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Gauge invariant unitary theory for pion photoproduction
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The Ward-Takahashi identities are central to the gauge invariance of the photoproduction am-
plitude. Here we demonstrate that unitarity and in particular the inclusion of' both the AN and
p7tN thresholds on equal footing yields a photoproduction amplitude that satisfies both two-body
unitarity and the generalized Ward-Takahashi identities. The final amplitude is a solution of a set
of coupled channel integral equations for the reactions vrN —+ mN and pN ~ AN.

PACS number(s): 25.20.Lj, 24.10.Eq, 12.38.Lg, 13.75.Gx

I. INTRODUCTION

Pion photoproduction has a long history going back
to the early 1950's [1]. In recent years the interest in
this reaction has been revived as a result of new exper-
imental facilities that allow more careful studies of this
reaction over a much wider energy range, and the advent
of quantum chromodynamics (QCD) as a fundamental
theory of strong interaction, which should yield the in-
ternal structure of the nucleon. In particular the study
of the reaction p(p, m)N is motivated by the following:
(i) This is the simplest nuclear system one can examine
to understand the mechanism of pion photoproduction.
Furthermore, the amplitude for this reaction can be used
as input into the calculation of pion photoproduction off
heavier nuclei [2,3], with the expectation of gaining in-
formation about nuclear structure. (ii) There is recent
interest in chiral symmetry [4] and its possible violation
in this reaction [5,6], which have raised questions regard-
ing the role of unitarity in this reaction [7,8], and the use
of pion photoproduction to test chiral models of QCD,
e.g. , chiral perturbation theory [9]. (iii) The new facili-
ties at CEBAF, and other facilities, which will open the
way to examine the structure of the nucleon and the res-
onances observed in vrN scattering and pion photopro-
duction. These results could shed light on the need to
introduce quark-gluon degrees of freedom, and, in par-
ticular, determine the energy at which these new degrees
of freedom become more important than the traditional
meson-baryon degrees of freedom. In addition, this data
could be used to test models of QCD.

To examine the structure of resonances observed in vrN
scattering using pion photoproduction, we need to in-
clude the important thresholds for all possible reactions
at that resonance energy. To achieve this we may need
to include in our formulation those unitarity cuts, and
therefore thresholds, important for that resonance [10].
On the other hand, the incident photon will interact with
the electromagnetic (e.m. ) charge and current distri-
bution in the target, and to that extent it is essential
to satisfy charge conservation or U(l) gauge invariance.
The fact that the proton has an internal structure, which
could be described in terms of quarks at short distances

and mesons at large distances, suggests that these degrees
of freedom should be taken into consideration in deter-
mining the e.m. charge and current distribution. The
meson degrees of freedom, which include nucleon dress-
ing and the distortion of the final outgoing pion wave, are
part of the mechanism needed to include unitarity and
therefore the proper thresholds. Thus, under ideal con-
ditions one should satisfy both unitarity and U(l) gauge
invariance in a consistent manner. In addition, the quark
dynamics should be included in the determination of the
charge and current distribution even though they do not
contribute directly to any thresholds, since the quarks
are confined.

Historically, some early calculations of pion photopro-
duction [11—13] were made to satisfy unitarity by impos-
ing the Watson theorem [14]. This basically consisted
of representing the final distortion in the AN channel by
the on-shell pion-nucleon amplitude or AN phase shift.
In this approach, which has recently been used to ex-
tract E2/Ml A —N transition [15], the cross section for
pion photoproduction consisted of two parts, the Born
amplitude, which included the interaction of the photon
with the nucleon and meson currents (see Fig. 1), and
the on-shell vrN amplitude, which was included to sat-
isfy two-body unitarity. The two ingredients were con-
sidered to be independent. Thus, for the Born ampli-
tude, the photon coupled to a nucleon with an internal
structure represented by an on-mass-shell form factor ex-
tracted from elastic electron-proton scattering, while the
pion coupling to a finite nucleon (see Fig. 1) involved a
nNN form factor, which was constrained by the U(l)
gauge invariance to be the same as the e.m. form fac-
tor [7]. Here we should note that there is no consistency
between the 7t NN form factor used and the e.m. form fac-
tor other than the overall gauge invariance of the Born
amplitude. On the other hand, the vrN amplitude, which
also has the vrNN form factor, was determined solely by
the mN scattering data. In other words there was no
consistency between the Born amplitude for pion photo-
production and the 7tN amplitude that determined the
dynamics of pion-nucleon scattering. More recently [7],
extensions of this procedure have been developed with
considerable success, that extend the Watson theorem by
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FIG. 1. The Born amplitude for pion photoproduction.
The number in the vertices is the irreducibility of the ver-
tex.

employing the off-shell m'N amplitud. e generated by either
a separable potential [7] or a chiral Lagrangian [16] to de-
termine the final distortion of the outgoing pion. Even
in these calculations no attempt has been made to have
any consistency between the AN dynamics and the Born
amplitude for pion photoproduction. The present inves-
tigation is an attempt at a reformulation of pion photo-
production that satisfies both unitarity and U(1) gauge
invariance. The 7rN dynamics required for unitarity will
determine the charge and current distribution. In this
way we maintain consistency between the pion dynamics
and the requirement of e.m. gauge invariance.

