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Structure of Li and Be isotopes studied with antisymmetrized molecular dynamics
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Structure of odd-even and even-even isotopes of I i and Be is studied systematically with antisym-
metrized molecular dynamics which is a theoretical method free from any model assumptions such as
the existence of clustering. The construction of energy-minimum intrinsic states with de6nite parity
is made by the use of the frictional cooling method. Angular momentum projection is applied to
these intrinsic states in order to obtain the eigenstates of angular momentum. It is shown that the
clustering structure appears in the nuclei in the N —Z region with N and Z standing for the neu-
tron and proton numbers, respectively. The clustering structure changes toward the shell-model-like
structure as N increases to around N 8. Furthermore appearance of new-type clustering features
is suggested in the neutron-richer region with N ) 8. Energy spectra and other quantities are shown
to be reproduced well. Especially the calculated magnetic moments describe the observed data quite
well, and the neutron number dependence of the observed magnetic moments is explained as the
reQection of the structure change of the isotopes from the clustering structure to the shell-model-like
structure. It is indicated that the density dependence of the efFective interaction is important.

PACS number(s): 21.10.—k, 27.20.+n, 02.70.Ns, 21.60.—n

I. INTRODUCTION

A lot of information about neutron-rich nuclei has been
obtained by recent experiments with radioactive nuclear
beams [1—4]. Systematic studies in a single theoretical
framework are desired for those newly observed proper-
ties of neutron-rich nuclei together with ordinary nuclei.
We expect that such a study can check the consistency
between the theoretical understanding of unfamiliar fea-
tures of exotic nuclei and that of ordinary nuclei. How-
ever, little systematic theoretical research has been car-
ried out on light nuclei.

Most of theoretical studies for neutron-rich nuclei have
treated only one nucleus or a few nuclei at most. For ex-
ample, the three-body model approaches [5] have been
applied to Li by regarding it as a Li+2n system and
also applied to He by regarding it as an o, + 2n system.
Although these models have given realistic descriptions of
the neutron-halo structure [6—8] of these nuclei, they are
not necessarily useful for other Li and He isotopes. Even
in the study of Li, there remains an important prob-
lem of treating Li core excitation. The variational shell
model [9] has been successfully used to study the system
of Be which is also considered to have the neutron-halo
structure. It is not clear, however, whether or not this
model is useful for other Be isotopes with remarkable
cluster structure as seen in Be.

There are many other neutron-rich nuclei which have
been hardly studied yet. In the neutron-rich side of
Li and Be isotopes, the existence of cluster structure
should be investigated theoretically, since it is already
well known that the clustering structure appears in the
ordinary N Z region with N and Z standing for the
neutron and proton numbers, respectively, as seen in the
t + o. cluster structure of Li and in the o. + o. clus-
ter structure of Be [10—14]. The recent experimental

developments demand the theoretical researches in the
neutron-rich region which can answer the existence of
cluster structure as well as the existence of the neutron-
halo structure in the exotic neutron-rich region system-
atically.

For most theoretical frameworks for light nuclei, it is
not easy to make systematic researches on the isotopes
ranging &om ordinary nuclei to neutron-rich nuclei. First
of all, the applicability of mean-field approaches is not
necessarily assured in light nuclei due to the existence
of the cluster structure. In fact it is very difFicult for
the shell model to describe such light nuclei as Li and
Be which are known to have the well-developed cluster

structure. The properties of these ordinary light nuclei
with the cluster structure have been studied well with the
cluster model. In the model the existence of clusters is as-
sumed a priori. Therefore it is diKcult to apply the clus-
ter model to the study of e~otic nuclei for which we have
little information or observed data. If a nucleus has shell-
model-like structure instead of cluster structure, the clus-
ter model does not provide a good approach. To obtain
a systematic understanding of the isotopes covering Rom
ordinary region to neutron-rich exotic region, it is desir-
able to use a theoretical framework which can describe
both shell-model-like states and clustering states. The
method of antisymmetrized molecular dynamics (AMD)
[15—27] is the very theoretical framework that satisfies
these requirements and enables us to study isotopes of
light nuclei systematically in one frameurork without any
model assumptions.

AMD is a theory which has been developed intend-
ing originally to construct a new microscopic simulation
method for the study of heavy-ion reactions. Contrary to
other microscopic simulation methods for heavy-ion re-
actions [28,29], AMD is a quantum-mechanical method
which describes the time development of the system wave
function. The total wave function of AMD is given as a
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Slater determinant of single-particle wave functions rep-
resented by Gaussian wave packets. AMD describes the
reaction process by calculating the time evolution of the
6A variables representing the position and momentum
centers of the Gaussian wave packets. The initialization
of the collision calculation, namely the construction of
the ground-state wave functions for the colliding nuclei,
demands us to determine these variables for the ground
states. It is achieved by the &ictional cooling method
which is a kind of variational calculation. The method
to construct the minimum-energy wave function by the
use of the frictional cooling technique in AMD provides
a novel and powerful tool for the nuclear structure study
because we have no need at all to rely on model assump-
tions. According to some preliminary studies [15,16], the
AMD wave functions obtained by the frictional cooling
method can describe well both the shell-model-like struc-
ture and the clustering structure. For instance, the AMD
wave function of the 0 ground state has proved to be
of the double closed-shell configuration, (Os) (Op), and
that of the Be ground state has proved to have a well-
developed dumbbell structure of a+ o.. Recently AMD
was successfully applied to the study of the structure
change along the yrast line of Ne [27]. In this study
the cranked intrinsic state was constructed for each spin-
parity state along the yrast line by the use of the fric-
tional cooling method with constraint on the expecta-
tion value of the angular momentum. This AMD ap-
proach enabled. us, for the first time without introducing
any model assumptions, to describe the quite dramatic
change of structure along the Ne yrast line: namely the
o.+iso clustering structure in low-spin region, the (sd)
shell-model-like structure around the band terminal 8+
state, and the appearance of " C+2o."-like structure in
10+ and 12+ states.

The purpose of this paper is to perform systematic
study on the structure of Li and Be isotopes with AMD.
By virtue of AMD, it is expected that we can trace the
structure change with the increase of the neutron number
N even if the structure changes so drastically between the
cluster structure to the shell-model-like structure. Spe-
cific problems we expect to elucidate in our systematic
study of these isotopes include the following ones. We
expect the answer is obtained for the question whether
the clustering structure observed in the N = Z region
persists or fades out as N increases. Another question to
be answered is why the magnetic moment of the exotic
nucleus Li with neutron halo is close to the Schmidt
value while that of the ordinary nucleus Li is fairly dif-
ferent &om the Schmidt value.

As for the problem about the formation and dissolu-
tion of clusters in neutron-rich nuclei, we have pioneer-
ing work by Seya, Kohno, and Nagata [30] on Be and
B isotopes. In this work of Ref. [30], the molecular or-
bital model was adopted which described the system as
composed of an n-n core and surrounding neutrons (and
proton in B isotopes). It was found that the distance
between two o. 's changed, with the increase of N, from
the large values in Be and B to the very small values
in Be and B which have the magic number 2V=8 for
neutrons. Furthermore, as a very interesting result, it

was found that the n-o. distance increased again as N
increased beyond N = 8 toward the neutron dripline. A
drawback of this pioneering work is that the existence of
an o.-n core was postulated &om the beginning. In our
present approach with AMD, we can check whether this
postulation is justi6ed or not. In particular, we expect
that we can answer how plausible the existence of the
clustering feature is in the neutron dripline region.

This paper is organized as follows. In the next sec-
tion (Sec. II) we explain the formulation of AMD for our
present study of nuclear structure. Namely we explain
the AMD wave function, the &ictional cooling method,
and the angular momentum projection. We also describe
the extended AMD wave function improved by a superpo-
sition of Slater determinants. In Sec. III, the two-nucleon
interaction used in this paper is expressed. The calcu-
lated results are given and are compared with data in
Sec. IV. Energy spectra and other quantities are shown
to be well reproduced. Especially the systematic change
of the observed magnetic dipole moments are reproduced
very well. It will be shown that the density-dependent
interaction is often important to explain the observed
data. We will show that a superposition of AMD Slater
determinants d.escribes the long tail of the wave function
in two cases, the neutron halo structure in Be and the
outer tail of the relative wave function of n-t clusters in
Li. In Sec. V we will discuss the systematic change of

the intrinsic state. The calculated results show the well-
developed cluster structure in the nuclei with N Z and
the shell-model-like structure in the nuclei with the neu-
tron magic number N = 8. It means that the shell effects
of neutron orbits play an important role in the structure
of neutron-rich nuclei. The change of the observed rnag-
netic moment &om Li to Li is explained mainly by
the change of the clustering structure of 7Li to the shell-
model-like structure of Li. Possible existence of the
clustering feature is seen in the neutron-richer nuclei like

Be. Finally in Sec. VI we give a summary.

