,8—10].
Our aim is to describe properties of neutron-rich nu-
clei consistently with the description of those of ordi-
nary nuclei in order to understand unfamiliar properties
of neutron-rich nuclei.

The recently observed data of neutron-rich B isotopes
[11—13] show interesting dependence of the electric and
magnetic moments on the neutron number N. It is natu-
rally expected that the N dependence of the electromag-
netic properties may be caused by some structure change
such as development of clustering structure. The possi-
bility of clustering structure in neutron-rich B isotopes
has been theoretically suggested in a pioneering work [14]
with the molecular-orbital model. In the model, B sys-
tems are described as being composed of an 0.-0; core,
surrounding neutrons, and a proton. It was found that
the optimum n-o. distance of each isotope became larger
with an increase of N in the N & 8 region.

For theoretical research on B isotopes up to the drip
line, one should take at least two essential points into ac-
count. The 6rst point is that the traditional approaches
useful for ordinary nuclei are not necessarily applicable
for the study of unstable nuclei near the drip line. For
example, there is little information about the effective
charge ta be used in the exotic region with N )) Z.
This point is a general problem underlying the system-
atic study of an extensive region containing exotic nuclei.
Another point exists in the clustering aspect in light nu-
clei. It is well known that the cluster structure appears
in some nuclei with N Z as seen in the t+ 0, clustering
of I.i and the n + n structure of sBe [15—19]. The or-
dinary nucleus ~ B has been studied with cluster models

assuming clustering structure such as I i(t + n) + a [15].
However, in the case of other exotic nuclei in B isotopes,
we have so little information that it is diKcult to assume
a priori the existence of some clusters in them.

In the work of this paper, we apply antisymmetrized
molecular dynamics (AMD) [10,20—32] for the study of
B isotopes because AMD is &ee &om model assumptions
such as the existence of clusters and the axial symmetry
of the deformation. In the previous study in Ref. [10],
the AMD approach has been applied to the study of the
nuclear structure of Li and Be isotopes and has proved to
be a very useful theoretical approach for the study of ex-
otic nuclei near the neutron drip line as well as ordinary
nuclei. In the study of Li isotopes, a very good reproduc-
tion of electromagnetic properties has been obtained and
has been explained to be related to the dramatic change
between clustering structure and shell-model-like struc-
ture. It has been shown that the well-developed cluster-
ing structure in Li becomes weak as the neutron number
increases and changes toward the shell-model-like struc-
ture in Li with N = 8. In Be isotopes a theoretical
study with the AMD method has shown two kinds of
drastic structure change. One is the change &om the clus-
ter structure of Be toward the shell-model-like structure
of Be with N = 8. The other is the change toward the
clustering structure in the N ) 8 region with the increase
of ¹ What has enabled us to describe these structure
changes is the Aexible nature of the AMD wave func-
tion which can describe a variety of nuclear structures
such as the closed-shell structure, deformed structure,
and also various clustering structures. The total wave
function of AMD is described by a Slater determinant of
single-particle wave functions represented in the form of
Gaussian wave packets. The centers of the Gaussian
wave packets are considered to be variational complex pa-
rameters. The construction of energy-minimum intrinsic
states is achieved by using the &ictional cooling method.
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Angular momentum projection is applied to these intrin-
sic states to obtain the eigenstates of angular momentum.

In the case of He isotopes, there have been reported
extensive and successful studies by many authors, for
example, by Varga et al. [33] and by Zhukov and co-
workers [34,8]. Some theoretical methods of these stud-
ies are model independent like AMD. However, such the-
oretical methods adopted in these stud. ies of light-mass
neutron-rich nuclei are too elaborate to be extended to
heavy-mass neutron-rich nuclei like boron isotopes. near
the neutron drip line. A great advantage of the AMD
theory is that it can easily treat heavy-mass neutron-rich
nuclei.

The purpose of this paper is to make a systematic
study of odd-even B isotopes from B up to 8 with
AMD. We expect that a drastic structure change may be
seen with an increase of the neutron number ¹ If this
is the case, one of the interesting questions is whether or
not the systematic N dependence in B isotopes is similar
to the one discussed in Li and Be isotopes; namely, the
most shell-model-like structure appears in the nucleus
with the neutron magic number N = 8 among the iso-
topes and some kind of clustering develops in the region
of N & 8. In the case of B isotopes, there are many iso-
topes with N & 8 up to the neutron drip line isotope B
with N = 14. Therefore we will be able to study more
about the structure change in the region beyond N = 8
than in the case of Be isotopes where the neutron drip line
nucleus Be has N = 10. The interesting N dependence
of the experimental data of electromagnetic properties
would be related to the systematic structure change. We
will make quantitative analyses on these properties in
order to understand the fundamental mechanism of the
systematic structure change with neutron number. We
will indicate interesting features of the structure in exotic
neutron-rich B isotopes and answer the question whether
or not clustering structure develops near the neutron drip
line. A preliminary report of the present study was given
in Ref. [24].

In Sec. II, the formulation of AMD for the study of
nuclear structure is presented. We describe the wave
function, the frictional cooling method, and the angu-
lar momentum projection. The two-nucleon interaction
adopted in this paper is explained in Sec. III. In Sec. IV,
the results of a calculation for odd-even B isotopes are
compared with the data. Energy spectra and other prop-
erties such as magnetic and electric moments are found
to be well reproduced. The drastic change of cluster-
ing structure with the increase of neutron number N is
shown and is discussed in connection with the N depen-
dence of the electromagnetic data. Finally, in Sec. V,
summarizing discussions are given.

ture studies. As for AMD theory for the sake of nuclear
reaction studies, the reader is referred to Ref. [27]. Since
the AMD framework for nuclear structure studies was
described in detail in Refs. [10,25], here we give a brief
explanation, keeping within a self-contained. style.

A. Vi7ave function of AMD

In AMD the wave function of the A-nucleon system
~4) is expressed by a Slater determinant

e(Z)) = det[~, (')]

. 2 Z

oc exp —v(r —D~) + —K~ . r

Z; = +vD~ + K~,25 v
(2)

where v is the width of the wave packet common to
all nucleons. Thus the wave function of the system
~4(z)) is parametrized by the complex parameters fz} =
(Z&, Z~, . . . , Z&}.