To include gauge invariance and the dynamics that de-
termine the underlying structure of the nucleon, we need
to gauge the Lagrangian for the underlying strong in-
teraction dynamics. Id.cally this means we need to start
from the QCD Lagrangian and include the e.m. interac-
tion. However, at this stage we have no practical pro-
cedure for projecting meson-baryon degrees of freedom
without resorting to models of QCD. For example, if we
assume that the cloudy bag model (CBM) [17,18] deter-
mines the dynamics of the quarks and pions, then we
should first gauge the CBM Lagrangian [2] to include
the e.m. interaction. To substitute the quark degrees
of &eedom by the baryonic degrees of freedom, we need
to take the second step of implementing the procedure
adopted in the CBM by efFectively integrating out the
quark degrees of freedom. This two-step process of get-
ting an effective meson-baryon Lagrangian that includes
the electromagnetic and meson interaction consistently,
is illustrated in Fig. 2. Unfortunately, to get the correct
current for the coupling of the photon to the baryon, we
need to construct, in the CBM, a state' that is an eigen-
state of the total four-momentum that can be boosted
from one inertial frame to another [19]. This, in practice,
is not possible in a bag model because the bag bound-
ary condition cannot be simply boosted. However, this
procedure could be followed in other chiral soliton mod-
els [20] with some diKculty, or we could use a model such
as the Nambu —Jona-Lasinio (NJL) Lagrangian [21—23] or
the global color model [24,25], which can, in principle,
give a translationally invariant state [26]. The resultant
Lagrangian would have gauge invariance, and we could
then proceed to implement unitarity, taking as a starting

FIG. 2. Two possible scenarios for constructing a gauge
invariant Lagrangian for mesons and baryons from a +CD
model.

point the Lagrangian in the space of baryons, mesons,
and photons. The effect of quarks would be to have form
factors for all vertices, but now we would. have a self-
consistency between the different form factors in the La-
grangian. In particular, the form factor associated with
the nucleon e.m. current and the form factor in the mNN
vertex would be consistent. Furthermore, this vrNN form
factor goes into the dynamics that generates the AN in-
teraction. Since the quarks are confined, and therefore do
not contribute to unitarity, an alternative procedure that
would satisfy gauge invariance and unitarity, see Fig. 2,
would be to integrate the quark degrees of &eedom in
favor of the baryon degrees of &eedom. In this case,
we would have form factors associated with the meson-
baryon Lagrangian, and these form factors are related to
the underlying quark structure of the nucleon. A proce-
dure that introduces the e.m. coupling would be to gauge
the resultant Lagrangian with form factors (e.g. , Ohta's
procedure [27,28]). Such a procedure must result in the
vertices with photons satisfying their associated Ward-
Takahashi identities [29,30] guaranteeing their gauge in-
variance. At this stage we should point out that gauging
the meson-baryon Lagrangian with form factors based
on a QCD model may not give the same e.m. currents
as the gauging of the underlying QCD model. The cur-
rents based on the two methods could differ by a con-
served current and to that extent one should ideally de-
rive the currents at the QCD level. The contribution to
the nucleon propagator and vrNN form factor &om me-
son dressing and meson-nucleon scattering will then be
included explicitly, while maintaining both unitarity and
gauge invariance.

In Sec. II we introduce a m'N Lagrangian in which the
nucleon and pion have structure and the 7rNN vertex has
a form factor. At this stage we may assume that this in-
ternal structure is due to quark degrees of freedom. This
Lagrangian can, in principle, be gauged to give propa-
gators and vertices that satisfy the corresponding Ward-
Takahashi identities. Furthermore, this Lagrangian, in
lowest order, gives a photoproduction amplitude that is
gauge invariant. The actual details of constructing this
Lagrangian will not be consid. ered at the present time,
as they will depend on the QCD model used. This sets
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the stage for the next step of including the contribution
to unitarity from the pionic degrees of freedom. This
will be d.etailed in Sec. III, where we derive a set of
coupled integral equations for both mN elastic scatter-
ing and m + N ~ p + N. Since the threshold energies
for ~N scattering and per% are the same, we include
both of these thresholds in our coupled channel formu-
lation. To establish the gauge invariance of the photo-
production amplitude resulting from the coupled channel
approach, we proceed in Sec. IV to make use of the Ward-
Takahashi [29,30] identities and the procedure proposed
by Kazes [31] to derive the amplitude for this reaction
from the one-pion irreducible vrNN three-point function
derived in Sec. III. We then show in Sec. V that the am-
plitude resulting from the solution of the coupled channel
is, in fact, identical to that derived from the applica-
tion of the Ward-Takahashi identities. In this way we
establish that the solution of the coupled channel prob-
lem satisfies both unitarity and gauge invariance. Finally
in Sec. VI we present some concluding remarks.

(a)
q

(b)

Lagrangian; e.g. , by taking Z(p) =PA(p ) + mB(p ) we
can write the Fourier transform of the functions r and h,

in terms of A(p ) and B(p ) as r(p ) = 1 —A(p ) and
h(p ) = 1+B(p ). Thus, the nucleon propagator is given
as

~o '(p) = (p') & ™h(p'). (2.4)

The conditions that this propagator have a simple pole
at the nucleon mass m and that the residue at this pole
be one, impose the following conditions on the functions
h(p') and r(p'):

FIG. 3. Examples of diagrams that could contribute to the
baryon (a) and meson (b) dressing in a quark model.

