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Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energies, two-
and many-body interactions and their boost corrections. We review the calculation of the boost
correction of the two-body interaction from commutation relations of the Poincare group and show
that its important terms can be easily understood from classical relativistic mechanics. The boost
corrections for scalar- and vector-meson-exchange interactions, obtained from relativistic field theory,
are shown to be in agreement with the results of the classical calculation. These boost corrections
are also shown to be necessary to reproduce the known results of relativistic mean-field theories.
We conclude with comments on the relativistic boost operator for the wave function of a nucleus.
Some of the results presented in this article are known. We hope that a better understanding of
relativistic Hamiltonians and their relation to relativistic field theory is obtained by putting them
together with the new relations.

PACS number(s): 21.30.+y, 03.65.Pm

I. INTRODUCTION

The concept of an interparticle potential has proved to
be extremely useful in the study of nonrelativistic many-
particle systems at low energies. The degrees of freedom
associated with the fields coupled to the particles, as well
as the internal degrees of freedom, if any, of the particles,
are eliminated with these potentials so that one can fo-
cus on the most important degrees of freedom. Ab initio
calculations of the interparticle potentials are nontrivial,
particularly when the particles are composite like nucle-
ons or rare gas atoms. In practice the potentials are
parametrized within a suitable theoretical framework and
Gtted to observed data. Nonrelativistic Hamiltonians of
the type

2

HNR = ) +) vij+ $ Vijk+
i ' i&j i&j&k

have been used in many contexts. In nuclear physics, for
example, the ground and low-energy nuclear states are
described by eigenfunctions O'1(xq, z2, . . . , xQ) of HNR,
where x, denotes the position r, , spin o i, and isospin v i
of the ith nucleon. Solving the many-body Schrodinger
equation

covariant fashion. The relativistic Hamiltonian may be
written as

H1t =)
+ ). V*,~+ bV*, I (P,,~) +

i&j&k

P j =pi+pj =0. (1.4)

Similarly Vjk is the three-body potential in the frame in
which

Pijk —pi + pj + pk = 0. (1 5)

The bv;i(P;1) and bVsg(P;1g) are called "boost inter-
actions" and depend upon the total momentum of the
interacting particles. Obviously,

bv;1(P;s = 0) = bV~I, (P,,I, = 0) = 0.

where vij are two-body potentials in the "rest kame"
of particles i and j (i.e. , the frame in which their total
momentum vanishes):

HNR @I —EI@I (1.2)

is a diKcult problem; however, it can now be solved
with variational [1] and Green's function [2] Monte Carlo
(VMC and GFMC) methods for the ground and some
low-energy excited states of up to six nucleons.

Bakamjian and Thomas [3] and Foldy [4] showed many
years ago that the concept of potentials can also be use-
ful in describing many-body systems in a relativistically

Only the positive value of gm2 + p2 is considered in HR.
The interaction 8 is determined by the fields and the

internal structure associated with the interacting parti-
cles, while bv(P) is related to v by relativistic covariance.
Krajcik and Foldy [5] formally calculated bv (P) to all or-
ders in P2/4m2, though we will retain only the leading
contribution of order P j4m in this study. An elegant
equation for the minimal first order bv(P) is found to be
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p2 1
be(P) = — v+ [ P rP Vv ]8m2 8m2

1+, [(oi —cr, ) xP. V, v], (1 7)

where the subscripts ij of v, P, r and V' have been sup-
pressed for brevity. A brief explanation of this equation
is given in Sec. II for completeness.

Present interest in the relativistic Hamiltonian (1.3)
stems &om the fact that its ground states can be studied
with the variational Monte Carlo method. Initially only
the H and He ground states were studied [7), but the
methods developed there can also be used to study heav-
ier nuclei like 0 with cluster expansions [8]. Moreover,
these methods can also be used to calculate the ground
states of H, H, 3He, He, He, and Li exactly, up to
order P /4m, with the Green's function Monte Carlo
method [9]. The results obtained in Ref. [7] show that
the average value of P2/4m2 is rather small in nuclei;
therefore it is certainly useful to have exact results to
this order. It is very likely that higher-order contribu-
tions and bV(P, ~i, ) contributions are much smaller. For
the sake of brevity we will not discuss bV(P, ~~); a two-
pion exchange term in it has been studied by Coon and
Friar [10].