For the study of nuclear structure, the AMD wave func-
tion [4(Z)) explained above is projected to the parity
eigenstate

i@+(Zi, Z2, . . . , Z~)) = (1+P)i@(zg, Zz, . . . , Z~)),
(3)

with P standing for the parity inversion operator.
The wave function ~4(z)) of Eq. (1) is the same as

the wave function of the fermionic molecular dynamics
proposed by Feldmeier [35]. Furthermore, ~4(Z)) can be
also regarded as a special case of the wave function of
the time-dependent cluster model (TDCM) [36] where
the parameters of the wave function of the Brink-type
cluster model [37] are treated as time-dependent param-
eters by using the time-dependent variational principle.
The characteristic points of the AMD method in our
present approach to nuclear structure problems are that
the construction of the energy-minimum intrinsic state
is achieved by using the frictional cooling method and
that the projection of parity and angular momentum is
adopted.

where y . is the spin isospin wave function of the jth
single-particle state labeled with n~ = p g, p f, n g, or
n $. The spatial wave function of the jth single-particle
state Pz, is represented by a Gaussian wave packet

Z, )'
exp —v~ r —

~
+ —Z.

v 2

II. FORMULATION OF AMD

AMD is a theory which has been developed recently for
the study of heavy-ion reactions [20,26—32]. The method
is applicable to also nuclear structure problems [10,20—25]
as well as heavy-ion collision problems. Here we only ex-
plain the AMD framework for the sake of nuclear struc-

B. Frictional cooling method

In order to construct the wave function 4 for the
ground state, we should determine the parameters (Z}
which minimize the expectation value of the Hamiltonian
H:
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z z z z. (e+(z) IIII@'(z))
(c+(z) Ic +(z)) (4)

(PMz@' l&,=0[PMz@ )

First, we randomly choose parameters which express an
initial state with high excitation energy. This initial state
is then cooled down by applying the &ictional cooling
equations for (Z), expressed as

S= (JMkolJM) ) (zz'I v]JIt)

x dOD *, O 4+T BO 4+

dgI, . 1 OE= (A+ ip) — and c.c. ,dt

with arbitrary real numbers A and p ( 0. It is easily
proved that the energy of the system decreases with time,

A'= f dBD~'~(Bj(C~~B(A)~4+),

PM~ — dODM~ O 8 O ) (8)

where PM~ is a total-angular-momentum projection op-
erator,

dE &0.
dt

Then the intrinsic wave function of the minimum-energy
state is obtained after sufBcient cooling time. This cool-
ing method explained above is called the &ictional cool-
ing method.

C. Projection to total-angular-momentum
eigenstates

The wave function of the system should be a total-
angular-momentum eigenstate. For simplicity we apply
the total-angular-momentum projection after the vari-
ational calculation explained above. We regard the
minimum-energy state obtained with the &ictional cool-
ing method as the intrinsic state of the system. We
calculate the expectation values of rank-A; operators T"
with the total-angular-momentum eigenstate [P~~C+),
which is obtained by projecting the intrinsic wave func-
tion l4'+),

with R(O) standing for the rotation operator by the Euler
angle O. K should be chosen so as to get the minimum
expectation value of the Hamiltonian in each system. K
mixing, namely, the diagonalization of the Hamiltonian
with respect to the K quantum number, is not made
in most cases, but in some cases we show results ob-
tained by a K-mixing calculation. The spin J of the
calculated ground state has been found to be the same
as the observed spin value of the ground state for every
system studied here. In a practical calculation, the three-
dimensional integral is evaluated numerically by taking
a finite number of mesh points of the Euler angle O.

III. INTERACTION

For the efFective interaction we have adopted case 3 of
the MV1 force of Ref. [38]. The interaction MV1 force

contains a zero-range three-body interaction V~& in ad-

dition to the two-body interaction part VDD which is
constructed from the Volkov No. 1 force [39] by weaken-
ing the strength of its repulsive part,

(2) (r l' (r )
V~~ = (1 —m+M —M —mI' I ) V&exp —

I

—
~

++am@
0r~) kr~)

6=6=0,
V~ ———83.34 MeV, r~ ——1.60 fm, V~ ——104.86 MeV, r~ ——0.82 fm,

V~D ——v b(rq —r2)h(rq —rs), v = 4000 MeV fm (9)

where P and P stand for the spin and isospin exchange operators, respectively. The two-body interaction part V~8
contains only Wigner and Majorana components. We have made calculations by adding appropriate Bartlett and
Heisenberg components to the two-body force. However, the results have proved to be not so much afFected by the
additional components at least for the quantities investigated in this paper. In order to show this point explicitly, we

give in Sec. IV D the electric quadrupole moments calculated by adopting b = —0.2 and h = 0.4. As for the two-body
spin-orbit force VL,s, we have adopted the GSRS force [40] expressed as

Vgg = jug exp( —ryr ) + u~g exp( —vnr ))P( O)L . (Sq + S2),
. BlL=rx

l

i
l

up= —uiy=900MeV,
Br) '

Kg ——5.0 fm, Kyy ——2.778 fm (10)
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IV. RESULTS AND DISCUSSIONS

The structure of odd-even isotopes of B has been
studied with AMD. The theoretical results which are
calculated by projecting the AMD intrinsic wave func-
tions with definite parity to the total-angular-momentum
eigenstates are compared with the experimental data.
We also analyze the intrinsic wave functions before an-
gular momentum projection and discuss the structure of
the intrinsic states.

A. Radii of nuclei

In Fig. 1, the theoretical root-mean-square radii of B
isotopes are compared with the interaction radii obtained
from the experimental data of the interaction cross sec-
tion [5]. The optimum width parameters v are shown in
Table I. The triangles connected with the dotted line
(b) indicate the AMD results with the use of the in-
teraction parameter of the Majorana term m = 0.576.
The extremely large radii of neutron-rich nuclei are not
sufficiently reproduced with the calculations. Since the
calculated radii are sensitive to the interaction, careful
consideration should be made in choosing the interaction
parameters such as the Majorana parameter. The solid
line in Fig. 1 shows the AMD results calculated with a
mass-dependent Majorana parameter: m = 0.576, 0.576,
0 63 p 65 and p 65 for 11B 13B 15B 17B and 19B

4.0

E 3.0—
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1
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I !

8 isotopes

L3
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c o AMD{a)
~---~ AMD{b}

1.0 I I I I I
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FIC. 1. Radii of B isotopes. Root-mean-square radii are
calculated using the MV1 force (a) with the mass-dependent
Majorana parameter described in the text and (b) with a
fixed Majorana parameter I, = 0.576. They are compared
with the interaction radii derived from the data of interaction
cross sections [5].

with r denoting the two-nucleon relative coordinate and
with P(sO) denoting the projection operator onto the
triplet odd (sO) two-nucleon state. The Coulomb in-
teraction is approximated by a sum of seven Gaussians
following the technique of Ref. [27]. The optimum width
parameter v of wave packets is chosen for each parity of
the individual system so as to get the minimum energy.

spectively. Considering that the use of larger m values
for the heavier nuclear systems is generally reasonable,
it is not unnatural to use the mass-dependent m val-
ues adopted here. The AMD results shown below are
the ones calculated with those m values of the Majorana
parameter dependent on mass number if there is no ac-
count. The results with those m values show that the
neutron-rich 8 nuclei near the drip line have large radii
considerably deviated II'rom the A / law. As we give
more detailed discussions later, the extremely large radii
suggested experimentally in neutron-rich B isotopes with
rather small separation energies of valence neutrons may
be due to the formation of a neutron skin. The neutron
skin is defined as the surface region with a rather high
neutron density, but with a low proton density.