II. THE GAUGE INVARIANT LACRANCIAN r(m ) =h(m ) (2.5a)

~ —~N+~~+~~NN- (2.1)

Our main motivation in the present investigation is to
set up a unitary and gauge invariant formulation of pion
photoproduction. Since the quarks and gluons are con-
fined, they do not contribute to unitarity, and we can in-
clude this substructure by introducing form factors into
our Lagrangian. In other words we can consider a La-
grangian for the system of nucleons and pions as

with

d, &(P')
dJ2

h'(m') = ",h(p')
2p

p'=m'

p2=m2

( ) +2m (r'(m ) —h'(m )) = 1 (2.5b)

(2.5c)

(2.5d)

The Lagrangians for the baryon and meson with internal
structure are taken to be [27]

dx'dx @(x')[ip 0 r(x' —x)

—mh (x' —x) ]vP (x), (2.2a)

dxdx' Q(x') (0 —p ) f (x' —x)Q(x), (2.2b)

where the form factors r, h, and f may be determined
from the underlying quark-gluon structure; e.g. , we could
write the corresponding propagators for the nucleon and
pion as

In a similar manner we can determine f (q ) in terms
of II(q ) with the requirement that the pion propagator
have a pole at q = p, with unit residue. In this way
the underlying quark-gluon degrees of &eedom have been
included, and the gauging of these propagators will give
us the coupling of the photon to the nucleon and the pion
that have internal structure. Here we should point out
that any pionic dressing of the nucleon will shift the mass
m, and to that extent the nucleon mass in Eq. (2.5) may
need to be considered as the bare nucleon mass. This
will also apply to the pion mass, if it is to receive any
further dressing.

The interaction terms in the Lagrangian in Eq. (2.1)
can be written as

~o(p) = [8 —m —~(p)l
' (2.3a) dx IxAg x A5 x&x&g 7i i g x

E(q) = [q —p —II(q ) j (2.3b)

where Z(p) and II(q ) could be written in terms of their
quark structure, as illustrated in Fig. 3. It should be
pointed out at this stage that the QCD model used in
evaluating the the diagrams in Fig. 3 should not give
rise to unitarity cuts, since the quarks are confined. The
mass shifts in both the baryon and the meson propaga-
tors can then be written in terms of the functions in the

(2.6)

Here again the vertex function A5 could be determined
from an underlying QCD model; e.g. , the CBM gives the
m%N form factor in terms of the bag radius and the wave
function of the quark in the bag.

At this stage the form factors introduced above could
be attributed to the internal structure of the pion and
nucleon. Given a model for this internal structure one
could employ gauge invariance to generate the currents
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associated with this structure, and this current would
satisfy the Ward-Takahashi identities [32]. On the other
hand, one can parametrize these form factors and then
use minimal coupling to generate the electromagnetic
current. This procedure, followed by Ohta [27,28], give
rise to currents that satisfy current conservation but are
not unique in that one can always add a conserved cur-
rent to that derived from the minimal substitution pro-
cedure as demonstrated by Bos et al. [33]. Since we will
need some form of cutoK or form factor to include pionic
dressing and therefore unitarity, we will assume that the
form factors introduced in the Lagrangian in Eq. (2.1)
can be gauged and the resultant currents will satisfy the
Ward-Takahashi [29,30] identities.

The behavior of the nucleon propagator, given by
Eq. (2.4), under gauging, can now be written to first
order in the e.m. field A as

s (p) ~ s (p) —r„(k,p', p)~, (2.7)

where k is the photon momentum and r&(k, p', p) is the
resulting electromagnetic current for the nucleon. In the
event that r(p ) = h(p ) = 1, i.e. , the nucleon has
no internal structure, then I &

——
2 (1 + ws)p~, which is

the standard Dirac current. We now assume that the
proper gauging of the Lagrangian in Eq. (2.2a) should
give a current that satisfies the Ward-Takahashi iden-
tity [29,30,34,35], i.e. ,

So(p) + So(p) + So(p') I'„(k,p', p) So(p) A" . (2.9)

The actual details involved in calculating I'„(k,p', p) will

depend on the model for the internal structure of the
nucleon and will not be considered at this stage.

In a similar manner, the gauging of the pion propagator

(p' —p)" r„(k,p', p) = 2(1+ ) (S (p') —S (p))

(2.8)

In this way the gauging of the nucleon propagator is given

by

to be

A(q) -+ b. (q) + A(q')r„"(k,q', q)A(q)A" . (2.14)

Having established the gauging of the nucleon and pion
propagators, we turn our attention to the gauging of the
interaction Lagrangian and, in particular, the pion pro-
duction vertex. The procedure of gauging the vrNN ver-
tex generates the contact term for mN E—pN given by

Ast (q, p', p) ~, m Ast (q, p', p) ~; + I'„'(k,q, p', p) A",
(2.15)

where r& '(k, q, p', p) is the mN e—pN vertex. The re-
sultant Ward-Takahashi identity for the contact term is
then given by

k"I „'(k,q, p', p) = eiv~;At5(q, p' —k, p)
7.;e~—Ats(q, p', p+ k)

i ebs;, 7,—At5 (q —.k, p', p), (2.16)

as indicated by the results of Kazes [31] and Naus, Koch,
and Friar [35].

In the present investigation the form factors that are
present will play the role of introducing cutoffs that main-
tain gauge invariance and will allow us to incorporate the
pionic dressing of the nucleon without having to resort to
other renormalization procedures. From a practical point
of view, the gauging procedure will allow the introduc-
tion of @CD-based parameters that provide consistency
between the difFerent form factors. Although the above
Lagrangian is not the most general we can envisage, the
procedures followed and the general conclusions can be
extended to more general forms for the meson-baryon
Lagrangian. In particular, we could have included a mN
interaction that under gauging would give us a term for
the process vrN E-+ p7t¹ The detailed form of such an
interaction will depend on the model considered; e.g. , in
some chiral Lagrangians such an interaction would arise
from p and 0 exchange [36].