Before commencing our pedagogical discussion, it is
necessary to categorize the various effects that we will be
treating. It is convenient to separate relativistic efFects
in nuclear physics into three categories: (A) on the inter-
action v;~ of two nucleons in their center of mass (c.m. )
frame; (B) on the interaction v;z + bv(P, &. ) of nucleons i
and j with a total momentum Pij in the c.m. frame of
the whole nucleus; and (C) on the motion of the nucleus
as a whole.

The first effect (A) depends essentially on the nature
of the interaction; for example, when vij is mediated by
mesons the relativistic corrections to it depend upon the
type, i.e., scalar, vector, etc. , of the exchanged meson.
Since all realistic models of vij are obtained by fitting ex-
perimental data, they contain relativistic effects in some
form. The key question here is how to choose the theo-
retical form of vij, used to fit the data, such that they
are correctly represented.

There is no further model dependence in the second
effect (B). The bv(P;~) depends only upon v;~ and can
be obtained from it [5,6]. Many aspects of the relation
between bv(P;z) and e,z can be understood from classical
relativistic mechanics as discussed in Ref. [7] and further
elaborated in Sec. III. This allows terms in bv(P;~) to be
classified as those coming &om the relativistic kinemat-
ics, Lorentz contraction, Thomas precession, and quan-
tum effects, respectively.

The relativistic effect (| ) on the motion of the nucleons
as a whole is important because in scattering experiments
the struck nucleus recoils and phenomena such as Lorentz
contraction, Thomas precession, and retardation ensue
and modify the transition matrix elements. The effects
(B) and (| ) are intimately related [6], and early work
[11,12] on relativistic corrections emphasized (C).

Relativistic Hamiltonians are not as widely known as,
for example, the relativistic field theory, though many re-

II. CALCULATION OF be(P)

Equation (1.7) for bv(P) has been obtained by Foldy
[4] and Friar [6] using general principles of relativistic
quantum mechanics as illustrated here. Consider a sys-
tem of two particles (1 and 2), each with spin s and mass
m. When the momentum and angular momentum gener-
ators of the Poincare group are chosen in the conventional
fashion, they are independent of the interaction:

P = pl+ p2)
& = (» x pi) +» + (r2 x p2) + s2,

(2.1)
(2 2)

while the Hamiltonian 0 and the boost K will have in-
teraction terms:

II = IIo+Hl
K = Ko+K

(2.3)
(2.4)

These generators must obey the commutation relations
of the Poincare group:

[P;, P~]

[J;,x'~]

[K;,K, ]

[K;,P, ]

[K;,H]

[P;, H] = [J;,H] = 0,

zCijkXk for X = 3) P) K,
—ze

iHb;. ,

iP;.

(2.5)
(2.6)
(2.7)
(2.8)
(2.9)

These relations are obviously satisfied by the Ho and Ko
of the noninteracting system. The last two commutators

searchers [13,14] have utilized them. In order to study the
relation between relativistic Hamiltonians and relativistic
field theory we consider interactions between point Dirac
particles coupled to scalar and vector fields. The one-
meson-exchange scattering of two particles, commonly
studied with I"eynman's method, is discussed in Sec. IV.
The bv(P) is necessary to obtain correct scattering am-
plitudes in frames in which P g 0.

In the mean-field limit the problem of infinite matter
consisting of Dirac particles coupled to scalar and vec-
tor fields has been solved by Serot and Walecka [15]. In
Sec. V we study this problem with a relativistic Hamilto-
nian using the Hartree approximation corresponding to
the mean-field limit. This study demonstrates the im-
portance of consistently treating the relativistic effects
in v;~, bv;~. (P;~), V~i„etc

In Sec. VI we discuss relativistic Hamiltonians for nu-
clei and suggest that they should contain the relativistic
correction for the one-pion-exchange contribution to vij
that has been neglected in many realistic models of vij.
The concluding Sec. VII also treats, for the sake of com-
pleteness, the motion of the nucleus as a whole.