II. FORMULATION OF AND

The AMD (antisymmetrized molecular dynamics) is
a theory which is applicable both to nuclear structure
problems and to heavy-ion collision problems. Here we
only explain the AMD IITamework for the sake of nuclear
structure study. As for the AMD theory for the sake of
nuclear reaction study, the reader is referred to Refs. [18]
and [19]. Since the AMD framework for the structure
study has recently been given also in Ref. [27], our ex-
planation here is brief, keeping a self-contained style.

A. Wave function of AND

In AMD the wave function of an A-nucleon system l4)
is expressed by a Slater determinant,
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where y, is the spin isospin wave function of jth single-
particle state, where o.~ indicates the spin isospin, o.~ =
p t, p $, n t, or n $. The spatial wave function of the
jth single-particle state Pz, is represented by a Gaussian
wave packet,

z, b'
exp —vl r —

l
+ —Z

~v) 2

r

. 2
oc exp —v(r —D~) + —K~ . r (2)

Z,. = +vD~+ K~,
2h v

with P standing for the parity inversion operator. Since
difFerent parity states of a nucleus usually have difFer-
ent structures, this projection is indispensable to discuss
the structure of each parity state. Furthermore we often
make a linear combination of two AMD Slater determi-
nants for more precise study of the nuclear structure,

lc+(z„.. . , z~z'„. . . , z'„,c))

whose center is expressed with a complex parameter Z~,
which v is the width of the wave packet common to
all nucleons. Thus the wave function of the system
l4(Z)) is parametrized by complex parameters (Z)
(zi, Z2, ",z~)

The wave function l@(z)) of Eq. (1) is the same as
the wave function of the fermionic molecular dynamics
proposed by Feldmeier [31]. Furthermore, l@(z)) can be
regarded as a special case of the Brink-type cluster model
wave function [32] where every cluster is composed of a
single nucleon. When the parameters of the Brink-type
wave function are treated as time-dependent parameters
by using the time-dependent variational principle, the
Brink-type cluster model is called the time-dependent
cluster model (TDCM) [33]. Therefore, l4(z)) can be
also regarded as a special case of the TDCM wave func-
tion. The reason we use the name AMD for our present
approach to nuclear structure problems is mainly because
our approach is characteristic in the point that it is al-
ways combined with the flictional cooling method which
determines the parameters of the wave function often un-
der given constraints. Other characteristic points of our
approach are the use of projection of parity and angu-
lar momentum and the &equent use of the superposition
of Slater determinants. (In the case of heavy-ion colli-
sion problems, the reason why we use the name AMD is
mainly because our approach is characteristic in the point
that the stochastic two-nucleon collisions are treated by
introducing the physical nucleon coordinates. )

For the study of nuclear structure, the AMD wave func-
tion l4'(Z)) explained above is projected to the parity
eigenstate,

l4 (Zg, Z2, . . . , Z~)) = (1 + P) lC (Zg, Z2, . . . , Z~)),
(3)

Note that the number of complex parameters of the wave
function of Eq. (4) is 6A + 1 while that of the original
AMD is 3A. In this paper, for the sake of convenience,
we call the wave function of Eq. (3) simply the AMD
wave function, and the latter one in Eq. (4) the extended
AMD (EAMD) wave function.

B. Frictional cooling method

As mentioned in subsection A, the AMD wave func-
tion of a system lC'+(Z)) is parametrized by the centers
of Gaussian wave packets (Z) = (Zq, Z2, . . . , Z~). Let
us consider constructing the ground-state wave function
of the system. First we choose some initial parameters
(Z) of all A nucleons rather arbitrarily. The initial wave
function l4+ (Z)) with this initial choice of (Z) represents
in general a highly excited state. We should determine
the parameters (Z) which give the minimum energy for
the expectation value of the Hamiltonian H

E E z z. (e+(Z) lIIlc'+(z))

For this purpose we introduce &ictional cooling equations
for (Z) expressed as

dZA, . 1 OE= (A+ ip)—,and c.c. ,dt
(6)

with arbitrary real numbers A and p & 0. It is easily
proved that the energy decreases with time if the system
follows this equation:

dE .BE dZ; BE dz,*

dt - BZ; dt Bz,* dt.
2p .OE OE
n &;BZ, BZ;

Then the wave function of the minimum-energy state
is obtained after sufhcient cooling time. This cooling
method explained above is called the frictional cooling
method. Obviously the frictional cooling method can be
used not only in the AMD method but also in the general
variational calculation with any kind of wave functions
which are parametrized by complex parameters. There-
fore just in the same way as AMD, we can obtain the
minimum-energy state of the extended AMD wave func-
tion described in subsection A.

C. Constrained frictional cooling method

W = W(z*, Z) = given number .

The &ictional cooling method can be extended so as
to construct the minimum-energy state with a given con-
straint. The constraint is written by a constraint function
as

The constraint function is restricted to be real. An ex-
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ample of the constraint is the magnitude of the orbital
angular momentum. In this case the constraint function
W(Z', Z) is chosen to be

W(Z', Z) = L(Z', Z) . L(z*,Z),

We introduce the following frictional cooling equation in-
stead of Eq. (6):

dzq . 1 BE BW )= (A + ip) — +g,— and c.c. ,

First we assume that we have initial coordinates (Z'"~)
which satisfy the given condition

with arbitrary real numbers A and p ( 0. The multiplier
function g is determined by the condition of conserving
the value of the constraint function W:

—W(z*, z) = 0 .

W(Z'", Z'"
) = given number . By using Eq. (10) we have

—„,W(Z*, Z) =)
BZ~

A

= (A+ iy) —. )ih.i=1

BW dzq l
BZ*. dt )

~BW BE BW BWI . —1 . ~BW BE BW BW~

2 2 2 2 j1 2 2 2 2
OZ. OZ* OZ. BZ*. ih . OZ*. OZ OZ* BZ-

g BW BW

.Al BW BE
p, ) Bzi Bz .

.Ai BW BE
BZ. Bz~)

(is)

Hence from Eqs. (11) and (12) g is determined as follows: to extend this constrained frictional cooling method to
the general case with many constraints and also to the
extended AMD wave function.

The most important feature of the construction of the
wave function in AMD by the use of the &ictional cool-
ing method with or without the constraint is that the
wave function can be obtained without prejudice, i.e. ,
free &om any model assumptions such as the existence of
clustering. If the resulting wave function proves to have
clustering structure, the existence of clustering can be in-
sisted more convincingly than other usual cluster model
studies. AMD is a new powerful method for the study of
the formation and dissolution of clusters in nuclei.