'(q) = q' —m,' —II(q'), (2.10)

can also be considered to Grst order in the e.m. field to
be

'(q) m E (q) —I'„(k,q', q)A", (2.11)

where k is the photon momentum, and I' (k, q', q) is the
pion electromagnetic current, which is assumed to satisfy
the Ward- Takahashi identity

(q' —q)" I'„(k,q', q) = Q (E (q') —A (q)) . (2.12)

Here Q is the pion charge operator. In the limit of a
structureless pion, II(q'2) = II(q2) = 0, r„(k,q', q) re-
duces to the standard current for a point pion, i.e. ,

r„(»q',q) = Q (q'+q)& ~ (2.13)

In analogy with Eq. (2.9), we can determine the behavior
of the pion propagator b, (q) under gauge transformation

III. U NITAKITY

Having established the form of the Lagrangian, and
therefore the corresponding Hamiltonian, we now pro-
ceed to include the pionic contribution to the currents
and the amplitude for pion photoproduction. Since the
pionic dressing contributes to both the thresholds for mN
scattering and modifies the e.m. currents, we need to
include pionic contributions, while preserving two-body
unitarity and gauge invariance. This can be achieved by
deriving coupled integral equations for pion-nucleon elas-
tic scattering and pion photoproduction that include the
AN, gN, as well as the pmNthresholds. Alth'ough this
latter threshold is not required for two-body unitarity to
be satisfied, the fact that it is at the same energy as the
mN threshold suggests that we need to include it for con-
sistency. However, it turns out that the inclusion of the
pm'N threshold is essential if we are to preserve gauge
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invariance at the operator level for the pion photopro-
duction amplitude.

The method employed for the derivation of these cou-
pled integral equations is based on the classification of the
Feynman diagrams that contribute to a given amplitude,
in perturbation theory, according to their irreducibility.
In other words, we take all Feynman diagrams that con-
tribute to a given amplitude and classify these diagrams
into classes according to their irreducibility. Then with
the help of Taylor's [37,38] last-cut lemma, we can write
the diagrams that belong to a given class, and of a given
irreducibility, in terms of amplitudes for the same pro-
cess or a related process. This procedure generates cou-
pled integral equations for all related reactions. This
method has been used to derive unitary equations for
the NN —7rNN system [39—43], the 7rN —vr7rN sys-
tem [44,45], and the pN —vrN system [2,46].

Although Taylor's [37] original classification scheme
sufFers from double counting problems when applied to
covariant perturbation theory, these problems have been
recently overcome [47,48] at the cost of imposing irre-
ducibility constraints on subamplitudes in channels other
than the 8 channel, and the requirement that certain sub-
tractions be included in the final equations. Since this
double counting does not arise for two-body unitarity in
vrN scattering and pion photoproduction [47], we have
chosen to use the simplified version of the classification
of diagrams that is often used in time-ordered perturba-
tion theory, and has been applied to this reaction previ-
ously [2,46].

Since the last-cut lemma plays a central role in our
derivation of integral equations for pion photoproduction,
we will very brie8y state the basic definition of a cut and
the last-cut lemma as applied in time-ordered perturba-
tion theory. We define a k cut as an arc that separates
the initial state &om the final state in a given diagram,
and cuts k particle lines with at least one line being an
internal line. An amplitude is r particle irreducible if all
diagrams that contribute to this amplitude will not ad-
mit any k cut with k & r. With these two definitions, we
can introduce the last-cut lemma, which states that for a
given aznplitude that is (r —1) particle irreducible, there
is a unique way of obtaining an r-particle cut closest to
the final (initial) state for all diagrams that contribute to
the amplitude. By virtue of this lemma, we can expose
one-, two- and three-particle intermediate states and the
corresponding unitarity cuts and in this way derive equa-
tions for the amplitude that satisfy unitarity. Prom the
above statement of the lemma, it is clear that we need
to expose the n-particle unitarity cut before the (n+ 1)-
particle unitarity cut.

With this lemma we can now expose the 7rN and pmN
unitarity cuts and derive a set of integral equations gov-
erning pion-nucleon scattering and pion photoproduc-
tion. However, before we set out to derive integral equa-
tions for AN elastic scattering and pion photoproduction,
it would be helpful to our discussion in this section if we
symbolically write our Lagrangian, derived in Sec. II, as

~ = ~N + ~~ + ~p + ~+AN + ~~Nor% + ~pNN
+~q~~ + ~q~NN + ~~Nq~N . (3.1)

The additional terms in this Lagrangian, over those in
Eq. (2.1), are the result of gauging the Lagrangian in
Eq. (2.1). In addition we have included terzns that give
rise to mN ~ AN, C~N~N and ~N ++ pvrN, Z~~~~N.
These additional terms are included in the event that we
need to include cr and p exchange, which are often needed
in chiral Lagrangians that describe mN scattering [36].
Here we will not examine the detailed form of such a
mN interaction and the associated gauging as the result
would then be model dependent. All terms in this La-
grangian will have form factors that are consistent with
Ward-Takahashi identities as demonstrated in Sec. II.