Many but not all of the results given in this pedagogical
article have been published in disparate places; however,
no comprehensive discussion of them exists. In view of
the recent successes in calculating the behavior of light
nuclei from realistic Hamiltonians, such a discussion may
be both useful and timely.
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[Kl;, Kp,.
] + [Kp, , KI ~] + [KI;,KI,.] = 0,

[Kz,' P~] =iHlb'~
[Kp, HI] = [Hp, KI] + [HI, KI] .

(2.iO)

(2.ii)
(2.12)

It is convenient to expand H and K in powers of 1/m, .
The expansions for Hp and Kp are well known [4]:

in (2.5) require that HI be translationally and rotation-
ally invariant, while the commutators in (2.6) for X = K
require that KI be a spatial vector. Subtracting the con-
tributions of the noninteracting parts from commutators
(2.7)—(2.9) gives

where Sv' commutes with R (i.e. , it is of order 1/m but
independent of P) T. he v is defined as

v = v+bv'

+all higher-order terms independent of P, (2.20)

and obtained from experiment using theoretical models.
Equation (2.18) can be used to determine hv(P) &om the
v, and (1.7) provides the simplest solution of (2.18).

It is sufficient to use the v of order 1/m in Eq. (1.7)
to obtain Sv(P) up to order 1/m . In some cases this v
is a spin-independent function of r, and

Hp —2m+ (p', + p', ) +
2m

(2.13)

1 1 2 2 2 2Kp = tP + 2mR + —(i'i pi + piri + 1'2p2 + p2r2)2m 2

bv(P) =—p2 1
v(r) + P . rP . V'v(r)

8m2 Sm2
1

(ai —o.2) x P V'v(r).
8m2 (2.21)

—si xpi —s2 xp2 + (2.14)

Hl = v+8v+ (2.i5)

where bv is of order v/m or I/ms, and the ellipsis repre-
sents terms of order 1/m or higher. We also assume that
the leading term v is independent of P. The commutator
(2.11) is then minimally satisfied by taking

KI = vR+ 0
~ ~

and higher terms.
m3 (2.16)

Note that tP and 2mR are of the same order and the
ellipsis represents terms of order 1/ms or higher. The
leading term of Hl, denoted by v, is assumed to be of
order 1/m since in systems like nuclei the interaction en-
ergy and the nonrelativistic kinetic energy are of similar
magnitude. Thus

As discussed in the next section, the above three terms
of Sv(P) can be attributed to the relativistic energy-
momentum relation, I.orentz contraction, and Thomas
precession, respectively.

The boost operator KI can have additional terms, de-
noted by w in [4,6], which commute with P. These make
unitary transformations of the relativistic Hamiltonian,
and can be chosen for convenience. The present choice,
w = 0, is motivated by the desire to maintain correspon-
dence with classical relativistic mechanics via Eq. (2.21),
and is suitable to study energies of nuclear states. When
w g 0 the bv(P) has an additional term —i[pi, Hp + v]
where y~ depends upon P and w. The contribution of
hv(P) to the energy eigenvalue EI up to order 1/ms is
given by (~III~Sv(P) ~iIII), where ~4'I) are eigenstates of
(Hp + v). Obviously [yv, Hp + v] gives zero contribution
to El for y~ obtained from any w. When studying re-
actions, however, special attention must be paid to such
terms (see Sec. VII and Ref. 10).

The leading terms of Eq. (2.12) are of order 1/m .
Retaining only these we get

2m[R, Sv] = (p', + p', ),vR]

1 2 2 2 2+ [v, (rlPi +Pirl + r2P2+P2r2
4m
&1 X pl W2 X p2) ]) (2.17)

where cr = 2s (i.e. , the cr, are Pauli matrices for spin 1/2
particles). Evaluating the commutators one obtains the
basic equation for bv:

Z 1
[R, hv] = — -vP — [rP p, v]

4m 2 4m2

1
[(cri+ cr2) x P, v]16m2

1
[(cr, —cr2) x p, v], (2.18)

bv = 6v'+ Sv(P), (2.19)

where p is the relative momentum. This equation cannot
determine bv uniquely. We can express

III. THE 8v(P) IN CLASSICAL RELATIVISTIC
MECHANICS

Ep ——2m+ v(rp) (3.1)

in their rest kame by definition of v. In a kame in which
these particles are moving with momentum P, their en-
ergy is given by

EJ =2
~

m, +
~

+v(r)+hv(P, r)4) (3.2)

by definition of bv(P). Here r is the distance in the
moving frame,

(P. rp) Pr =ro-
2E~

(3.3)

The first two terms of Eq. (2.21) for bv(P) were ob-
tained using classical considerations in Ref. [7]. In rela-
tivistic classical mechanics two particles at rest a distance
ro apart have energy
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due to Lorentz contraction. Now Ep is also given by P = kg+ k2 = ki+ k2. (4 4)

(3.4) They can be easily calculated for Dirac particles coupled
to a scalar field P of mass ps and

From Eqs. (3.2)—(3.4) we get

P 1
bv(P, r) = — v(r) + P rP V'v(r).