B. Binding energies and energy spectra

Figure 2 shows the binding energies of the ground
states of B isotopes calculated with the MV1 force with
three di8'erent choices of Majorana parameter m: m =
0.576, 0.63, and 0.65. It should be stressed that not the
absolute values of the binding energies, but the relative
binding energies between neighboring nuclei are of impor-
tance in detailed discussions on the behavior of valence
neutrons, because valence neutrons can be sensitive to
their separation energies.

The excitation energies of negative-parity states are
shown in Fig. 3. The theoretical levels have been cal-
culated by diagonalizing the Hamiltonian matrix with
respect to the K quantum number. When the principal
axis z is chosen to be the approximately axially sym-
metric axis in the prolate shape, the mixing of K quan-
tum numbers is found to be small in the low-lying levels,
which implies that the Hamiltonian matrix is almost di-
agonal with respect to the K quantum number at least
for low-lying levels. We assign to each of the calculated
bands the K quantum number that is just the K quan-
tum number of the dominant component.

In B, which has an asymmetric intrinsic deformation
as shown later, the calculations show that the levels of
negative-parity states are composed of a few bands with
different K quantum numbers K = 3/2, 1/2, 7/2
and 5/2 . The K = 3/2 band contains the states with
J = 3/2q, 5/2q, while the J = 1/2q, 3/22 states are in-
cluded in the A = 1/2 band, the J = 7/2q, 9/2q states
in the K = 7/2 band, and the J = 5/2~, 7/22 states
in the ~ = 5/2 band. Most of the calculated levels
correspond to the observed excited states. It is found
that the level spacings between adjacent band members
are narrower in general than the experimental data, and
it implies that the intrinsic state in each band has a
rather larger moment of inertia. Since the moment of
inertia is sensitive to the interaction parameters such as
the Majorana parameter, it is not difBcult to choose suit-
able interaction parameters so as to fit the observed level
spacings. Another point to be discussed is concerned
with the gap energies between bands. An example is
the gap energy between the K = 3/2 and K = 1/2
bands, which is given by the excitation energy of the 1/2q
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TABLE I. The optimum width parameters v (fm ) of each system for three different values of
the Majorana interaction parameter m.

Interaction
m = 0.576
m = 0.63
m=065

1lB
0.185
0.170

Width parameter v (fm )
13B 5B

0.175 0.175
0.160 0.155
0.155 0.150

17B

0.165
0.150
0.150

19B

0.160
0.145
0.135

state from the ground 3/2q state. The theoretical result
gives 0.4 MeV for the excitation energy, which is rather
smaller than the data. The excitation energy of the I/2q
state is very sensitive to the strength of the spin-orbit
force. We have tried the larger strength of the IS force,
u~ ———u~l ——2000 MeV instead of uy ———u~~ ——900 MeV,
and have obtained 2.4 MeV excitation energy, which is
as large as the experimental data. In Fig. 3 we also show
the results of a calculation with other interaction parame-
ters, uy ———ups ——1500 MeV and m = 0.56. For getting a
better reproduction of the energy spectra, it is necessary
to make careful consideration in choosing the interaction
parameters.

%e have poor experimental data in neutron-richer B
isotopes. According to the AMD calculations, in B,

B, and B, the low-lying levels are predicted to be
composed of two bands with K = 3/2 and K = I/2.
These energy spectra have close relations with the in-
trinsic deformation of nuclei, which we discuss in a later
section.

C. Magnetic moments
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Magnetic dipole moments of odd-even B isotopes cal-
culated with AMD are not sensitive t;o interaction pa-
rameters like the Majorana parameter. We have checked
whether the introduction of the Bartlett and Heisenberg
components into the effective nuclear force affects the cal-
culated values of the magnetic moments or not, and have
found that the effects are negligibly small. In Fig. 4 it

FIG. 3. (a) Energy spectra of negative-parity states of
8 isotopes. Excitation energies calculated with K mixing
are compared with experimental data, in B and B. The
adopted interaction is the MV1 force with m = 0.576 and the
spin-orbit force with the strength uq = —ups = 900 MeV. (b)
In B, the results calculated with the interaction parameters
m = 0.56 and uj ———ups ——1500 MeV are also shown.
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FIG. 2. Binding energies of the odd-even B isotopes calcu-
lated with the MV1 force with three different choices of the
Majorana parameter m = 0.576, 0.63, and 0.65. Experimen-
tal data are also shown.

FIG. 4. Magnetic dipole moments of B isotopes. The ob-
served data of neutron-rich nuclei B and B are ones ob-
tained by the experiments with RIPS in RIKEN [11,13} (the
experimental value for B is a preliminary one). The mag-
netic dipole moments of Li isotopes [42,43j are also shown to-
gether with the theoretical results calculated with the AMD
method.
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D. Electric quadrupole moments and B(E2) values

In Fig. 5, the electric quadrupole moments calculated
with AMD are shown and compared with the experimen-
tal data. The solid line shows the theoretical values due
to the calculation by the use of mass-dependent Majo-
rana parameter discussed in Sec. IV A, which can give

60

E 50-

40-
O

30-
O
CL

20-
(3
-o 10
o
(D

UJ 0

0 exp
c o AMD(i)
~-----~ AMD(ii)—

I I I I

11 13 15 17 19
Mass Number A

FIG. 5. Electric quadrupole moments of B isotopes. Lines
are the theoretical values by AMD calculations. The solid line
shows the results calculated using the mass-dependent Majo-
rana exchange parameter. The dotted line corresponds to the
results obtained by adding the Bartlett and Heisenberg com-
ponents to the two-body nuclear force. Experimental data
are taken from Refs. [42,12].

is shown that the AMD calculations give very good re-
production of the experimental data. Furthermore, the
theoretical value of the magnetic dipole moment of B
predicted with AMD has proved to agree well with the
recently observed data [13]. The figure also shows the
theoretical values of Li isotopes with the AMD calcu-
lations, which have been found to agree well with the
experimental data in our previous paper [10].

It should be pointed out that the AMD calculations
reproduce systematically the magnetic moments of B iso-
topes in such an extensive region that includes neutron-
rich nuclei near the drip line as well as ordinary nuclei.
By analyzing the AMD results, the magnetic moments
of odd-even B isotopes have been found to be caused by
only the proton orbits, as expected. Although B isotopes
have the same proton number Z = 5, it is interesting
that the magnetic dipole moment changes systematically
with increase of the neutron number K. In Ref. [10] the
N dependence of the magnetic dipole moments of I.i iso-
topes has been discussed in relation to nuclear structure
change as a function of N. Also, in the case of B iso-
topes, it is naturally expected that the N dependence
of magnetic moments carries important information on
nuclear structure. The theoretical magnetic moments of

B and B considerably differ from the Schmidt value
and suggest a clustering structure in the nuclei near the
neutron drip line according to detailed discussions in the
next section about the N dependence in relation to the
nuclear structure.

TABLE II. R2 transition strength B(E2;Ii m I2) in
B. Theoretical values are calculated with angular-

momentum-projected AMD wave functions.