A. The AN unitarity cut

t(') = t(') + A"~SA'" (3.2)

where t is the m —N amplitude, A5 is the N ~ vrN am-
plitude, and S is the dressed nucleon propagator. The su-
perscript gives the irreducibility of the amplitudes. The
one-particle irreducible 7rN ~ AN amplitude t( ) satis-
fies the two-body equation

t(~) t(2) + t(2) t(i) t(2) + t(~) t(2) (3.3)

with g = SL being the AN propagator. Since we are
restricting our analysis to the inclusion of the 7rN and
pvrN thresholds only, we can choose our AN propagator
so that the nucleon propagator does not include pionic
dressing, i.e., g = SOD, where So is the "bare" nucleon
propagator defined in Sec. II, Eq. (2.3a). However, the
substitution S ~ So, if carried through in the mN prop-
agator g, will require that So have a simple pole at the
physical nucleon mass. The input to Eq. (3.3) is the two
particle irreducible 7rN amplitude t( ). Application of
the last-cut lemma to this amplitude will expose states
with two or more pions and a nucleon, i.e., the 7rvrN and
higher thresholds. If we are not to include these thresh-
olds into our final equation, then we can assume that t( )

is some mN potential whose parameters can be adjusted
so that the full AN amplitude t( ) reproduces the exper-
imental phase shifts. On the other hand, if we are to use
the Lagrangian defined in Eq. (3.1) for our input, then
we need to expose the +AN intermediate states by the
application of the last-cut lemma to t( ). This gives us

t(') = t(') +A" SA"" (3.4)

Restricting the analysis of the pion nucleon and pion
photoproduction amplitudes to lowest order in the elec-
tromagnetic coupling e leads to the result that the two
amplitudes can be considered separately as there are no
radiative corrections to the m-N amplitude. The anal-
ysis of the m-N amplitude under these conditions has
been carried out previously [41—45,2] and a summary of
the two-body results is presented here. At the two-body
level the m Namplit-ude is given by [2]
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where the second term is the cross diagram. Here again
we can make the substitution S + So, with the condi-
tion that So has a pole at the physical nucleon mass, if
we want to include two-body unitarity only. Since the
Lagrangian in Eq. (3.1) does not include any term for
two-pion production or absorption, vraN ~ N, the three
particle irreducible amplitude t( ) is just the vrN poten-
tial resulting &om 8 ~ N and could include o and p ex-
change. If we were to examine the full vrmN part of the
Hilbert space, then the vrN ~ N amplitude in Eq. (3.4)
gets dressed [45] to the extent that Az ~ Az, and the(2) (i)

AN ~ N amplitude in the crossed digram becomes the
same as that in Eq. (3.2) for the pole diagram.

We now turn to the one-particle irreducible AN ~ N
amplitude A5 . Using the last-cut lemma, we can write

t(o) t(2) +A(2)tSA(i) +t(2) t(i) + A(i)tSA(i)
5 5 g 5 5

(3.9)

We now make use of the fact that

(3.1O)

and, noting the definition of t( ), obtain

t(') = v S+gt(') (3.11)

v = t(')+A,""S,A,'", (3.12)

Here the Born amplitude for vrN scattering v is given by

A,
' = A(' + A,

' gt(') = A,
' + A,

' gt(') . where, for the present Lagrangian,

Here again, since the Lagrangian under consideration has
no component that gives rise to two-pion production or
absorption, i.e. , N ++ maN, then the two-particle irre-
ducible ~N ~ N amplitude A5 has no intermediate
states and is just the wNN vertex in the Lagrangian,
i.e., A5 = A5.
~ (2)

The dressed nucleon propagator in Eq. (3.2) is given
by

S-' = S-' —Z(') (3.6)

where, with the help of the last-cut lemma, we can write
the mass shift due to pionic dressing as

2" = Z&'l + A"g A'" = Z~'l + A"g A'" {37)

p, (o)
So ~IJ ~N ~ (3.8)

where m,~ is the bare nucleon mass and includes the(o) .

quark-gluon contribution to the mass. From this point on
we assume this bare mass has no momentum dependence
as the quark-gluon contribution does not introduce any
unitarity thresholds and the mass shift due to quark-
gluon structure has no threshold. In this case the dressed
propagator S should have a pole at the physical nucleon
mass.

An integral equation for the m-N amplitude, t( ), can
now be derived [45]. To achieve this, we erst substitute
Eqs. (3.3) and (3.5) into (3.2) resulting in

Since the Lagrangian has no term for N ++ vrmN transi-
tion, then Z( ) = 0, while the bare nucleon propagator
So in Eq. (3.6) is given by

t() =t()+A S A and A =A5 (3.13)

where A5 has a form factor that could, in principle, be
extracted &om a QCD model, and t~ l could be any 7rN
potential we may need to introduce. This Born ampli-
tude, or aN potential, is illustrated in Fig. 4.

We now turn to the amplitude for single-pion photo-
production m+ N ~ p+¹ This has been considered in
detail previously by Araki and Afnan (AA) [2]. For the
sake of completeness we present here a summary of their
results. Applying the last-cut lemma to the pion pho-
toproduction amplitude M( ), we first expose the AN
unitary cut. Here we will restrict the analysis to first or-
der in the electromagnetic coupling e. We now can divide
the diagrams that contribute to this amplitude into two
classes: The diagrams that are one-particle irreducible we
sum to get the one-particle irreducible amplitude M( ).
The rest of the diagrams are one particle reducible and,
when summed, give the nucleon pole contribution to the
full amplitude. The resultant decomposition for the full
amplitude is then given by

M(') = M(') + A,"'Sr('), (3.14)

where we have retained only those terms linear in e. Fi-
nally, applying the last-cut lemma to expose the AN uni-
tarity cut in the N +—pN amplitude, I'( ), we get

FIG. 4. The Born amplitude for vrN scattering.

where I'( ) is the one-particle irreducible N ~ pN am-
plitude. Following the procedure presented above for the
AN amplitude, we employ the last-cut lemma to write
an integral equation for the one-particle irreducible pho-
toproduction amplitude M( ). This is given by

M~ l = M~ l + t~ lgM~ l = M~ l+ t~ lgM~ l, (3.15)
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In this way we have exposed all two-body unitarity cuts
in the photoproduction amplitude.