Cooling of the total energy is assured for arbitrary A if p
is negative, because there holds the following relation:

d — . (BE dZ„* BE dz„lE A.

dt - iBZ& dt Bzg, dt i
dzg BW ) dzq

7y

(p —iA dt Bzq) dt

dZ„BW) dZ,+
~@+iA dt Bzk) dt

2@A dzg dzA,

@2+ A2 dt dt d
rl

2@A ~ 8Zg GZg

(i4)

with arbitrary real numbers A and p ( 0. It is easy

D. Use of constrained frictional cooling method in
the actual calculation of extended AND

When we calculate the &ictional cooling in the frame-
work of the extended AMD (EAMD), we usually en-
counter the following problem. Let us consider our
present EAMD calculation in which we adopt a super-
position of two AMD Slater determinants I4~ (Z)) and
I4'z (Z')). In many cases, I4& (Z)) and I4& (Z')) after
the &ictional cooling have proved to be the same except
for the difference of their spatial orientations. However,
as we explain in the next subsection, in our AMD study
we always make angular momentum projection &om the
AMD and EAMD wave functions in order to get eigen-
states of the total angular momentum. Therefore the
above EAMD result that IC & (Z)) and IC2 (Z')) are the
same except for their spatial orientations does not meet
the aim of the EAMD calculation to improve the AMD
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calculation.
The method which we adopt in this paper to avoid the

above-mentioned difhculty of the EAMD is to impose a
constraint to the &ictional cooling procedure. The con-
straint is that the spatial orientations of IOi (Z)) and
]4+(Z')) should be the same. The spatial orientations of
l@i (Z)) and I4'z (Z')) are defined in the following way.
As we will report later in this paper, the AMD results
show that in Li isotopes wave-packet centers of two pro-
tons with spin-up and -down are located at almost the
same spatial points and the wave-packet center of the last
proton is located at a difFerent spatial point, while in Be
isotopes we have spatially separated two pairs of protons
with spin-up and -down and within each pair two protons
are located closely to each other. Therefore as the defini-
tion of the orientation of the AMD wave function for Li
and Be isotopes, we adopt the direction which connects
two groups of protons.

The constraint function W(Z*, Z", Z, Z') is given as
follows:

Y = ) ReZ — ) ReZ, ,
1 I

ac&i jE&~

Y' = ) ReZ — ) ReZ',
jGG& jGGa

7 = (JMkOI JM) ) (JK'kvI JK)

x d0Dz-', z- 0 C+ T„B0 4+

where PM~ is a total-angular-momentum projection op-
erator,

P~~ =. d0DM*~ 0 B 0 (17)

with R(Q) standing for the rotation operator by Euler
angle 0, and T~ is a given tensor operator of rank k. K
should be chosen so as to get the minimum expectation
value of the Hamiltonian in each system. The K mix-
ing, namely the diagonalization of the Hamiltonian with
respect to the K quantum number, is not made in most
cases, but in some cases we show results obtained by K-
mixing calculation. The spin J of the calculated ground
state has been found to be the same as the observed spin
value of the ground state for almost every system studied
here. In the practical calculation, the three-dimensional
integral is evaluated numerically by taking a finite num-
ber of mesh points of the Euler angle 0.

where Gq and G2 stand for two groups of protons ex-
plained above, and n(Gi) and n(G2) are numbers (one
or two) of protons contained in the groups Gi and G2,
respectively. Here, of course, wave-packet centers (Z~j
and (Z'. ) are those of l@i (Z)) and I@2 (Z')), respectively.
Initial conditions (Z'"t} and $Z"" ) for the procedure
of the constrained &ictional cooling are chosen so as to
satisfy W(Z'" *, Z"" ', Z'", Z""') = 1, but the protons
belonging to the same group G~ or G2 need not to be
located closely to each other in the initial configurations

(Z int ) and (Z Iint )

E. Projection to total angular momentum
eigenstates

The wave function of the system should be a total-
angular-momentum eigenstate. It is, however, difIj.cult to
cool the total-angular-momentum projected state of the
AMD wave function. We regard the minimum-energy
state which is obtained with the cooling method de-
scribed in subsections B and C as the intrinsic state of the
system. We project the intrinsic wave function IC'+) to
the total-angular-momentum eigenstates, and then cal-
culate the expectation values of operators in order to
compare with experimental data:

III. INTERACTION

For the efFective two-nucleon interaction, we have
adopted the Volkov No. 1 force [34] as the central force.
The Volkov force contains only Wigner and Majorana
components. For some nuclei treated in this paper,
we have performed calculations by adding appropriate
Bartlett and Heisenberg components to the Volkov force.
But the results have proved to be not so much afFected
by the additional components at least for the quantities
studied in this paper. We are now performing more de-
tailed investigations about this point which will be re-
ported elsewhere. As for the two-body spin-orbit force
Vl, ~ we have adopted the G3RS force [35] expressed as

Vl, g = (ul exp( rlr ) + ull e—xp( —rllr ))
xP( 0)L (Si + S2),

L = r x —i—,uI ———ulI ——900 MeV,Br) '

Kl ——5.0 fm, Kll ——2.778 fm

with r denoting the two-nucleon relative coordinate and
with P( 0) denoting the projection operator onto the
triplet odd ( 0) two-nucleon state. Coulomb interaction
is approximated by a sum of seven Gaussians following
the technique of Ref. [19]. This approximation is valid for
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the range of the internucleon distance &om 1 to 20 fm,
and is precise enough for the study of nuclear structure.
In order to study the efFect of the density dependent in-
teraction, we have also used the case 3 of the MV1 force

I

of Ref. [36j, which contains a zero-range three-body in-

teraction VDD in addition to the two-body interaction
(2) .DD'

(2)— (r) f r l'
Vpp —(1 —m —mP P ) Ve exp —

(

—
(

+ Vx exp —
(

—
( )kr~) (TR)

V~ ———83.34 MeV, r~ ——1.60 fm, V~ ——104.86 MeV, r~ ——0.82 fm,

V~D ——v b(rz —r2)h(rz —rs), v( = 4000 MeV fm

where P and P stand for the spin and isospin exchange
operators, respectively. The two-body interaction part

VDD j.s constructed &om the Volkov No. 1 force by weak-(2) ~

ening the strength of its repulsive part &om V~ ——144.86
MeV to V~ ——104.86 MeV. We have compared the re-
sults with and without the three-body interaction. The
optimum width parameter v of wave packets is chosen
for each parity of the individual system so as to get the
minimum energy.

IV. CALCULATED RESULTS AND
COMPARISON %PITH EXPERIMENTS

The structure of odd-even and even-even isotopes of
Li and Be has been studied with AMD and the results
are reported in this section. For Be isotopes, studies
have been made also with the extended AMD. We have
checked the values of the momentum parameters (K~,
j =. 1, . . . , A) of the AMD wave function obtained with
the frictional cooling method and have found that (K~)
parameters of all the nucleons are small in all the nuclei
studied here.

A. Binding energies and energy spectra

Figure 1 shows the binding energies of the ground
states of Li and Be isotopes. We have used the Majo-
rana parameter m = 0.56 in the case of no three-body
force (Volkov force) and m = 0.576 with the three-body
force (MV1 force). The optimum width parameters v are
shown in Table I. With both of the interactions, the bind-
ing energies are qualitatively reproduced for Li isotopes
and also for Be isotopes except for Be. In Li isotopes
the MV1 force gives better Gtting to data. The calcu-
lated result of Be is the binding energy of the lowest

state. Detailed discussions about the energy and the
parity of the Be ground state will be given later. The
relative difference of the binding energies between neigh-
boring nuclei is important to discuss the neutron halo
structure, since the density tail of the neutron halo must
be very sensitive to the binding energy of valence neu-
trons. Hence for the study of the neutron halo structure,

50-

40-
CD

30-
UJ
CDc 20-
Z3
C: 10-

~ exp.
(g)

C 0 (b)
I I I

7 9 11
nucleon number A

80

7p

~ 50-
~40-
C

.~ 30-
KQ

20

Be isotopes

8 10 12 14
nucleon number A

FIG. 1. Binding energies of Li and Be isotopes calculated
with (a) the Volkov force No. 1 (m = 0.56) and (b) the MVl
force (m = 0.576). Experimental data are also shown.

it is necessary to give careful consideration in choosing
the interaction parameters such as the Majorana param-
eter on which the energies depend rather sensitively.