11B

Transition
(I, mI, )

5/2 m 3/2
3/2 -+ 1/2
7/2 -+ 3/2
5/2 -+ 3/2

Energy
(MeV)

4.45m 0
5.02m 2.13
6.74—+ 0
8.92+ 0

Expt.
(e fm4)

9.6 + 2.4
3+0.3

1.3 + 0.3
0.7 + 0.5

AMD
(e fm)

11.30
6.38
1.34
0.05

V. STRUCTURE CHANGE

In the previous section, we have co~mpared the calcu-
lated results to the experimental data. It has been found
that the AMD calculations reproduce well the experimen-
tal values of various quantities which show interesting
systematic dependence on the neutron number especially
in the electromagnetic properties. It is important to an-
alyze the intrinsic structure of the states obtained with
AMD for a microscopic understanding of the mechanism
which causes such characteristic N dependence.

better reproduction of radii as shown in Fig. 1. We see
that the theoretical results reproduce the observed data
well. It should be noted here that no effective charge is
used in the AMD calculations. It is shown later that the
increase of the theoretical Q moment toward the neutron
drip line is due to the development of the cluster struc-
ture. We should recall that nuclei with a well-developed
cluster structure may have quadrupole moments with
very large absolute values because of the outer long tail of
intercluster relative motion. This long tail of interclus-
ter motion is not necessarily described in full with the
present AMD wave function composed of a single parity-
projected Slater determinant. We discuss this problem
again in the next section.

We also show the theoretical values calculated
by adopting the effective interaction with additional
Bartlett and Heisenberg components in Fig. 5 (dotted
line). The parameters of these components are chosen
as b = —0.2 and h = 0.4. Here the Majorana parame-
ter is chosen so as to give the same binding energies of
n nuclei as the one obtained without additional compo-
nents. Namely, the value of the Majorana parameter is
changed &om m into m+ s(b —h). As seen in Fig. 5,
the additional Bartlett and Heisenberg components in-
troduce no remarkable difference in the results of the
electric quadrupole moments. Even in B where the
difference between two theoretical values is largest, the
electric quadrupole moment of the solid line is only 5 emb
larger than the one of the dotted line.

Table II shows that the B(E2) values of E2 transitions
in B are reproduced well with the AMD calculations.
It seems that the low-lying excited states are well de-
scribed by the total-angular-momentum eigenstates ob-
tained by projecting the energy-minimum intrinsic state
of the AMD wave function.
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A. Density distribution

As expected, a drastic structure change with the in-
crease of the neutron number is found in the AMD in-
trinsic states of B isotopes. Figure 6 shows the density
distributions of the intrinsic states before parity and an-
gular momentum projection. In drawing the figures, the
density of each state is projected onto the x-y plane by in-
tegrating out along the z axis perpendicular to the plane.
Here the z, y, and z axes are principal axes of the de-
formation of the density distribution. The total matter
density p in Fig. 6 shows the deformed state with clus-
tering structure in B, while the nucleus 8 which has
a neutron magic number N = 8 has the most spheri-
cal structure among B isotopes and has almost the same
structure as the shell-model state. It is very interesting
that in the neutron-richer nuclei B, B, and B, the
clustering structure with prolate deformation develops
again. The intrinsic deformation increases as the neutron
number goes up toward the neutron drip line. In Fig. 6
we also show a more detailed analysis by giving sepa-
rately the proton density p„and neutron density p . We
can see a drastic structure change of the neutron density
which can be explained in terms of the shell effect in neu-
tron orbits. In B, six neutrons have an oblate-deformed

distribution, while eight neutrons in B constitute the
closed shell and make the most spherical structure. On
the other hand, ten neutrons in B possess a large pro-
late deformation. It is consistent with the observed fact
that ordinary nuclei with N = 10 such as Ne have pro-
late deformation. Neutrons in 8 and B are found
to have largely prolate deformed structure. The prolate
structure of 14 neutrons is not an obvious feature, but
is a characteristic feature seen in neutron-rich B isotopes
in which 5 protons prefer prolate structure. The densi-
ties of protons p„in Fig. 6 show that the structure of
5 protons in B isotopes has a similar N dependence as
the neutron structure. It is seen that the clustering fea-
ture of protons appears in the nuclei B and it becomes
weaker in B. In the neutron-richer region with N ) 8,
the proton density with two clusters stretches outward
in the prolate shape. Especially well-developed clusters
of proton density are seen in nuclei near the drip line.
We show in Fig. 7 the density distribution of the parity-
projected states ~4 (Z)), which are the actual intrinsic
wave functions obtained by the &ictional cooling method.

For the sake of a more quantitative analysis, we intro-
duce the values 4¹"' and L¹"', which stand for the
deviation of the proton and neutron orbits in the AMD
wave function &om those in the simple shell-model wave
function;
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FIG. 6. Density distribution of the AMD states of 8 iso-
topes. The intrinsic matter densities p before parity and an-
gular momentum projection are shown by projecting to the
x-y plane with integration along the z axis perpendicular to
the plane. The densities of protons p„and neutrons p are
also shown separately; p = p„+p

FIG. 7. Density distribution of the parity-projected AMD
states of B isotopes. The intrinsic densities p of nuclear mat-
ter of the AMD states after parity projection are shown by
projecting to the x-y plane with integration along the z axis
perpendicular to the plane. The densities of protons p„and
neutrons p are also shown separately; p = p~ + p
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where ¹I' and ¹I' are the oscillator quantum number

operators and (¹"');„and(N "');„arethe mini-
mum oscillator quantum numbers given by the simple
shell model for protons and neutrons, respectively. The
states with shell-model-like structure should have small
values of 4¹"', while the states with a developed in-
trinsic deformation have large values. Figure 8 showsL¹"' and LN„"'.The value of 4¹"' is the smallest
and nearly zero in 8, which as a neutron magic number
N = 8, and it becomes larger again as N increases in the
region with N & 8. This neutron-number dependence
of L¹'" rejects the shell effect of neutron orbits. It is
seen that the AN„"' for proton orbits shows a similar
N dependence as LN "' and increases toward the neu-
tron drip line in the N ) 8 region. The N dependence
of L¹"' and LN„'' gives us a kind of quantitative ex-
pression of the N dependence of the neutron and proton
density distributions. It should be pointed out that the
N dependence of proton structure originates &om the
shell effect of neutron orbits.