We now write this photoproduction amplitude M( ) as
the solution to a two-body integral equation, and in this
way define the Born amplitude for the reaction ¹r +-

This involves similar steps to those used to derive
the equivalent equation for 7rN elastic scattering, i.e.,
Eqs. (3.9)—(3.12). This results in the integral equation
for M( ) being

M( ) = e+~gM( ), (3.17)

with the Born amplitude for pion photoproduction given
by

(3.18)

where we have made use of the fact that

(3.19)

At this stage it is premature to link the photoproduction
Born amplitude v to the underlying Lagrangian, since
the last-cut lemma can be further applied to both 1 ( )

and M( ) to reveal the contribution of the pmN cut. As
we will observe, when we expose the pmN unitarity cut,
6 is not the usual Born amplitude for pion photoproduc-
tion. It will include additional terms that give rise to the
dressing of some of the vertices.

B. The pm' cut

To examine the diagrams that contribute to v and in
this way determine their physical importance, the last-
cut lemma is applied to both I'( ) and M( ) to reveal
the paN unitarity cut. The pvrN branch point occurs at
the same energy as the mN branch point but at a lower
energy than the start of the vrmN cut as illustrated in
Fig. 5. As a result, in this approach, the pvrN cut will be
treated on an equal footing with the mN cut but diR'er-

ently &om the vrmN cut, which has been truncated out
of our analysis, since we are considering only two-body

C
(3.2O)

In the absence of a term in the Lagrangian for the
N ++ vrmN transition, the amplitude I'( ) is nothing more
than the nucleon e.m. current, i.e., I'( ) = I'. In a simi-
lar manner, the absence of a two-pion production or ab-
sorption term in the Lagrangian allows us to take the
N ~ pvrN amplitude, I' to be basically that resulting
from the gauging of the vrNN vertex, i.e. , I' = I'~ {3)

Finally, taking into consideration the fact that we are re-
stricting all our results to the inclusion of amplitudes in
lowest order in the e.m. coupling, the amplitude E2 for
the process p7rN ~ pN, has to be disconnected and of
the form

unitarity as far as the pion dynamics is concerned. In
the approach of AA [2], the mmK and per% cuts were ex-
posed simultaneously, since their truncation was carried
out with respect to the number of particles present in in-
termediate states in contrast with the present approach
of truncation on the basis of the position of the threshold
in the energy plane.

To include the pvrN threshold in our pion photopro-
duction amplitude, we first consider the diagrams that
contribute to the two-particle irreducible N ~ pN am-
plitude 1( ). These diagrams can be divided into two
classes: those that do not have pvrN intermediate states,
the sum of which we denote by I ( ) and those that
have p7rN intermediate states. To the latter we apply
the last-cut lemma and thus expose the corresponding
threshold. We denote the sum of the diagrams in this
class by (I' G~ l Pz )„where the subscript c denotes
that we include only the connected diagrams in the sum.

Here, the subamplitudes I' for N E—p7rN and E2
for p7rN E—pN do not have to be the sum of connected
diagrams provided diagrams that contribute to N E—pN
amplitude I'(2) are connected. Finally, G( ) is the prod-
uct of the propagators for the nucleon, pion, and photon.
Since we have a pion in G( ), the nucleon propagator in
G( ) need not include any pionic dressing, but the mass
in this propagator needs to be the physical nucleon Inass.
Thus exposing the pmN threshold in the N +—pN am-
plitude allows us to write this amplitude as

(3.21)

where D is the photon propagator. This allows us to
write the two-particle irreducible N E—pN amplitude as

I (2) I'(3) + I'(3) g P(i)t (3.22)

where for the present Lagrangian we have

(3.23)

~N, ~N ~aN, ~zN

FIG. 5. The energy plane for m'+ N ~ p + N scatter-
ing showing the unitarity cuts corresponding to the difFerent
thresholds.

(3.24)

with 1" and I' resulting from the gauging ~~ and &~mar
in our basic meson-baryon Lagrangian, respectively.
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We now turn to the two-particle irreducible 7rN ~ pN
amplitude M( ). Here again we divide all diagrams that
contribute to this amplitude into two classes: The first
is those with pmN intermediate states. These diagrams
are summed, with the help of the last-cut lemma, to pro-
duce the amplitude in which the pmN cut is exposed.
The sum of all the diagrams in this class is given by
(Fs~ l G~2l F~ )„where F~~ is the two-particle irre-
ducible vrN E—p7rN amplitude. Here again the diagrams
that contribute to the subamplitude can be disconnected
provided the diagrams that are summed to gjve the full
amplitude are the sum of connected diagrams. The sec-
ond class of diagrams are those with no p7rN intermediate
states. The sum of these diagrams we denote as M (2)

The subscript vr indicates that three-particle intermedi-
ate states have only pions, i.e. , ~vrN intermediate states.
Thus the two-particle irreducible 7rN +—pN amplitude
can be written as

M(') = M(')+ E"'G(') F'"'
3 2

C
(3.25)

E"G(') E""
3 2

C
(3.26)