The calculated energy spectra with and without the
three-body interaction are shown and are compared with
the observed data in Fig. 2 for Li isotopes and in Fig. 3
for Be isotopes. In the theoretical data with the three-
body force, the second J+ levels are obtained by diago-
nalizing the Hamiltonian matrix with respect to the K
quantum number in the spin J projected states. The di-
agonalization of the Hamiltonian gives almost the same
energy spectra of the lowest J+ states as the spectra
obtained without the K mixing. This means that K
is approximately a good quantum number in the low-
est J+ states projected from the AMD wave functions.
Comparing the spectra calculated with and without the
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'Be(+)
Be(—)

'Be(+)
'Be(—)
'Be(+)
' Be(+)
"Be(—)
"Be(—)
1lB (+)
"Be(+)
"Be(—)
"Be(+)
"Be(+)

e( ) = 0 MeVfm
m = 0.56

(fm )
0.215
0.230
0.250
0.245
0.235
0.230
0.225
0.220
0.220
0.215
0.210
0.205
0.210

= 4000 MeVfm
m = 0 576

(fm )
0.195
0.200
0.205
0.195
0.200
0.190
0.190
0.180
0.180
0.175
0.180
0.170
0.170

'Li( —)
'Li( —)
"Li(—)

0.230
0.210
0.195

0.200
0.].80
0.170

three-body force, it is found. that the states obtained with
the three-body force have larger moment of inertia. The
three-body force gives greater efFects on the energy difFer-
ence between normal parity and non-normal parity states
and the calculations with the three-body interaction are
seen to reproduce the energy spectra better except for
~Be

The results of the AMD calculation without the three-
bod. y force give larger value for this energy difI'erence than
the observed value in the system of most Li and Be iso-
topes. On the other hand, in the results with the three-
body force the excitation energies of non-normal parity
states come down and agree much better with the exper-
imental d.ata. In general non-normal parity states have
wider extension of the density distribution and therefore
they feel relatively weaker repulsive density-dependent
force than normal-parity states. It is the reason why the
calcu1ations with the three-body force give smaller ex-

TABLE I. The adopted @width parameters v of Be and Li
isotopes in the AMD calculations. They are chosen so as to
make the energies minimum.

16
14-

CD 12-
~ 10-

8-CB
CD
C

LLI

0
0-6$

O
LLI

16
+ 14-
CDg 12-
~ 10-
CD

6-
4-

Q
0-Cg

C3
X

UJ

1I6

+ 14-
CD 12-
~ 10-
CA

4-

C5 0-
0
X

UJ

5/2
7/2 5/2

7/2

W& s/'- 38
exp (a) (b)

Be(—)

3/2

1/2
11~
5/2 5/2

3/2 312

5/2
7/2

3/2
1/2
5/2

3/2

exp (a) (b)

'Be(-)

3
2 2

2

0 0 0
exp (a) (b)

Be(+)

exp (a) (b)

Be(+)

3/2

5/2
1/2

3/2

5/2
112
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The density-dependent force seems to be important es-
pecially for the system of Be. In terms of the shell
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model, the normal parity of the i Be system should be
negative, but it is experimentally known that the ground
state is a non-normal positive parity 2 state and the

lowest z state is excited by 0.32 MeV. In the AMD re-

sults without the three-body force, the lowest 2 state
is not the ground state but is excited by about 7 MeV
&om the lowest 2 . With the three-body force, the low-

est 2 state has less excitation energy of about 5 MeV.
Interaction parameters can be adjusted so as to get bet-
ter agreement with the experimental value of the energy
difference. For example, when we use Majorana param-
eter m = 0.65, the calculated result becomes better and
about 3 MeV is obtained as the excitation energy of the
lowest 2 state. The careful choice of the effective inter-
action is one of the important points for the reproduction
of the non-normal parity ground state.

There are other important problems remaining. Ot-
suka, Fukunishi, and Sagawa [9] have studied the struc-
ture of i Be with the approach which they call the varia-
tional shell model and have obtained the positive parity
ground state. They discussed that such a lower energy
of the non-normal parity state than that of the normal
parity state largely owes to its deformation and to the
neutron halo structure. Unfortunately it is not straight-
forward for the AMD to express the long tail of neutron
halo structure because the single-particle wave function
of AMD is described with a simple Gaussian wave packet.
A superposition of some AIVfD wave functions is neces-
sary for this problem, and we have tried to make the
extended AMD calculation with a superposition of two
Slater determinants. In the lowest positive parity state
of the EAMD calculation which has a widely distributed
density of the neutron, the excitation energy is about 0.5
MeV lower than in the AMD calculation; however, the
improvement of the excitation energy is too little to ex-
plain the positive parity of the ground state. Our EAMD
calculations suggest that further extensions of the AMD
wave function should be tried. By supposing that the
AMD method describe well the single-particle wave func-
tions of the nucleons other than the last valence neutron
(or halo neutron) which is located at a somewhat iso-
lated position kom other nucleons, we have adopted the
following method in order to see what structure is pre-
ferred by the last valence neutron in the lowest positive
parity state of Be. The single-particle wave functions
of the other ten nucleons have been fixed to be the same
as the AMD result of Be. Only the wave function for
the last valence neutron has been described by a super-
position of some Gaussian wave packets which have the
same width parameter v but different centers Zqi's. We
have determined the coeKcient of each Gaussian in the
superposition not by cooling but by diagonalizing the ma-
trix elements of the Hamiltonian. This method has been
applied to both parity states of Be. When the ener-
gies are compared before making the angular momentum
projection, the excitation energy of the lowest positive
parity state is 0.9 MeV smaller than in the AMD calcu-
lation. Since the neutron-halo structure is directly con-
cerned with the radius of the nucleus, we will discuss the

Be problem again in the next subsection.

B. Radii af nuclei

Figure 4 shows the comparison of the theoretical val-
ues of the radii of Li and Be isotopes with the exper-
imental data. The calculated radius of Be is that of
the lowest 2 state. Dotted lines are the AMD results
without the three-body force, dashed lines show results
with the three-body force, and solid lines correspond to
the EAMD results with the three-body force.

The experimentally observed radii of Be isotopes are
seen to be qualitatively reproduced by the calculations
of AMD with the three-body repulsive force, while the
calculations without the three-body force are too small
especially in neutron-rich systems. These results show
that the density-dependent repulsive force is important
to reproduce the large radii of the experimental data.
We consider the reason is as follows: since the three-body
repulsive force works weaker in the low density region, the
state prefers having the density distribution extended to
spatially wider region, which results in the larger radius.

However, even the AMD calculations with the three-
body force cannot suKciently reproduce the large radii of
neutron-rich nuclei such as Be that extremely deviate
&om the A ~ law. As similar to the previous discus-
sions of the energy difference between the lowest states
with positive and negative parity in Be, one of the im-
portant points for the problem of the large radius is the
careful choice of the effective interaction that is to say
the adjustment of interaction parameters. The nuclear
radius as well as the binding energy is very sensitive to

40
E
v) 35-
6$~ 3.0—
65

CO
cF 25

2.0—
O

cc 1.5—O
cl ex

~o AMD b

I I I I l I I I I i I

6 8 10 12 14
Mass number A

40
E

2 3.5-
C~ 3.0—
(D

05

2.0—
O
O
cc 1.5—

Be

os.
r

Qi

D ex

~ERM ( )
I I I I I I I I I I I

6 8 10 12 14
Mass number A

FIG. 4. Root-mean-square radii of Li and Be isotopes.
They are calculated with AMD and EAMD using (a) the in-
teraction Volkov force No. 1 (m = 0.56) and (h) MVl force
(m = 0.576). Squares represent the interaction radii derived
from the data of interaction cross sections [6].

In the neutron-richer nuclei of Be, some excited levels
have been observed. The spin-parity J of many states
has not been identified yet. The AMD calculations with
the density-dependent force suggest that some states of
non-normal parity may exist in the rather low excitation
energy region in Be due to the deformed structure in
the intrinsic state with negative parity.
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the choice of the effective interaction. For example, if
we use the Majorana parameter m = 0.65 in the AMD
calculation with the three-body force, the radius of the
i+ iiBe state increases up to a large value, 2.78 fm, that
is as large as the experimental value. In fact it is gener-
ally reasonable to adopt larger m value in a nucleus with
larger mass number, and the use of the fixed value of the
m parameter for all the isotopes is not necessarily justi-
fied. Hence the value m = 0.65 may not be so unnatural
for iiBe.