Here we discuss the neutron-skin structure, which is
defined as the surface region with rather high neutron
density, but with low proton density. The neutron-skin
structure has been suggested to appear in such nuclei
as He and neutron-rich B isotopes in which the separa-
tion energies of the valence neutrons are a few MeV. The
density distribution p of the parity-projected states in
Fig. 7 shows that in neutron-rich nuclei with N ) 8 the
neutron density stretches outward and distributes widely
in the outer region as the neutron number N increases.
The change of neutron density is so drastic that the pro-
ton density seems to remain compact in the inner region.
As a result, the neutron-rich nuclei of B isotopes have a
surface region with a rather large neutron density. Fig-
ure 9 shows the density p and p„ofthe neutrons and
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dius r (fm). p (solid lines) and p„(dashed lines) of B isotopes
are compared with p„of B (dotted line).
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protons in the angular-momentum-projected states as a
function of the radius r T. he densities p„(r)and p„(r)of
each B isotope are compared with the proton density of
~sB. In ~~B and ~sB, p (r) is almost the same as p„(r),
which is the normal property in ordinary nuclei. On the
other hand, it is found that p„(r)in ~sB and B is rather
larger than pz(r) in the region with r & 3 fm. We can
estimate that the neutron skin in YB has a thickness
smaller than 1 fm, which means that the neutron skin in

B is not so prominent. It is unexpected and interesting
that the thickness of the neutron skin in B is not larger
than but the same as the one in B. This is because
the proton density also stretches outward following the
neutron density as is seen in Fig. 6 and also in Fig. 7.
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B. Clustering aspects OQ

As mentioned in Sec. I, it is well known that some
light nuclei with N —Z have well-developed clustering
structures such as the o. + n clustering of Be and the
o, + t clustering of Li. Even though many theoretical
studies with cluster models have been made successfully,
there has been a very small number of theoretical works
which ascertained the formation of cluster structure mi-
croscopically without a a priori assumption of the exis-
tence of any kinds of clusters. Recently, a study with the
AMD method which does not assume the existence of any
kinds of clusters has assured the formation of a cluster
structure in many light ordinary nuclei [25,21] and also
has suggested a predominant clustering structure in the
exotic nuclei of Be isotopes near the neutron drip line
[10,24].

The present AMD result shows that the wave function
of ~~B has the Li(a+ t) + n clustering structure, which
is, however, not so well developed. Furthermore, in the
present AMD results, it is found that the clustering struc-
ture is prominent also in B isotopes near the drip line.
Here we make detailed discussions about the clustering
aspects by checking the spatial configurations of the cen-
ters of single-particle Gaussian wave packets which are
expressed by the values (D) = (ReZ/~v). Figure 10
shows the spatial configurations of (D) = (BeZ/~v)
which are projected to adequate planes. The squares
and circles correspond to protons and neutrons, respec-
tively. All even numbers of neutrons in these B isotopes
couple to pairs of n t and n $ occupying the same spa-
tial points. It is seen that three pairs of neutrons in B
compose a triangle configuration. The configuration of
four protons is almost the same as the neutron config-
uration, but one proton is located between two pairs of
neutrons. The resulting B structure is similar to the
rLi(a + t) + n cluster structure. In the other B isotopes
except for B, five protons are always grouped spatially
into two parts as 2p+ 3p with surrounding two groups of
neutrons. In the spatial configurations in Fig. 10, cluster-
ing structures similar to Li+o., Li+o. Li+ He, and

Li+ He are seen in B, B, B, and B, respec-
tively. We see that the relative distance between clus-
ters increases gradually from B to B, which implies a
systematic change from a shell-model-like structure to a
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FIG. 10. Spatial condgurations of the centers of nucleon
wave packets expressed by (ReZ/~v) in negative-parity
states of B isotopes. (ReZ/~v) are projected to an ade-
quate x-y plane. Circles and squares represent the centers of
neutrons and protons, respectively.

well-developed clustering structure. The values of inter-
cluster distance show that the well-developed clustering
structure is prominent in nuclei near the drip line, while
in B the shell-model-like structure is predominant. The
degree of development of the clustering structure is es-
timated more quantitatively with the N dependence of
the value Bpp defined as the relative distance between
groups of two protons and three protons, which is almost
equivalent to the intercluster distance. The calculated
values of Bpp are given in Fig. 8. The increase of the
value of Bpp describes quantitatively the development of
cluster structure toward the drip line. The characteris-
tic point of the clusters in the neutron-rich nuclei is that
the He-like cluster in B, He-like cluster in B, and
the n-like cluster in 8 are not ordinary stable clusters,
but somewhat distorted and polarized ones with neutrons
distributing in the outer region. In the pioneering work
of Ref. [14], B isotopes were studied with the molecular-
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orbital model, which describes the B isotope as composed
of an 0.-0. core and surrounding proton and neutrons. It
was found there that the inter-o. distance increases when
going &om B to B. Their results are found to be sup-
ported by our results, which have been obtained without
assuming any clusters such as the o. cores.

C. Correlations of the structure
with electromagnetic properties

In the previous subsections, we have discussed the
drastic change of the intrinsic structure in the region &om
ordinary nuclei up to the neutron-drip-line nuclei. Our
purpose here is to understand the fundamental mecha-
nism in which the observed electromagnetic properties
reflect the systematic change of nuclear structure. We
aim to elucidate the essential information about nuclear
structure which is and will be experimentally supported.
Below we discuss these problems on the basis of our AMD
calculations.

We recall a previous study about Ii isotopes with
AMD [10], in which the N dependence of the electric
and magnetic data has been explained in relation to the
drastic change between the cluster and shell-model-like
structures. In the following discussion, we consider two
kinds of fundamental eÃects of cluster structure on nu-
clear structure which have been discussed in the previ-
ous study. One is caused by the spatial relative distance
between clusters (spatial clustering), and the other is
concerned with the angular momentum coupling (cluster
coupling of angular momenta) caused by the clustering
correlation of nucleons. As a typical example of the lat-
ter eHect, we recall the so-called shell-model cluster in
the SUs coupling shell-model [37,41] configuration. As

we show below, the e6'ect of cluster structure on mag-
netic moments of B isotopes is made by only the cluster
coupling of angular momenta, while the quadrupole mo-
ments receive both e8'ects of the spatial clustering and
the cluster coupling of angular momenta.

In order to extract the eKect of the cluster coupling of
angular momenta &om our AMD wave functions, we have
arti6cially made the intercluster relative distances in the
AMD wave function small so as to get the shell-model
limit. In practice, we have transformed all parameters Z;
as (Z) M (aZ), where a is a real constant much smaller
than unity. In the state obtained in the shell-model limit,
it is easily found that spatially developed clustering is
not recognizable any more and that only the eKect of the
cluster coupling of angular momenta persists.