At this stage we could parametrize M as an energy in-' (2)

dependent amplitude without affecting the two-body uni-
tarity or the inclusion of the pmN threshold of our final
amplitude. However, if we want to relate our input to the
underlying Lagrangian given in Eq. (3.1), we need to ex-

amine the structure of M . In particular, we need to di-
vide the diagrams that contribute to this amplitude into
two classes: The 6rst is those with no mmN intermediate
states and that are therefore three-particle irreducible.
These we denote by M( ), and for the Lagrangian under
consideration we reduce to the contribution of just the
basic term in the Lagrangian Z~ ~~. The second class
of diagrams has 7r7rN intermediate states and need to be
included if three-particle unitarity is to be included in the
Anal photoproduction amplitude. However, since we are
neglecting three-body unitarity, we have a choice of ei-
ther neglecting the contribution of these diagrams to the
m N ~ pN amplitude M or examining the structure
of these diagrams with the help of the last-cut lemma in
conjunction with the modified version of Taylor s classi-
fication of diagrams [47]. Here we should point out that
the contribution to M from diagrams that admit a
(7r7rN) cut that cut initial, final, and internal lines will

be included in (Fs~ l G~2l F2 ),. That leaves diagrams
in which the (vrvrN) cut can intersect initial and internal
lines only, or final and internal lines only. Because we
are including the e.m. interaction to first order and have
excluded any direct coupling between a mvrvrN interme-
diate state and the pN initial state, there are no dia-
grams in this class. This leaves the diagrams that admit
(vrvrN) cuts that intersect initial and internal lines only.
These will involve the connected mN E—vr7rN diagrams,
which have the contribution of three-body unitarity. For
the present investigation we have chosen to neglect this
contribution to three-particle unitarity and have taken
M = M( ), and therefore

We now turn our attention to the contribution from the
pvrN threshold to M( ) i.e. , F( G( ) E . Since

C
the e.m. coupling is included to first order in the present
analysis, we have that the pvrN E—pN amplitude E2(2)t

has to be disconnected and of the form

F(2)t F(2)t D—ig(1)t
2 2'd 5 (3.27)

On the other hand, the three-particle irreducible mN ~
pvrN amplitude E3 can be written in terms of a con-
nected and a disconnected part as

(3) (3) (3)F3 ——F3.d + F3'c (3.28)

Since the photon is absorbed in this process, the discon-
nected amplitude F3.d has the form(3)

E"= S-'r"(') + A-'r(')
3;d 0 (3.29)

where I ( ) is the two-particle irreducible vr +—p7r am-
plitude. Since we already have a spectator pion, and to
avoid the problem of nonlinearity of our final integral
equations, we could take

r(') -+ I'(') = r, (3.3O)

where I' is the nucleon e.m. current. Since there is no
direct coupling in the Lagrangian between the final 7rN
state and any state with four particles (e.g. , 7r7r7rN or

pvrvrN), we take Fz , to be t. he 7rN +—p7rN interaction
- (3)

in the Lagrangian, i.e. ,

Fs~.,l = (vrN) —8 ~~ ~(p7rN) . (3.31)

As with the exposure of the cross diagram in Eq. (3.4),
E3. can also have the last-cut lemma further applied be-(3)

fore contact with the underlying Lagrangian is made. At
this stage this will be ignored, since we are only interested
in the minimal requirements of two-body unitarity, and
so t( ) will be considered as a background mN potential.

We now make use of Eqs. (3.27) and (3.29) in Eq. (2.12)
to write the two-particle irreducible amplitude for ~N ~
pN as

This basically consists of the "seagull" term M( ), the
nucleon emitting a pion with the photon being absorbed
on the mN interaction. The details of this AN E—pmN
amplitude will be determined by the gauging of the vrN
interaction. The two Anal terms on the right-hand side of
Eq. (3.32) correspond to photon absorption on the pion
and the crossed diagrams for pion photoproduction.

We now can write the Born amplitude for pion photo-
production 6 given in Eq. (3.18) as

M(2) M(3) + E(3) P(1)t + P (2) ~ P(1)t + P(2) g ~(1)f
3;c ~

=M(')+ F,". +I (') S, '+r(')Z-' gA,'".
3ic

(3.32)
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6 M(3) + E(3) + I.(2) S 1 + I (2) L 1 A(1)t
t

+W""S.I'(') . (3.33)

For the present, the seagull term is the contact term in
the Lagrangian, i.e. ,

plitude derived in the last section.
The starting point for deriving a gauge invariant pion

photoproduction amplitude is the xNN three-point func-
tion or Green's function for sr%+—N, given by

G(q, p', p) = dpi d4~$d4~3e'~& ~+'i

M(') =I
while the two-particle irreducible pion current

I m(2)

(3.34)

(3.35)

IV. THE PION PHOTOPRODUCTION
AMPI ITUDE

Having derived a set of coupled integral equations for
the pion photoproduction amplitude, we proceed in this
section to derive an expression for this amplitude with
the help of the Ward-Takahashi identities [29,30] as em-
ployed by Kazes [31]. We then can compare the resultant
amplitude, which is gauge invariant, to the unitary am-

For the minimal requirement of two-body unitarity and
the inclusion of the 7tN and per% thresholds, we could
replace the reducibility of the N ++ pN amplitude I'( )

and the N ~ 7rN amplitude A5 by an amplitude that
is of higher reducibility, and which is directly related to
the basic terms in our Lagrangian, depending on the di-
agrams to which these amplitudes contribute. We will
come back to this point when we consider the gauge in-
variance of our overall amplitude.

x (olr &(x,)&(»)@(») 10)