The extremely large radius of the Be ground state
is of course directly related to the neutron halo struc-
ture of the state. In the previous subsection, we have re-
ported the calculation in which we have made the super-
position of several Gaussians of the last valence neutron.
The calculation has been made with the expectation that
the long tail of the last valence neutron may reduce the
large energy gap between different parity states. The ra-
dius obtained by this superposition calculation is 2.33 fm,
which is only by 0.05 fm larger than the value obtained
by the simple AMD calculation. However, much differ-
ence between the AMD calculation and the improved one
is found in the neutron density distribution as shown in
Fig. 5. The dashed line shows the density distribution of
protons and the solid line shows the one of the neutrons
in the 2 state of Be. Contrary to the proton density,

1+
the solid line of neutron density has a long tail with low
density in the outer region &om 5 fm to more than 10
fm. On the other hand, in the simple AMD calculation,
the neutron density distributes in almost the same way
as the proton density and has no tail. However, when
compared with the phenomenologically determined den-
sity distribution which provides a good Gt to the cross
section of the neutron dissociation reaction, the tail de-
scribed in our improved result is much smaller by about
one order in the region around 10 fm. Here we should
make a remark that the calculated 2 Be state still hasi+ ii
a higher energy than the Be+n threshold energy.

Also in the calculations of Li isotopes, the AMD and
EAMD have not been able to sufBciently reproduce the
large radius of Li that deviates largely from the A ~3

law. The small binding energy of the neutron in Li
has been considered to be very important to describe its
large radius. It implies the importance of the exact re-
production of the binding energy which is sensitive to
the interaction parameters. Besides that, further exten-
sions of the AMD wave function may be necessary for the
precise description of the neutron-halo structure.

C. Magnetic moments

The calculated results of magnetic dipole moments are
not sensitive to the interaction parameters except for

Be. Almost the same results are obtained with and
without the three-body force in the AMD calculation and
also in the EAMD calculation except for the Be system.
The results of the AMD calculation given in Fig. 6 show
very good agreement with the experimental values for
even-odd isotopes of Li and Be. It should be emphasized
that the AMD method is the erst &amework which has
succeeded in reproducing the magnetic dipole moments
systematically for these isotopes as long as we know.

The dependence of the neutron number seen in the ex-
perimental values of Li isotopes is expected to carry im-
portant information about the nuclear structure, because
in terms of the shell model the valence proton in the Op3/2
orbital would give dominant effects on the magnetic mo-
ments and hence almost the same values of the magnetic
moments would be obtained for all these isotopes. We
will give detailed discussions about the N dependence in
the later section.

Contrary to Li isotopes, in the case of Be isotopes the
last valence neutron may contribute mainly, and it is im-
portant to make a closer discussion of the neutron or-
bital. The magnetic dipole moment is measured only for
Be, and the result obtained with the AMD agrees well

with the data. On the other hand, a little complicated
problem exists in the system of Be for which the ex-
perimental value has not been obtained yet. In the Be
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FIG. 6. Magnetic dipole moments. The triangle shovels the
magnetic moment of another nearly degenerate AMD state.
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system, two diferent states are eventually obtained in
the AMD calculation. The two states have almost the
same values of the binding energy and the root-mean-
square radius, but they have considerably diferent values
of the magnetic dipole moments, —1.9@~ and —1.5pN.
In this situation, it is useful to check the EAMD calcu-
lation with two Slater determinants of AMD wave func-
tions. In the EAMD calculation, the value of —1.9@~ is
obtained. However, the calculation by the use of diferent
interaction parameters m and ul ———ull of VL,s give var-
ious results ranging from —1.5@~ to —1.9pN. . We need
more careful investigations in order to get a conclusion
about the theoretical value for the magnetic moment of

Be, since there remains the problem to reproduce the
observed large radius which is considered to have relation
to the orbital of the valence neutron.

D. Electric quadrupole moments and B(E2) values
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FIG. 7. Electric quadrupole moments calculated with the
MV1 force (m = 0.576) (triangles). A circle indicates the
moment of Li calculated with the improved AMD with the
same interaction. They are compared with experimental data
(squares) [37,39).

The electric quadrupole moments for even-odd isotopes
of Li and Be calculated with the three-body force are
shown in Fig. 7 and are seen to agree well with the ex-
perimental data. The AMD results without the three-
body force are much smaller in absolute value than the
experimental data. It is not surprising that this situa-
tion is similar to the case of the radii which have already
been discussed in subsection IVB. We can say that the
small values of quadrupole moments obtained without
the three-body force are mainly due to the problem not
in the quadrupole deformation but in the radial density
distribution. Although the values with the three-body
force seem to be still lightly smaller than the data, it is

not a serious problem, because about 10'%%up larger values
can be obtained just by using m = 0.60 as the Majorana
parameter instead of m = 0.576.

The theoretical value of the quadrupole moment of Li
shown in Fig. 7 has been obtained by improving the AMD
wave function in the following way. As we discuss later
in detail, the AMD wave function of Li has proved to
have the cluster structure of 0;+ t. However, since the
single nucleon wave function of AMD is a Gaussian wave
packet, the relative wave function between o. and t is also
necessarily a Gaussian wave packet of the form

TABLE II. The E2 transition strength B(E2;Ii -+ I2). The theoretical values are the AMD
results calculated with the interaction parameters m = 0.576 and v = 4000 Mevfm . The
strength B(E2; — —+ — ) of Li calculated with the improved AMD wave function is shown in
parentheses.

B(E2)

Li

Transition
(Ig -+ I2)
1 3
2 2
7 3
2 2
5 3
2 2

Energy
(MeV)

0.48m 0
4.63m 0
6.68m 0

Exp
(e fm)

16.14
3.51

Theory
(e fm')

7.51 (18.57)
4.72
1.05

'Li 1
2
5
2

3
2

+ 3
2

2.69m 0 7.15
0.12

'Be 5
2
7
2

3
2
3
2

2.43m 0
6.76m 0

27.8
7.24

18.35
7.73

10B 2+ m0+
3 —+1

3.37m 0
7.73—+ 5.96

10.49 9.46
11.2

3
2
5
2

1
2
1
2

3.96—+ 0.32 8.13
8.06

12@ 2.10—+ 0
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We have seen that the AMD calculations explain the ob-
served values of various properties qualitatively. Espe-
cially in the case of magnetic moments the AMD results
reproduce quite well the systematic dependence of the ex-
perimental data on the neutron number. It is important
to analyze the intrinsic structure of the obtained AMD
states in order to understand the fundamental mecha-
nism of such characteristic dependence on the neutron
number.

When the clustering is well developed, the description of
the intercluster relative wave function by a single Gaus-
sian wave function is not sufhcient because the relative
wave function spreads out toward the outer spatial region
resulting in a long tail. The lack of the outer tail part
of the intercluster relative wave function may be sensi-
tively reBected in the value of the quadrupole moment.
In fact, the AMD calculation with the three-body force
has given us a rather small value of the Li quadrupole
moment compared with the experimental value. There-
fore we have improved the intercluster relative wave func-
tion of the AMD wave function by superposing several
AMD wave functions as described below. The trial AMD
wave functions to be superposed have been constructed
by adopting the following changes of the original {Z)
values:

A. Density distribution

The density distributions of the intrinsic states of Li
and Be isotopes are shown in the Figs. 8 and 9, respec-
tively. In drawing the figures, the density of each intrinsic
state is projected onto an adequate plane by integrating
out along the axis perpendicular to the plane. We see
here systematic but drastic structure change along the
increase of the neutron number. In the results of Li iso-

i I i I I I I

— 7Li

3: Z~ + —~vC for j = 1, . . . , 4,
7

4
; Z, ——~vC for j=5, . . . , 7.2 7

Projection onto the 2 state in parity and angular mo-
mentum has been applied to the trial AMD wave func-
tions which have diferent values of the displacement real
vector C. Superposition of these projected states has
been made by diagonalizing the total Hamiltonian. The
resulting improved AMD wave function has proved to re-
produce the electric quadrupole moment well as seen in
Fig. 7.

Table II shows the theoretical values of the E2 tran-
sition strength compared with the observed data. The
simple AMD calculations reproduce well the experimen-
tal data except for the strength B(E2; 2 ~ 2 ) of Li.
The theoretical value 7.51 e fm is much smaller than
the observed value 16.14 e fm . As in the same way as
the case of the quadrupole moment, the improved AMD
wave function gives the strength of 18.57 e fm which
is as large as the experimental value. Some of theoret-
ical data predicted by AMD are also shown in the Ta-
ble II. The AMD calculations predict that the transition
strength will be rather large between 3 and 1 in 1 Be
and between 2+ and 0+ in Be due to the intrinsic de-
formation of the proton distribution.