8m2 8m2

K t =Gs@44,

(3 5) or a vector field V„of mass pv and

(4.5)

1 V'v(r) x P
2 4m2

cry. P x V'v.
8m2 (3.6)

In the moving kame both particles have the same veloc-
ity, but their accelerations are equal and opposite. Thus
the Thomas precession potential for the second particle
is —cr2 P x V'8/8m, giving the total

Its first term is due to the relativistic relation (3.4) be-
tween E~ and Eo, and the second due to I.orentz con-
traction (3.3). These terms are respectively denoted by
bvRE(P, r) and bvLc(P, r) in Ref. [16]. When the inter-
acting particles are spinless (3.5) gives their entire 6v(P).

When the interacting particles have spin the last term
of (2.21) is generated by Thomas precession [17]. The
precession of the spin s~ in the moving frame is given by
—V'8(r) x P/4m up to order 1/m . Thus the Thomas
precession potential for particle 1 is

II;„t ——Gv Qp"gV„ (4 6)

vx(q, p, P) = 8x (q, p) + hvar (P, q, p) (4 7)

to study relations between 8 and bv(P). The 8x. inde-
pendent of m is the familiar Yukawa amplitude denoted
by vx:

0 Gs
vs(~) = —,+~s

G2

+~v

(4.8)

(4.9)

using well known Feynman diagram rules [18].
The amplitudes for scalar and vector meson exchange

are denoted by v~(q, p, P), X = S and V, respectively.
They are expressed as

1
bvTp(P, r) = (cri —cr2) x P. V'8

Sm2 (3.7)
The 8~ containing all terms of order 1/m is also well
known:

in agreement with the last term of (2.21).
The general Sv(P) given by Eq. (1.7) has additional

terms containing [(+i —cr2), 8] and [r, v] when v depends
upon the spins and the relative momentum. These do not
have analogues in classical Inechanics, and some of them
are discussed in Sec. VI in the context of the one-pion-
exchange interaction. They are denoted by SvqM(P, r) in
Ref. [16]. The contribution of bvTp(P, r) to the binding
energy of H and 4He has been found to be rather small,
and that of SvqM(P, r) is even smaller [16]. For exam-
ple, the contributions of bvRE, hvar~, bvTp, and bvgM to
the energy of the triton are found to be 0.23(2), 0.10(1),
0.016(2), and —0.004(2) MeV, respectively, in Refs. [7]
and [16].

vs(q, p) = vs(q) 1—o (p+ p')' z(o'i + c72) q X p
4m2

(4.10)

8v(q, p) = vv(V) 1+o (p+ p')'
4m2

crq xq- cr2xq
4m2

3i(a i+a 2) q x p+ 4m2 ) (4.11)

~vx(» q) =vx(~)0 (P . q)2
4m2 q2 + p&

g2
4m2

and hvar(P, q, p), up to order 1/m, is given by

IV. MESC)N-EXCHANCE PC)TENTIALS i(cr, —o2) q x P
8m2

(4.12)

The one-meson-exchange scattering amplitudes, from
an initial two-nucleon state ki, k2 to final state ki, k2,
depend upon the momentum transfer q,

for both X = 8 and V.
The first term of the above bv~ comes from the energy

q = k~ —kg ——k2 —k2, (4 1) (P. q)'
4m2

(4.13)

the relative momenta,

1
p = —(ki —k2),

2

p' = —(ki —k2) = p + q,
2

(4.2)

(4.3)

carried by the exchanged meson. Up to order 1/m, , the
Dirac spinors are given by

(4.14)

and the total momentum where y are Pauli spinors. Their normalizations give a
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&x(P, q) = e '~'Svx (P, r) d r

contribution of —vx(q)P /8m2 to the Svx. Only this
contribution is considered in the earlier work by Hajduk
and Sauer [14], and it accounts for half of the P /4m
term in Eq. (4.12). The other half of the P /4m term
and the last term in bv~ have different origins in the field
theories for scalar and vector meson exchange.