Table III shows the magnetic dipole moments p and
electric quadrupole moments Q calculated with the
angular-momentum-projected states of the shell-model-
limit intrinsic wave functions mentioned above, which
are compared with the original AMD calculations. In
Table III we have also shown the expectation values of
the squared total angular momenta of protons (3„)and
iieutrons (3 ), and those of the squared orbital angular
momenta of protons (L„)and of the total system (L2).
We have also shown the expectation values of the z com-
ponents of the total orbital angular momenta of protons
(Iz, ) and neutrons (I,) and the z component of the
total intrinsic spin of protons (S„,) calculated with the
highest M states

i JM) =
~ 2 2). We can see that the

magnetic dipole moments in the shell-model limit are al-
most the same as those of the original AMP and repro-
duce the experimental data. This result con6rms that
the magnetic dipole moments are not sensitive to the
relative distance between clusters; namely, the efkct of
clustering on the magnetic moment is not due to the spa-

TABLE III. Comparison of various quantities calculated with the AMD wave functions to those calculated with the
shell-model-limit (SML) wave functions of AMD. The notations (J„),(J„),(L~), (L ), (S„),(I,„),and (L„,) are explained
in the text. The experimental data of the magnetic dipole moments p and the electric quadrupole moments Q are also shown
for comparison. The expectation values are calculated with the total-angular-momentum-projected states.
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ps = 5.58(2 2 ISpzl 2 2)&~& p& = (2 2 ILpz I 2 2)p~ ~ (12)

where p~ stands for the nuclear magneton. Figure ll
shows the two terms p, and p~ and the total magnetic
moments p as a function of neutron number ¹ Figure 11
also shows p„p~,and p of Li isotopes for the sake of
comparison. One of the interesting points is that the
term p, due to the intrinsic spin is almost constant in
all B isotopes, while the orbital-angular-momentum term
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6 8 10 12 14

Neutron Number N

FIG. 11. Contributions to magnetic dipole moments p
(solid line) from the intrinsic-spin term p, (dotted line) and
the orbital-angular-momentum term p~ (dashed line) in both
cases of I i isotopes and 8 isotopes. Experimental magnetic
moments are also shown with squares.

tial clustering, but due to the cluster coupling of angular
momenta. More generally speaking, by comparing the
original AMD results with the values in the shell-model
limit, it can be confirmed that the expectation values of
operators with only the linear terms of J, L, or S are
determined by the cluster coupling of angular momenta
predominantly.

Here we note an important point that in the calcu-
lated AMD wave functions of B isotopes, neutrons are
all paired ofF and therefore the magnitude of the total
intrinsic spin of neutrons, S„,is 0. It implies that the
total angular momentum of neutrons is exhausted by
the total orbital angular momentum as (J2) = (L2) and

(J„,) = (L,). We have also checked that the total in-
trinsic spin of protons, S„,is almost 2, which tells us that
an even number of protons are all paired oK and only the
intrinsic spin of the last odd proton remains in the total
intrinsic spin. The total intrinsic spin S =

2 because of
S = 0 and S„=2 imposes an important condition on
the total orbital angular momentum L. Namely, since all
B isotopes have ground states with J = » only states
with L = 1 and 2 are contained in the calculated AMD
wave functions. We should remember these features of
the wave functions because the following discussions are
based on them.

Magnetic moments consist of two terms originating
&om the intrinsic spin and from the orbital angular mo-
mentum. We express the former term as p, and the latter
term as p~. We need to remember that neutrons make
no contribution to the calculated magnetic moments be-
cause of the pairing oK of all even neutrons with S = 0,
&om which we have

p~ has a sizable N dependence, which indeed causes the
systematic N dependence of the magnetic moment. We
see a similar situation in Li isotopes: The term p, is
almost constant for all Li isotopes, but the term p~ has
a clear N dependence which causes the N dependence of
p of Li isotopes.

Comparing the results of B and Li isotopes, we see that
the magnetic dipole moments of B isotopes deviate more
from the Schmidt value 3.79pN for the p3y2 proton orbit
than those of Li isotopes. As seen in Fig. 11, since the
orbital-angular-momentum terms p~ in B isotopes are al-
most the same as those in Li isotopes, the essential difFer-
ence of the magnetic moments between Li and B isotopes
arises from the terms p, caused by the intrinsic proton
spin. In Li isotopes the expectation value of intrinsic spin
(Sp ) has proved to be (S„,) = 0.5 for all Li, Li, and

Li. From (S„,) = 0.5 we obtain p„=2.79p~ for all
Li isotopes. On the other hand, in B isotopes we have

(S„,) = 0.35 as shown in Table III. Prom this smaller
magnitude of (S„,) = 0.35, we get a smaller magnitude
of p, 1.8@~ for B isotopes. Below we discuss the re-
sults (S„,) = 0.35 in 8 isotopes and (S„,) = 0.5 in Li
isotopes. We can get (L„,) + (L,) = 1.15 by using the
relation (Sp, ) + (Lp, ) + (L,) = 2. It implies that the
AMD ground states of B isotopes include a component
with total orbital angular momentum L = 2 as well as a
component with L = 1. The inclusion of the component
L = 2 can be also shown by calculating the magnitude
(L ). As shown in Table III, calculated values of (L2) are
2.8, 2.7, 2.8, 2.9, and 2.9 for B B B B, and B,
respectively, from which the percentage of the component
L = 2 is easily estimated to be almost uniformly 20%. In
Li isotopes (S„,) = 0.5 means (I„,) +(L„,) = 1.0, which,
however, does not assure the pure I = 1 state. We have
calculated the magnitude (L2) and have found that (L )
is 2.0 for all nuclei Li, Li, and Li, which implies that
the AMD wave functions of the Li isotopes are the pure
L = 1 states with no mixing of the component L = 2.

In Li and Li, we can easily explain as follows why
the wave functions contain purely the L = 1 component.
Since Li has the o. + t cluster structure, the orbital an-
gular momentum is carried simply by the relative mo-
tion between the clusters. The negative-parity condition
in the ground state permits only the state with I = 1
&Gm two possibilities of L = 1, 2. In Li with the shell-
model-like structure, neutrons construct a closed shell
and therefore the orbital angular momentum L = 1 is
caused by a proton in the p-shell orbit. In the case of

B, we can make a detailed analysis of the mixing of
the L = 1 and 2 states in the AMD wave function in the
shell-model limit. We give the analyses of B and also
Li in the Appendix.

We can discuss the possible values of (Sp, ) in Li and
B isotopes if we first admit the fact that Li isotopes have
pure L = 1 states, while B isotopes contain the mixing of
the components with L = 1 and 2. First, in Li isotopes,
by introducing the condition of L = 1 and S =

2 into the
relation (L,)+(S,) = 2, we immediately obtain (I ) = 1
and (S,) = 2, namely, the alignment of the intrinsic spin
along the z axis. On the other hand, in B isotopes the
mixing of the L = 2 component makes (L,) ) 1, which
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causes (8, ) ( 2. In other words, the intrinsic spin is
tilted from the z axis.

As mentioned above, the N dependence of the mag-
netic moments is mainly due to the Ã dependence of
the orbital-angular-momentum term p~. We have seen
that in B isotopes (I„,) + (L,) is almost uniform,
(Lz, ) + (L,) 1.15. However, each value of (Lz, ) and
(I ) is not uniform, but changes with the neutron num-
ber ¹ In B the neutrons in the closed shell make
(L,) = 0 and in this case (L„,) is largest with a mag-
nitude about 1.15. Then p~ = (Lz, )p~ is largest for

B in B isotopes, resulting in the largest magnetic mo-
ments of B. On the other hand, in other B isotopes
components with the total orbital angular momentum of
neutrons with L„g0 is mixed, which is found by ana-
lyzing the value of (J ) = (L ) in Table III. The mixing
of nonzero I components in B isotopes other than B
gives the nonzero expectation value of (I,), which gen-
erally results in the reduction of (L„,) smaller than 1.15.
As a result, the magnetic moments are smaller than that
of B. In this sense, what causes the N dependence of
the magnetic moments is considered to be the mixing
of L g 0 components, which must be sensitive to the
neutron number %.