V. STRUCTURE CHANGE
BET%KEN CLUSTER STRUCTURE

AND SHELL-MODEL-LIKE STRUCTURE

In Sec. III we have reported the theoretical values and
compared them with the experimentally observed values.

0 2 4

I I

11L1

P 2

1 I I I i—4 —2 0 2 4
x(fm)

FIG. 8. Matter density distribution of AMD states of I'i
isotopes. The intrinsic density before parity projection is
shown. The density is projected to a x-y plane and inte-
grated along the z axis perpendicular to the plane. Units of
x and y axes are in fm.
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topes (Fig. 8), it is easily seen that the ~Li system has
the largest deformation with the cluster structure. Li
also has a deformed shape, though the degree of the de-
formation is not as large as the one in Li. Li has an
almost spherical state that can be expressed by a shell
model wave function. In Fig. 9 for Be isotopes, more in-
teresting features are seen. In the figure the density dis-
tributions of only the normal parity states of Be isotopes
are shown except the case of Be. Just like the structure
change &om Li to Li, the deformation is most devel-
oped in Be due to the cluster structure and then gradu-
ally decreases toward Be which has the most spherical
shell-model-like structure. What is novel and interesting
in Be is the result that the deformation appears again as
the neutron number increases in the neutron-richer iso-
topes than Be. Rather large deformation is seen in the
positive parity state of Be which is known to have the
ground state with the anomalous positive parity. It is
to be noted that deformation has been considered to be
one of the essential mechanisms for the decrease of the
excitation energy of the 2 level in Be.

B. Clustering aspect

As mentioned in Sec. I, it is well known that in the
N Z region of Li and Be isotopes there appear the well-
developed cluster structure like the o.-o. structure of Be
and the o;t structure of Li. Many theoretical studies

by the use of the cluster model have been successfully
made both for nuclear structure problems and for nuclear
reaction problems. However, there have been a very small
number of theoretical works which have ascertained the
formation of clusters microscopically without assuming
the existence of any kinds of clusters. The present AMD
theory is a theoretical &amework very suitable for the
above-mentioned ascertainment.

By checking the spatial centers of Gaussian wave pack-
ets given by the values (D) = (ReZ/~v), we have found
that the AMD wave functions of Li and Be have actu-
ally the n-t and o.-o. clustering structure, respectively.
Further, the AMD wave function of Be has been found
to be of the n-n-n structure (or n- He structure), which
has also been well known for a long time as the structure
of Be. We are interested in how the clustering structure
changes as a function of the neutron number ¹ In Li
isotopes, Li has the He+t clustering, although it is not
so well developed as the o. + t clustering in the Li. The
heavier nucleus Li has no clustering structure.

Figure 10 shows the spatial configuration of the center
of each Gaussian wave packet for Be isotopes. The val-
ues (D) = (ReZ/~vj are projected to an appropriate
plane. The squares and circles correspond to the centers
of protons and neutrons, respectively. In every Be iso-
tope, four protons are always grouped spatially into two
pairs. Each pair is composed of p t and p $ and is seen in
the Ggure as just two squares located very closely to each
other. The neutrons except for the valence neutron in the
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even-odd Be isotopes also couple to compose some pairs
of n t and n $. It is shown that many of the Be isotopes
have two-center clustering structure with at least one o.
cluster. One will find the 2p+o, clustering in the positive
parity state of Be, He+o. in Be, o. + o, in Be, He+o.
in Be, He+o. in Be, and the He+o. clustering in the
negative parity state of Be.

The degree of development of clustering structure is
roughly estimated with the relative distances between
two pairs of protons which is shown in Fig. 11. The
o. clustering is most developed in Be and it becomes
weaker in heavier isotopes as the neutron number in-
creases. No developed clustering structure is found in

Be with the neutron magic number N = 8. In Be
and Be which have neutron number N ) 8, the clus-
tering structure develops again. In Be, the o. is not
so normal but is somewhat polarized with the neutrons
distributed in the spatially outer region. In Be, the dis-
tortion of o. is larger since the centers of two valence neu-
trons are seen in the further outer space. In Ref. [30] Be

isotopes were studied with the molecular orbital model
which describes the Be isotope as composed of an n-o.
core and surrounding neutrons. It was found there that
the inter-o. distance decreases when going &om Be to

Be but increases when going Rom Be to Be. Since
the relative distance between two proton pairs mentioned
above is similar to the o.-o; distance, their results are con-
sistent with ours which have been obtained without any
assumption of the existence of clusters.

The calculations of the extended AMD present us
with interesting results about clustering features. In
EAMD we have adopted the superposition of two
parity-projected Slater determinants which we denote as
~4z (Z)) and ~4z (Z')). In most normal parity states of
Be isotopes, the main component ~4z (Z)) has proved to
be almost the same as the wave function of the simple
AMD calculation. The minor component [4z (Z')) mixes
in with only a small amount and improves the descrip-
tion of the state expressed with the major component.
By analyzing (Z') in the minor component ~C'2 (Z')), we
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FIG. 11. Mass number A dependence of the relative dis-
tance between two proton pairs of normal and non-normal
parity intrinsic states in Be isotopes. Solid line is for normal
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TABLE III. Percentage of the normalized component
I4i)—:IC'i)/II I4'i) II contained in the normalized total wave
fun«ion I(C' + C"))"—= (IC'i) + IC"))/II IC'i) + I@.) II.

I"&4 l(4 +4 ))"I'
0.83
0.84
0.83
0.90
0.85
0.96
0.88
0.96
0.90

have found that the types of the improvement made by
I42 (Z')) can be classified into three types.

The first type is seen in the cases of Be and Be. The
state I4i (Z)) in Be ( Be), has the same clustering con-
figuration He + n (2p+ n) but with larger intercluster
distance compared to the one in the simple AMD result.
On the other hand, (Z';) in I@2 (Z')) are distributed be-
tween the two clusters of I4i (Z)) so that the spatial re-
gion between the two clusters does not become too low
in density. The second type of the improvement is con-
cerned with the relative wave function between the clus-
ters. In Be ( Be), the state I4& (Z)) is found to have the
same n+ n ( He+ n) clustering structure as the one ob-
tained by simple AMD. The second component I@2 (Z'))
has also the same clustering configuration, but the inter-
cluster distance is larger by about 2 fm than the distance
in IOi (Z)). The total wave function IC i (Z)) + I4& (Z'))
results in improving the outer tail of the wave function
of the relative motion between the clusters. In heavier

Be isotopes, we observe the third type of the improve-
ment by the minor component IC'z (Z')). In this case,
IC'i (Z)) + I42 (Z')) represents the mixing of two dif-
ferent channels of clustering. In Be, Be, and Be,
the main component IC'i (Z)) represents the He + n,
He+ o., and He+ o. channels and the minor component

I4& (Z')) corresponds to the He + He, He + He, and
He+ He channels, respectively. In Be, the main com-

ponent I4'i (Z)) has the He+sHe configuration with the
polarized He, while the minor component I42 (Z')) has
He+o, + n structure with the valence neutron locating

far from the center of the nucleus.
More interesting aspects of clustering are found in

the non-normal parity state of Be. Figure 12 shows
the spatial configurations of (ReZ/~v) in IOi (Z)) and
(ReZ'/~v) in

I
4 2 (Z')) comparing with the result of sim-

ple AMD. The positive parity state obtained with the
simple AMD has the ~He+n clustering feature [seen in
Fig. 12(a)j. On the other hand, the EAMD calculation
gives the state with a mixture of o.+ He+n and He+ He
configurations [seen in Figs. 12(b-i) and 12(b-ii), respec-
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FIG. 12. Spatial con6gurations for the positive parity state of Be. (a) shows (ReZ/~v) of the AMD wave function. (b)
shows {ReZ/~v) in Ci (b-i) and (ReZ'/~v) in Cq (b-ii) obtained with EAMD. Circles and squares with up arrow (down
arrow) correspond to the centers of n g ($) and p t ($), respectively.
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tively]. Both configurations in the EAMD calculation
difFer &om the one in the AMD calculation, and they de-
scribe the behavior of the valence neutron far f'rom the
center better than the simple AMD calculation.