The hvx(P, q) can as well be obtained &om the vx(q)
with the general Eq. (1.7). Since the vx(q) for scalar
and vector meson exchange [Eqs. (4.8) and (4.9)] is in-
dependent of spins, Eq. (1.7) reduces to the simpler Eq.
(2.21). Using that equation for Svx(P, r) we obtain

[Eqs. (4.5) and (4.6)] has been solved by Serot and
Walecka [15] in the mean-field limit. The energy den-
sity of this matter is given by

Q2 p2; (m —m*)'
2@& 2Gs

(2vr) s (k + *)'~ dk (5.1)

where p is the density, p is the degeneracy of Dirac par-
ticles, and k~ is their Fermi momentum. The effective
mass m* is given by

1
e *~'[—P +P. rP. V

8m2

+ (cubi
—cr2) x P . V] vx (r ) d r.

Integrating the second term by parts gives

(4.15)

m*=m —Gs Po (5.2)

where Po is the average value of the scalar field. Mini-
mizing 8 with respect to variations in Po gives the tran-
scendental self-consistency equation

e *'(P r)(P V)v (r)dr &s
p2s (2vr) s

m*

(„2 2 ( d k, (5.3)+m*
= —P2vox(q) —P q P V~ vx(q)

= -P .x(q) + 22 0 (P q)' o

+P~
(4.16)

which is solved by expanding m in powers of k~. With
p = 4 appropriate for nuclear matter, we obtain

Thus the first two terms of (4.15) together give the first
two terms of (4.12), while the last term of each is in
agreement.

In this context Eq. (1.7) appears to be more general.
The v~ depends upon the nature of the exchanged me-
son, but the relation (1.7) between bvx and vx is in-
dependent of the nature of X. As a matter of fact we
expect Eq. (1.7) to be useful to determine the P depen-
dence of the interaction between two relativistic billiard
balls dominated by their structural overlap, rather than
boson exchange.

Gs~ 1 — +
p 2 10 m2 56 m4

05 k~ 3& kz &s+ 1408 ms 5 m3 p

175 ms P2s 10 P4s i, P2s )

up to order k+, noting that

5 k~6

48 m6

(5.4)

V. RELATIVISTIC MEAN-FIELD THEORY
k

6Vr2
(s.s)

The problem of extended uniform matter consisting of
Dirac particles interacting with scalar and vector fields

The energy per particle, given by E/p, is obtained as a
power series in k~ by substituting the expansion for m
in Eq. (5.1).

&v& Cs&
10 2p 2p, 56 48

~s ~ 3 kF 36 k~ 16 k&6 64 k~sS + +
p2s m 10 m 175 m 105 m5 539 m

(G2s p l 3 k~~

(p2s m) 10m

15 k~s 21 k~i0
+ + ~ ~ ~

1408 m" 3328 m

(G2s p ) 3 k~2 351 k4~

( P,2s m) 10 m 700 ms

(5.6)

where the ellipsis denotes terms of order k+ or higher.
%e can attempt to obtain this solution starting from a relativistic Hamiltonian appropriate for this system, using

the Hartree approximation equivalent to the mean-field approximation. In the Hartree approximation for uniform
matter only q = 0 diagonal interactions contribute (k;, k~ ~ k;, k~. ). Therefore the Hamiltonian required for the
Hartree approximation is much simpler than that containing the complete vx and 6vx given by Eqs. (4.10)—(4.12).
It is given by
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H~ ( for Hartree, up to order 1/m2)

(k;+ k;)2 P G~2 G~2)
4m

& ~s &v )

The first two interaction terms come &om vg and v~
[Eqs. (4.10) and (4.11)] and the last from bus(P) and
b'av(P) [Eq. (4.12)]. The factor 1/0 is from normaliza-
tion in a box of volume O.