In summary, it has been found that the general devi-
ation of the p moments of B isotopes from the Schmidt
value originates from the angular-momentum-coupling
correlation which causes the mixing of the L = 1 com-
ponent with the L = 2 component, while the N depen-
dence originates from the coupling correlation of the or-
bital angular momentum of neutrons with that of pro-
tons. These correlations of the angular momentum cou-
pling are caused by the clustering structure. Our results
show that the magnetic dipole moments are not sensitive
to the relative distance between clusters, but give impor-
tant information on the angular momentum coupling of
the clustering structure.

In contrast to magnetic dipole moments, electric
quadrupole moments are sensitive to the relative distance
between clusters. In the following discussion of the N de-
pendence of the electric quadrupole moments, we try to
decompose the calculated Q moments into two compo-
nents: The Erst component is due to spatial clustering,
and the second component is due to other properties of
the AMD wave function including the cluster coupling
of angular momenta. We consider that the second com-
ponents are given by the Q moments calculated by the
shell-model-limit wave functions defined above. They are
shown in Table III together with the Q moments of the
AMD calculations and are 25.9, 28.6, 22.5, 22.6, and 24.9
emb for B, B, B, B, and B, respectively. These
values show that the second components in the nuclei
with K g 8 are smaller than the one in B with N = 8.
With similar argument as for p moments, we expect that
the reduction of the Q moments in B isotopes other than

B may be explained as being due to the mixing of
the components with the nonzero neutron orbital angu-
lar momentum. By subtracting these second components
from the total Q moments (namely, the Q moments of the
AMD calculations), we can estimate the contribution of
the first component due to the spatial clustering as 8.1,

3.1, 11.8, 19.6, and 25.9 emb for B, B, B, B, and
B, respectively. This component is smallest in B and

becomes larger as the neutron number increases toward
the neutron drip line. Such dependence on N of the first
component is indeed consistent with the drastic structure
change mentioned in the previous subsection. Thus it is
proved that the systematic N-dependent features of ex-
perimental d.ata are semiquantitatively explained by the
structure change given by our AMD results.

We should recall that the nucleus with a well-developed
clustering structure may have a very large electric
quadrupole moment due to the outer long tail of the in-
tercluster relative motion, which cannot necessarily be
described with the simple AMD wave function. In fact,
the large absolute value of the quadrupole moment of
Li has been explained by improving the intercluster rel-

ative wave function of AMD calculations. It is not ob-
vious whether or not the intercluster wave function has
an outer long tail in neutron-rich nuclei with such ex-
otic clusters that are not as stable as the normal clusters
seen in ordinary nuclei. However, it is a future problem
to make detailed investigations on the intercluster mo-
tion and on the possible large magnitude of the electric
quadrupole moments.

VI. SUMMARY

A systematic study of the structure of odd-even B iso-
topes has been made with the AMD method. Radii, en-
ergy spectra, and other quantities have been reproduced
rather well. An especially good reproduction of electro-
magnetic properties such as magnetic dipole moments
and electric quadrupole moments has been obtained. It
is to be stressed here that the good reproduction of the
electromagnetic properties is obtained. without using any
effective charges and efFective g factors at all.

The theoretical results have shown a drastic change of
the intrinsic structure with an increase of the neutron
number. The clustering structure in B disappears and
changes to the shell-model-like structure in B. As the
neutron number N increases, the clustering structure be-
comes prominent again in the N & 8 region toward the
neutron drip line. Such a drastic structure change with
neutron number % has been explained in connection with
the shell eGect in neutron orbits. We have discussed the
interesting features in neutron-rich nuclei near the drip
line, possible neutron-skin structure, and unfamiliar ex-
otic clusters such as He-like, He-like, and Li-like clus-
ters. It should be noted that the clustering structure dis-
cussed here is very difFerent &om the cluster structure
d.iscussed in ordinary stable nuclei. Clusters discussed in
stable nuclei are hard and diFicult to be excited. But the
exotic clusters discussed here such as the He-like cluster
are all soft and easy to be broken.

Systematic experimental data of the electromagnetic
properties have been discussed in relation to the struc-
ture change. It has been found that magnetic dipole mo-
ments are not sensitive to the spatial clustering, but are
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governed by the cluster coupling of the angular momen-
tum. The uniforID deviation of the p moments in B iso-
topes &om the Schmidt value for the @3~2 proton has
been explained as being due to the tilted total intrinsic
spin of protons, which is caused by the mixing of the
L = 2 component with the L = 1 component, while the
N dependence in B isotopes has been explained as being
due to the mixing of the component with the nonzero to-
tal orbital angular momentum of neutrons. In the case of
the Q moments, the N dependence has been explained in
terms of the two effects of the clustering structure: One
is the spatial clustering, and the other is the cluster cou-
pling of angular momenta.

There are left the problems about the effective interac-
tion in exotic nuclei. %'e have tried to include a suitable
amount of Bartlett and Heisenberg components into the
central nuclear force in addition to signer and Majo-
rana components. The electric quadrupole moments have
been compared with the results without the additional
components in Fig. 5. We have found that only small
differences exist between these calculated results. For
other quantities investigated in this paper, we could not
6nd significant difFerences due to the addition of Bartlett
and Heisenberg components. Thus we have assured that
the Bartlett and Heisenberg components do not make
much of a difFerence at least on the qualitative features
of the nuclear structure. We have studied the efFects of
changing the Majorana parameter and those of omitting
the density-dependence force on the calculated values of
several physical quantities. The calculated results of the
magnetic dipole moments have been found not to be so
sensitive to the efFective nuclear force, from which we can
assert the reliability of our present analyses. However,
some quantities such as energies and radii are sensitive
to the effective interaction, and therefore it is a future
problem to make detailed investigations on the choice
of the interaction in order to get a better description of
these quantities.