Though the two states I4'i ) and I42 ) are not or-
thogonal to each other, in most of the Be isotopes it
is found that the second state I4+) has a significant
component orthogonal to I@i ). In the total wave func-
tion I4'i ) + I42 ), the orthogonal component to I4'i ) is
about 10jo. In Table III we show the percentage of the
normalized component I4i ):—I4i )/II I4+) II

contained
in the normalized total wave function

I (@i + 42 ) )
~ —=

(I@+)+ I@+))/II(I@+)+ I@.+)) II I

&4'+ I(4'+ + @.+))"I'.
Considering the above-mentioned facts that the main
component I4i ) is very similar to the wave function of
the simple AMD calculation and that the second compo-
nent I42 ) mixes in with a small mixing amplitude, it is
implied that the AMD study adopting only one parity-
projected Slater determinant is usually sufFiciently reli-
able.

C. Indispensable role of parity projection
in describing asymmetric cluster structure

We point out here that the parity projection is essen-
tial for precise description of the clustering aspects. As
shown above, a + t clustering in Li is described by the
variational calculation by the use of the parity projected
AMD wave function. How'ever, when we have adopted
the variational calculation without the parity projection
we have obtained not the state with the o. + t clustering
configuration but the one with t+ n+ t clustering. The
AMD wave function without parity projection is given by
a single Slater determinant, and its variational calcula-
tion is considered to be one of approximated &ameworks
of the Hartree-Fock method. In any Hartree-Fock —type
theory which adopts a single Slater determinant, the de-
scription of the o. + t clustering can be made only by
a parity-violating intrinsic state. But, usually the mini-
mum energy is obtained by a parity-conserving configura-
tion rather than by a parity-violating configuration. This
is the reason why we have failed to obtain the asymmetric
configuration of o. + t but have obtained the symmetric
configuration of t + n + t in Li in the AMD calcula-
tion without parity projection. We have encountered the
same situation in the study of 2ONe [27]. By the AMD
calculation with parity projection, we could confirm the
existence of o.+ O clustering in Ne. However, when
we made the AMD calculation without parity projec-
tion, we never obtained the asymmetric (parity-violating)
o+isO clustering configuration but a symmetric (parity-
conserving) configuration. Therefore we stress here that
the parity projection is important for the description of
the structure of light nuclei and it is sometimes danger-
ous to extract a conclusion with the &amework in which
the functional space is restricted within a single Slater
determinant without parity projection.

D. Correlations of the structure change
mith the observed electroxnagnetic properties

The drastic change of the intrinsic structure has been
discussed in the previous subsections A and B. Our aim

here is to understand the fundamental mechanism how
the observed values of the electromagnetic properties re-
Qect the systematic structure change. Furthermore we
aim to find what information about the nuclear struc-
ture can be extracted &om the observed data.

The observed. magnetic dipole moment of Li isotopes
changes systematically as the neutron number % in-
creases. The shift of the Li magnetic moment from the
Schmidt value 3.79@~ of the Op3y2 proton orbit has been
considered to be closely related with the clustering struc-
ture. Below we discuss this point on the basis of our
AMD calculations. An important point of the AMD re-
sults which we need to remember in the following discus-
sions is that neutrons make no contribution to the calcu-
lated magnetic moments. This is because of the property
of the calculated AMD wave functions of Li isotopes that
neutrons are all paired ofr', namely every spin-up neutron
wave packet always shares the same spatial point with a
spin-down neutron wave packet. It implies that the total
intrinsic spin of neutrons is zero and the total angular
momentum of neutrons is exhausted by the total orbital
angular momentum.

In the following discussions, one should recall that the
clustering gives two kinds of fundamental efr'ects on the
nuclear structure. One is caused by the spatial relative
distance between clusters (spatial clustering), and the
other is concerned with the angular momentum coupling
of nucleons caused. by the clustering correlation of nu-
cleons (cluster coupling of angular momenta). A typi-
cal example of the latter kind is found in the so-called
shell-model cluster which is the cluster appearing in the
SUq coupling shell-model configuration. According to the
Bayman-Bohr theorem [40], the clustering wave function
with the minimum spatial separation of clusters is equiv-
alent to the SU3-shell-model wave function. As we see
below, the efI'ect of clustering on the magnetic moments
is not due to the spatial clustering but due to the clus-
ter coupling of angular momenta. In order to extract
the eKect of the cluster coupling of angular momenta
from our AMD wave functions, we have artificially made
the intercluster relative distance in the AMD wave func-
tion small so as to get the shell-model limit state. In
practice we have transformed all the parameters Z; as
(Z) -+ (aZ) where a is a real constant that is suffi-
ciently small. It should. be noted that this transforma-
tion does not largely afFect the internal wave functions of
clusters contained in the AMD wave functions, because
nucleons inside each cluster are located closely to each
other. The state obtained in the shell-model limit does
not have the developed clustering in view of the inter-
cluster relative distance any more, but keeps the angular
momentum coupling correlation caused by the clustering
structure of the original AMD wave function. Table IV
shows some electromagnetic quantities calculated with
the angular-momentum-projected states from the shell-
model-limit intrinsic states mentioned above, which are
compared with the original AMD calculations. In Table
IV we have also shown the expectation values of squared
total angular momenta of protons (J„)and neutrons (J )
and those of squared total orbital angular momentum of
protons (L ). We see that the magnetic dipole moments
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TABLE IV. Comparison of various quantities calculated with the AMD wave functions to those
calculated with the shell-model-limit wave functions of AMD. The notations (J„), (J„),and (L„)
are explained in the text. The experimental data of the magnetic dipole moments p, and the electric
quadrupole moments q are also shown for comparison. The expectation values are calculated with
the total angular momentum projected states. The adopted interaction parameters are m = 0.576
and v = 4000 MeV fm .

Li
Exp.
AMD

shell-model
limit

P
(pn )
3.27
3.15
3.14

(e mb)
—40(3)
—27.6
—15.1

3.31
3.12

2.74
2.61

(L')

2.17
2.00

'Li
Exp.
AMD

shell-model
limit

3.44
3.52
3.53

—27(1)
—26.6
—23.3

3.54
3.54

1.07
1.02

2.01
2.00

L
Exp.
AMD

shell-model
limit

3.76
3.79
3.79

—31(5)
—29.4
—29.4

3.75
3.75

0.02
0.00

2.00
2.00

in the shell-model limit are almost the same as the orig-
inal AMD results and reproduce the experimental data.
Furthermore we see that the values of (J„), (J ), and

(L„) in the shell-model limit are close to those of the
original AMD. These results given in Table IV confirm
that the angular momentum coupling of nucleons in the
shell-model-limit wave functions is similar to the one in
the original AMD wave functions, and that the magnetic
moments are not sensitive to the spatial clustering but
to the cluster coupling of angular momenta. Below we
explain the characters of the angular momentum cou-
pling of nucleons in the shell-model-limit wave functions.
These characters are of course difFerent &om those of the
j-j coupling shell-model wave functions when the original
AMD wave functions have clustering structure.

In Li isotopes, the magnetic dipole moment in the
shell-model limit is determined by the orbit of only the
third valence proton in Op orbitals. In Li with the
closed shell for neutron orbits, (J„) is 3.75 [= 2(2 + 1)]
and (J„) is 0 in the shell-model limit. This is because
the angular momenta of all neutrons couple totally to 0
and only the Op3y2 orbit is allowed for the valence pro-
ton in the ground state with total spin J = 3/2. In this
case the magnetic moment p is as large as the Schmidt
value. In ~Li, the magnitude 2.61 of (J2) implies that the
component with the nonzero total angular momentum of
neutrons is considerably large. It is to be noted that,
as we mentioned before, the total angular momentum of
neutrons is equal to the total orbital angular momentum
of neutrons, namely (J ) = (L ). The magnitude 3.12
of (J ) which is smaller than 3.75 is due to the mixing
of Op3y2 with Opiy2, and this proton angular momentum
couples with the nonzero angular momentum of neutrons
so as to compose totally 2 spin. This Opqy2 mixing of the
proton reduces the p, value from the Schmidt value. Li
has the medium properties between Li and Li. In Ta-

ble IV we see that the Opiy2 mixing of proton in Li is
smaller than in Li but is larger than in i Li and also
that the total angular momentum of neutrons in Li is
smaller than in Li but is larger than in Li.