The Hartree energy obtained with the complete H~
should be identical to that given by Eq. (5.6) obtained
with relativistic mean-field theory Th.e first row of (5.6)
is just the energy obtained in the nonrelativistic limit;
it contains the contribution of interactions independent
of m in the H~. The second row gives the relativistic
correction to the kinetic energy of a Fermi gas, which is
contained in Hz. All the subsequent terms in (5.6) are
relativistic corrections to the interaction energy.

There are terms of order 1/m in the 8~ and bv~(P)
of H~. Their Hartree expectation values can be easily
obtained by using the average values

VI. PION-EXCHANGE INTERACTIONS

The one-pion-exchange interaction between two nucle-
ons may be calculated &om the pseudovector interaction

(6 1)

" (q p) = T'i T'2 cT] q cF2 q
p~ g +p

where @ is a Dirac field representing nucleons, and P;
denotes the pion field with isospin i. The v is calculated
using standard techniques of field theory and expressed
as a sum of 8~ and bv (P) Ke. eping terms up to order
1/m2 we obtain

(k; —k~)2 = (k;+ k~)2 = kJ;. — (5.8)
(6.2)

We find that the contributions of 1/m terms of vv and
hvar (P) cancel, while those of vs and hvar(P) add to give
the 1/m term (first in the third row) in (5.6). The H~
given by (5.7) being valid only up to order 1/m cannot
yield the rest of the terms, of order 1/m or higher, in
Fq. (5.6).

The first term in the fourth row, of order 1/m, is
known [19] to be the Hartree contribution of the three-
body force V~A, , shown in Fig. 1. It is obtained by
eliminating the antiparticle degrees of &eedom &om H~.
There are two terms of order 1/m in (5.6). The sec-
ond term in the third row gives the contribution of the
1/m parts of 6s and hvar(P), while the first term in
the fifth row is the Hartree contribution of the four-body
forces. In such cases the relativistic Hamiltonian (1.3),
with only two- and three-body forces along with their ex-
act boost corrections, can at most account for all terms
up to k& . In contrast the nonrelativistic Hamiltonian
(1.1) can reproduce terms up to A:+s. When G2&p/p&2m
is of order unity many-body forces give significant con-
tributions, and the usefulness of Hamiltonians like (1.3)
diminishes. At low densities the effects of correlations
between particles can be important, and these are more
easily treated using Hamiltonians.

FIG. 1. g diagram for three-body interaction.

bv (P, q, p) =—f' ~i. ~2

p.'(v' + s.')

(4m2 (q2+ p2) 4m2)
P-q-

cr2 q ai (P+2p)8m2

+o, qadi. (P —2p) ). (6.3)

This result can also be obtained assuming pseudoscalar
coupling:

H;„, =iG&p, 7-;qp;, (6.4)

with

4m2 f2
(6.5)

and it can be verified that the bv obtained by inserting
8 in Eq. (1.7) is identical to that given by (6.3).

The contribution of the bv (P) term containing ni .

q o 2.q, to the binding energy of H and He is calculated
in Ref. [7], and those of the rest of the terms of bv in [16].
However, the p2/m term in v has been neglected in Ref.
[7] and almost all other models of v~~. In principle it
can be as important as the P2/4m term of bv

We do not as yet have a complete understanding of the
nucleon-nucleon interaction. It is generally believed that
the long-range part of the interaction is given by one-pion
exchange, and this belief is strongly supported by the
Nijmegen analysis [20] of the two-nucleon scattering data.
The one-pion-exchange interaction is responsible for the
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quadrupole moment of the deuteron, and it appears to
give large contributions to the nuclear binding energy
[21]. The interaction at shorter distance probably has
comparable contributions from the internal structure of
the nucleon, NA box diagrams for example, and from the
exchange of heavier mesons. It is convenient to separate
the v~~ into the one-pion-exchange part and the rest of
it:

vNN —v + vR (6.6)

The short-range cutoff of v„and the entire vR are primar-
ily determined by fitting the observed nucleon-nucleon
scattering data.

The available models, except for Bonn models [22], use
only the leading term, independent of m, of the v [Eq.
(6.2)]. Thus the 8R in these models compensates for the
neglected p2/m term of v . However, this compensation
cannot be exact since the p /m term in 8 generates a
momentum-dependent tensor force. Such a force is not
yet included in other models of v~~. Attempts to refit
the %% scattering data with the v correct up to order
1/m are in progress. These will presumably provide
better empirical models of vR, and also be useful to study
relativistic efFects of order 1/m .