As we already mentioned, the results of our AMD
study of B isotopes are quite similar to those of the
previous study of Ref. [14] with respect to the structure
change as a function of neutron number. It is to be noted
here that some recent studies of exotic nuclei by theoret-
ical approaches other than AMD are now giving results
which are in good accordance with the AMD results. In
the case of Be isotopes, the study of Ref. [45] by the use

of the unrestricted Hartree-Fock method has given den-
sity distributions of Be, Be, Be, and Be which are
quite similar to our AMD results of Refs. [10] and [24];
namely, Be has o.-o. structure, ~ Be is shell-model like,
and Be has again a clustering structure. In the case
of Li isotopes, the authors of Ref. [46] have adopted the
microscopic multicluster model and have reproduced well
the magnetic moments and electric quadrupole moments
of Li and Li. For "Li, they adopt an o.+t cluster config-
uration. Our AMD calculation has shown that the AMD
wave function for Li has just the o, + t clustering struc-
ture. For Li, they adopt an o. + t+ n+ n four-cluster
con6guration and the resultant wave function is close to
the harmonic-oscillator shell-model wave function except
for the extreme tail region. Our AMD calculation has
shown that the AMD wave function for Li has just a
structure similar to the o.+4+ n+ n clustering structure,
but is much closer to the shell-model wave function than
in the case of Li.
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APPENDIX: SPIN COUPLING

Here we consider the single-particle wave functions

p; = P'* a„!v, (i = 1 —3), (Al)

where 7, i.s the isespin wave function with o.; standing

for proton or neutron and o.~~ is the spin wave function
with p; =

2 or —2. The spatial wave function P~* is the
eigenstate of the orbital angular momentum with mag-
nitude I; and the z component m, . Using the relation of
the angular momentum coupling,

~jism])~j2m2) =
]i.—i'll& J&i.+j2

(jy j2mym2~ JM) j~]j 2 JM), M = my + m2, (A2)

~~ ~~~r a ) ) .) +Is am, m, ~,b„,„,i,
J Ll Se

(ISML, Ms~ JK),
(l4mm3 ~+MI ) (~ll2m&m2 ]tm)

( —,'~~.I~M. ) (-.'-,'~.~. l ~),
my + m2, ML, ——mg + m2+ m3,
P~+ P2, ~s = py+ pg+ p3,
Ml. + Mg —m, + m, + m, + p, + p, + p, ,

l1 l2 l3

gJKLS
Il
mlm2m3
gSe

P1P2, g3

we can expand the product of the wave functions pqp2p3 with the total-angular-momentum eigenstates as
s- J

glpap3 = [~/ o /] ~/

(A3)
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where the notation [. ] stands for the coupling of the angular momentum; for example, [gP'P']M represents the state
with angular momentum J and its z component M, which is obtained by coupling the states P' and gP'. Hence the
total-angular-momentum-projected state 4M~ of the antisymmetrized wave function A(p1p2ps) is written as

O'M~ = I'M~&(V'1 V'2V'2)

Jg Ss
+~1 ~2+~s ) ) +is mmmm m2abpypgpg

Ll Ss

- J
pig pig yl3 [

1/2 1/2] s 1/2

M
(A4)

where PM~ is the projection operator of the total angular momentum.
VVe first consider the AMD wave function of 8 in the shell-madel limit. When we take the z axis along the

principal axis with the smallest moment of inertia, Z; (i =1—5) of protons in the AMD wave function shown in Fig. 10
are written as (0, 0, —c1) and (0, 0, c2) for p $'s and (b, 0, —c1), ( b, 0—, —c1), and (0, 0, c2) for p f's, where b, c1, and c2
are positive constants. In the shell-model limit, in other words, in the small limit of 6, c~, and c2, it is easily seen that
the AMD wave function written as a Slater determinant of Gaussian wave packets becomes the same wave function as
the shell-model wave function in which p $ s occupy the harmonic-oscillator orbits (n, n„,n, ) = (0, 0, 0) and (0, 0, 1)
and p t's occupy the orbits (n, n„,n, ) = (0, 0, 0), (0,0,1), and (1,0,0). Therefore we should consider three protons in
the Op orbits. We need not consider neutrons because they compose the closed-shell configurations. Considering the
orthogonalization of single-particle wave functions due to the antisymmetrization and the condition with J =

2 and
K = —for the ground state, we can regard three protons as a p g and a p $ in the (lm) = (10) state and a p g in the
(lm) = (ll) state, namely,

l g
——l2 ——l3 ——1) o.] A'2 O.3 —P )

(m1, m2, ms) = {0,0, 1), {p,1, p2, ps) = (-'„—-'„—', ) .

Because of the condition l~ ——l2 ——l3 ——1 and o.~
——o.2 ——o.3 ——p, antisymmetrization is achieved by simultaneous

permutations on (m1, m2, ms) and (p1, p2, ps). In this case Eq. (A4) can be rewritten as

OMa ——~„(1)~p(2)~y(3)) ) Cis dilsa 4 (1)P (2) P (3) [o / (1)o / (2)]'o. / (3)
Ll Ss

(A6)

where dils, is defined as A'(a. . .b ',„,) with A' standing for antisymmetrization with respect to the indices
(m;, p;) (i =1—3). Then the squared amplitude of the component state with L and S in the total-angular-momentum-
projected state @~M is calculated as

El. I&r', s d«s I'

Eis Ei. I&is d«s. l' (A7)

With this equation, we can show that C ~M~ with J =
2 and K =

2 of B has the components of (L, S) = (1, 2) and
(2, 2) with the squared amplitudes s and s, respectively, &om which it follows that the expectation values of L2 and
S„are2.67 and 0.75, respectively. The expectation values of L„„S„withthe state @~M are calculated easily by
using Eq. (A6). For example, the expectation value of I~, is expressed as

(@M~ILp. I@'M~) Er.s El I+i~s d«s
I EM M l(LsMiMsl™)l'Mi

(C'M~I~M~) Eis El. I+if d«s
I

(A8)

As a result, the expectation values of L„,and S„with 4M~ (J, M, A = 2, 2, 2) are found to be 1.13 and 0.37,
respectively.

Next we consider the AMD wave function of Li in the shell-model limit. In the case of Li, the three nucleons in Op
orbits which we should consider are a n g and a n $ in (lm) = (10) and a p t in (lm) = (10) because the K quantum
number should be chosen to be 2 in the ground state C~~/ of Li in the AMD calculation. Using Eq. (A4) with

l g
——l2 ——L3

——1, o.g
——o.2 ——n) O.3

——P )

(ml m2 ms) = (0, 0 0), (pl p2 ps) {2' 2' 2) (A9)

we can show that 4M~ with (J, K) = ( —,2) has no other component than the state with (L, S) = (1, —). The state
of 4MIr with (J, K) = (2, 2) with I = 1 is composed of two states: One is the state constructed by coupling L = 0
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and Lp = 1, and the other is the state with the nonzero total orbital angular momentum of neutrons L„=2 which
couples with Lp ——1 to L = 1. The total intrinsic spin of neutrons S is equal to 0, while that of protons S„is i.
With a slight modification to the calculations of the isB case, the amplitude of the components of (L„,L„)= (1,0)
and (L„,L ) = (1,2) are found to be

@
and 9, respectively. The expectation values are obtained as (Lz) = 3.08,

(Lz) = 2.67, (Sz) = 0.75, and (Sz) = 0. The expectation values of the z components of the vector operators L~,
L, and S„with the state 4~~~ (J, M, K = s, i, sz) are also easily calculated as (I„)= 0.33, (L ) = 0.66, and
(S„,) = 0.S.
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