In summary, it is concluded that the dependence of
the p moments of Li isotopes on the neutron number N
originates &om the angular momentum coupling corre-
lation caused by the clustering structure. Our results
show that the magnetic dipole moments are not sensitive
to the relative distance between clusters and that the ob-
served data give little information about the detail of the
intercluster relative motion.

In contrast to magnetic dipole moments, electric
quadrupole moments are sensitive to the relative dis-
tance between clusters. In the following discussion of
the N dependence of the electric quadrupole moments,
we try to decompose the calculated Q moments into two
components; the first component is due to the spatial
clustering and the second component is due to the other
properties of the AMD wave function including the clus-
ter coupling of angular momenta. We regard the second
components as being given by the Q moments calculated
by the shell-model-limit wave functions defined above.
They are shown in Table IV together with the Q mo-
ments of the original AMD calculations and are —15.1,
—23.28, and —29.41 emb for "Li, Li, and Li, respec-
tively. These values show that the second component be-
comes smaller as the neutron number N decreases. Such
an N dependence can be explained by the argument sim-
ilar to that made in the above discussion of p moments
about the mixture of proton's Opi y2 and Op3yq orbits.
The mixing of the Opig2 proton configuration into the
Op3/2 proton configuration is larger for the isotope with
smaller N. It makes the Q moment smaller because of
the fact (Opzy2~Q P~Opqr2) = 0 with Q ~ standing for the
quadrupole moment operator which is a tensor operator



YOSHIKO KANADA-EN'YO, HISASHI HORIUCHI, AND AKIRA ONO

with rank 2. By subtracting this component from the
total Q moments (namely the Q moments of the original
AMD calculations), we obtain the first component which
is due to the spatial clustering. The first component be-
comes larger as the neutron number decreases from Li
to Li. Such a dependence of the first component on the
neutron number is consistent with the drastic change of
clustering structure. Thus the systematic experimental
values are qualitatively explained by the structure change
seen in our AMD results. The AMD result of the Q mo-
ment of Li given in Table IV is not the value obtained
by improving the n-t relative wave function mentioned
in Sec. IIID but the value obtained by using a single
parity-projected AMD Slater determinant. Yet the Grst
component of the Q moment is largest for ~Li than for
Li and Li.

Finally we analyze the AMD wave functions by cal-
culating the total number of the oscillator quanta. The
state with clustering structure usually contains a large
amount of the high-lying shell-model orbits and gives a
larger expectation value of the total number of the os-
cillator quanta than the state with the shell-model-like
structure. Our analysis is made separately for the neu-
tron and proton orbits. We introduce the value LNz and
LN which stand for the deviation of the proton and neu-
tron orbits in the AMD wave function from those in the
simple shell-model wave function:

0.4-

~ 0.2-

neutron.
', Be

0 2 4 6 810
Neutron Number N

':Be
q

proton.

0 2 4 6 810
Neutron Number N

FIG. 13. Deviation of the total number of oscillator quanta
of the AMD state from that of the simple shell-model wave
function. Deviation for proton and neutron orbits is shown
as ANp and AN which are defined in the text.

&PMscc'+ I &p IPMz~'+)
(P~ 4 + lP~ 4+)

(PM~+ l~'IPM~+ )
e+lP' c+)

where ¹I'and ¹~are the oscillator quantum number
operators and N„'" and N '" are the minimum val-
ues of oscillator quantum numbers given by the simple
shell model for protons and neutrons, respectively. The
state with shell-model-like structure should have small
AN values, while the state with well-developed cluster-
ing structure should have large values of L¹Figure 13
shows AN„and LN of Be and Li isotopes. In each of
Li and Be, AN is quite large with the neutron number
N = 4 and it decreases as N increases. LN has the
smallest value 0 in the nuclei with neutron magic num-
ber N = 8, and it increases again as N increases in the
region with N & 8. Such a neutron-number dependence
of AN directly reflects the shell effect of neutron orbits.
We see that the LN„ for proton orbits has almost the
same dependence on the neutron number N. A very in-
teresting fact is that the shell efFect of neutron orbits is
reflected on the proton orbits which have a close relation
to the electric and magnetic properties. What causes the
clustering structure is the feature that the orbits of pro-
tons change following the change of neutron orbits due
to the mean Geld made by neutrons. This feature is fun-
damental for the mechanism of the N dependence of the
electromagnetic data.

VI. SUMMARY

Structure of odd-even and even-even Li and Be iso-
topes has been studied with the AMD (antisymmetrized
molecular dynamics) inethod. Energy spectra and other
quantities have been reproduced well. AMD is the first
framework which has succeeded in describing the sys-
tematic data of electric and Inagnetic properties such as
magnetic dipole moments and electric quadrupole mo-
ments in a wide range of the light isotopes covering both
neutron-rich nuclei and ordinary nuclei. In our AMD
framework we never need to introduce the effective charge
but we use only the bare charge. This is because the
AMD wave function automatically describes the drastic
change of proton orbits from clustering structure to the
shell-model-like structure.

It has been ascertained that the well-developed clus-
tering structure appears in Li and Be without assum-
ing the existence of any kind of clusters. The clustering
structure seen in the N Z region in Li and Be iso-
topes gets weaker as the neutron number N increases,
and changes toward the shell-model-like structure in Li
and Be with the neutron magic number N = 8. It is
suggested that possible clustering aspects appear again
in neutron-richer Be isotopes like Be. Thus the dras-
tic change of the structure as a function of the neutron
number N has been explained in connection with the
shell efFect of neutron orbits.

N dependence of the experimental data of the electric
and magnetic properties has been discussed in relation
with the structure change. It has been shown that the N
dependence of the observed data for Li isotopes has been
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described as the direct reHection of the drastic structure
change between clustering structure and shell-model-like
structure. Strictly speaking, the N dependence of p mo-
ments has been explained in terms of the cluster coupling
of angular momenta, namely the angular momentum cou-
pling correlation of nucleons which is caused by clustering
structure. In the case of Q moments which are more sen-
sitive to the nuclear deformation, N dependence has been
explained in terms of two effects of clustering structure;
one is due to the spatial clustering and the other is due
to the cluster coupling of angular momenta.

We have also tried to make an extended AMD calcula-
tion with a superposition of two parity-projected Slater
determinants for Be isotopes. It has been found that
in most cases the erst Slater determinant is almost the
same as the wave function of the simple AMD calcula-
tion and is the major component in the total wave func-
tion. The second Slater determinant is not so large a
component and is found to give an improvement of the
description of the state expressed with the major Slater
determinant. Therefore the AMD calculation by the use
of the single parity-projected Slater determinant is ap-
proved to be sufhcient for describing leading properties
of nuclear structure. In some nuclei, however, two Slater
determinants have been found to describe two channels
of different clustering configurations.

In some cases, further improvements of AMD wave
functions have been found to be important. For example,
the improved AMD calculation which adopts a superpo-
sition of several Slater determinants has proved to be
necessary for the lowest J+ =

2 state in Be in order
to describe the behavior of the valence neutron better
than the simple AMD and also in order to give better
results about the energy and radius, even though the
reproduction is not sufn[cient yet. We have shown that
the calculations by a superposition of several AMD wave

functions reproduce the long tail of the wave functions in
two cases, the neutron halo in Be and the a+t relative
motion of Li.

We have found that the density dependence of the ef-
fective interaction plays important roles in getting better
agreements with the experimental data of radii, electric
quadrupole moments, and low excitation energies of non-
normal parity states. These quantities are sensitive to the
density distribution. Our results show that the density
dependence of the effective interaction is indispensable in
obtaining better reproduction of density distribution in
a wide range of isotopes.

It has been suggested that many kinds of interesting
structure exist in excited states of neutron-rich nuclei.
Though some low excited states have been described by
angular momentum projection from the intrinsic state
obtained with AMD, the detailed structure of excited
states are to be investigated by using the constrained
frictional cooling method in the AMD approach. Such
kind of study has been already made in Ne for the
investigation of the structure change in yrast states [27].
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