VII. CONCLUSION

Unique identification of relativistic eft'ects is diKcult in
nuclear physics due to a lack of ab initio understanding
of nuclear forces &om @CD.Several relativistic effects are
inadvertently included in the nonrelativistic Hamiltonian
(1.1) via the phenomenological interactions v,~ and V~~
obtained by fits to observed data. However, nonrelativis-
tic Hamiltonians do not contain several known relativistic
efFects. The relativistic Hamiltonians given by Eq. (1.3)
seem to ofFer a practical method to include these effects
in nuclear many-body theory.

It is technically possible to treat the kinetic energy of
nucleons relativistically. The two-body problem can be
easily solved in momentum space and realistic models
of v~~ can be obtained by fitting the scattering data.
Faddeev-Yakubovsky [23] and the quantum Monte Carlo
methods [1,2,8] can be used with the relativistic kinetic
energy operator gm2 + p, . It is difficult to expand the
square root beyond the nonrelativistic term. The next
term, —p4/8m;, is attractive, and a Hamiltonian un-
bounded from below results when p; and higher terms
are neglected.

In contrast it appears to be useful to expand the
bv(P;~) in powers of P, /4m because the . total momen-
tum of an interacting pair of nucleons in nuclei is gen-
erally much less than m. The lowest order bv(P;~) is
relatively simple [Eq. (1.7)] and seems to be dominated
by the classical terms coming from the relativistic energy-
momentum relation and Lorentz contraction.

A relativistic many-body theory of nuclei can also be
developed starting from quantum field theory. The rel-
ativistic Hamiltonians and quantum field theory imply
the same relation between 8,~. and bv(P;~) dictated by

where ~4'0) describes the nucleus with zero total momen-
tum,

u = V tanh '(/Vf) = V
]
1+ —/V/ +1

(7.2)

and K is given by Eqs. (2.4), (2.14), and (2.16). Up to
order ~V~ for a two-nucleon system at time t = 0 we
obtain

p' - 1 2 2mK.u=R V( 2m+ —+8+ P'+ fV/'
fm 4m 3

z 1P V+ (r V) (P. p)2m 2m
1 1—(sy+s2) x P+ (sy —s2) x p . V.

2m 2

(7.3)

The P and p in the above equation are operators. Using

e* '"
~Oe) = lice (e*K'"~") ~%)),

we obtain

(7.4)

1 1
~@) = 1 + —(r . V) (V . V) — (sq —s2) x V . V

2 2m

x
i
1+ —iV

( 1

x exp iR V
~

2m+ + v + m~V~
~

~@o).
( p'

(7.5)

Since the energy of the two-nucleon state is given by

2

E = 2m+ —+ v+ m~V~',
m

(7.6)

we can identify VE as the value (not operator) of
the total momentum. The factor (1 + r V V V/2)
in ~4') produces the Lorentz contraction of the wave
function and the (sq —s2) term gives spin rotations.
One of the (1 + ~V~ /4) factors compensates for the

the invariance of the Poincare group. The theory based
on hadron fields also provides a theoretical framework to
construct models of v;z, V~I„and many-nucleon interac-
tions [10,22, 15,24]. This framework is certainly useful,
but limited by the relatively small number of fields, such
as N, A, vr, p, ~, . . ., that can be treated. If the internal
structure of nucleons strongly influences the v;~ then one
would need to treat consistently a large number of hadron
fields. In this case it may be advantageous to use rel-
ativistic Hamiltonians containing semiphenomenological
models of v;~ and Vzk having field-theoretic long-range
pion-exchange parts and shorter-range phenomenological
parts.

Finally we note that in this approach it is rather simple
to describe a nucleus moving with a velocity V. Its wave
function is given by

(7.1)
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change in normalization due to the Lorentz contraction,
while the other represents the covariant normalization
[E/E(P = 0)] of the boosted wave function [25]. Due
to the choice w = 0 made in Sec. II, only kinematical
changes occur in the boosted wave function. One can
show that for a one-pion-exchange potential (OPEP) in
the form of Eq. (6.2) the w is nonvanishing [see Eq.
(A21) of Ref. [10]].
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