= S(p') &(q) A'(q p' p) ~ & S(p) (4.1)

where q is the pion momentum and p' (p) is the momen-
tum of the final (initial) nucleon. Here S and 4 are the
nucleon and pion propagators, respectively. In Eq. (4.1)
we have taken w to be the Pauli isospin matrix and g7 to
be the pion field. To gauge this amplitude and thus gen-
erate a gauge invariant pion photoproduction amplitude,
we make use of the procedure of coupling the photon to
all propagators and vertices. This is equivalent to the
substitutions [31]

S(p) -+ S(p) + S(p') I'„(k,p', p) S(p) A", (4.2a)

A(q) -+ A(q) + A(q') I'„(k,q', q) A(q) A", (4.2b)

As (q, p', p) ~; -+ As (q, p', p) ~; + I'„'(k,q, p', p) A", (4.2c)

in the Green's function G(q, p', p). To maintain unitarity
we need to include the pionic dressing of both the prop-
agators and vertices. In particular, we will 6nd that the
minimal requirement of two-body unitarity will impose a
constraint on the level of dressing in both the propagator
S(p) and the vertex As(q, p', p).

With the above gauging procedure, our 7t NN Green's
function can be gauged to give

G(q, p', p) -+ G(q, p', p) + S(p') A(q) M„;iv iv(q, A:, p', p) S(p) A" . (4 3)

The resultant pion photoproduction amplitude M„,iv~~~(q, k, p', p) is now given as the sum of four diagrams, i.e. ,

M„' ~~ (q, k, p.
', p) = A5t (q, p', p + k) ~, S(p + k) I"„(k,p + k, p) + I'„(k,p', p' —k) S(p' —k) Ast (q, p' —k, p) ~,

+I'„"(A:, q, q —k) b, (q —k) As (q —k, p', p) ~~ + I'„'(A:,q, p', p) . (4.4)

Here q is the pion momentum, k the photon momentum while p' and p are the nucleon momenta in the final and
initial states, respectively. The superscripts i and j in I„.~~ ~ and I'„ indicate the isospin index, which we have

now explicitly included. At this stage the pionic dressing in the mN E—N amplitude A5, the nucleon current I'~, the
pion current I', and seagull term I' are included to all orders. These four diagrams are illustrated in Fig. 6 and at
this stage give the most general form for the vrN ~ p% amplitude if we ignore the irreducibility of the subamplitudes
in the figure [31,35,49].

Using the Ward-Takahashi identities [29,30] for the nucleon propagator, the pion propagator, and the m KN vertex,
we can establish the gauge invariance of the amplitude M'. N ~. In particular we have that k~M„'. ~~ ~ reduces
to

(q I p' p) = 'S '(p') S(p' —&) A'(q p' —&, p) —
* A.'(q, p', p+k)S(p+&) S '(p)

i e es;~ ~~. A (q) A(q —A:) Ats(—q —k, p', p), (4.5)
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this way we have established the fact that M'. ~ ~ is
i

indeed gauge invariant, and the requirement of current
conservation is satisfied.

At this stage the vrNN Green's function we have con-
sidered has the fully dressed propagators and vertex, and
to get these quantities will require a full solution to the
underlying field theory. However, to satisfy the minimum
requirement of two-body unitarity, we need not include
the pionic dressing of the final nucleon propagator, while
the initial nucleon propagator and the vrN E—N ampli-
tude need only include the minimal pionic dressing to
include the vrN threshold. In this case the Green's func-
tion we need to consider is given by

{c)

which is in agreement with the results of Kazes [31]. Tak-
ing matrix elements of Eq. (4.5) between on-mass-shell
initial and final states gives

(xN~k"M„' ~ ~(q, k, p', p) ~pN) = 0, (4.6)

since the inverse propagators are zero on-mass shell. In

FIG. 6. The four types of diagrams that contribute to the
pion photoproduction amplitude. These result from the gaug-
ing of the vrNN three-point function.

Gi (q p' p) = So(p') &(q) A' '"(q p' p) ~ & S"(p)

(4 7)

Then this Green's function can be gauged to give a corre-
sponding amplitude for pion photoproduction that sat-
isfies the minimum requirement of two-body unitarity.
Here the final nucleon propagator is gauged by the trans-
formation given in Eq. (2.9), while the gauging of the

vrN +—N amplitude A5 and the dressed nucleon prop-(s)t

agator S( ) will be derived using the results of the preced-
ing section. The result of gauging the Green's function
in Eq. (4.7) is

Gi(q, p', p) m Gi(q, p', p) + So(p') A(q) M„~~~(q, k, p', p) Siil(p) A„, (4.8)

where the vrN E pN amplit—ude M„„&~&(q, k. , p', p) is given by

M„*.„,„(q,k, .p', p) = A,"'(q, p', p+ k), S~'l(p+ k) r~'l(k, p+ k, p)

+ro (k, p', p' —k) S, (p' —k) A,'~'(q, p' —k, p),
+r„'~(k,q, q —k) a(q —k) A,'"'(q —k, p', p), +r„'T~'~'(k,q, p', p) . (4.9)

This result difFers from that of Eq. (4.4) to the extent that the nucleon in the final state did not require pionic
dressing for two-body unitarity to be satisfied, and as a result the corresponding current I' does not include any
pionic corrections. On the other hand the current resulting from gauging the initial nucleon has the necessary pionic
corrections to satisfy two-body unitarity. The proof that this amplitude satisfies gauge invariance follows the same
procedure considered above, with the difference being the difference in the Ward- Takahashi identities for the bare and

'e

dressed nucleon propagators So and S. In this case the gauge invariance of the amplitude M„.~ ~ is given by

k"M„~~~(q) k, p', p) = e~~; Se (p') So(p' —k) As (q, p' —k, p)

—,.„A,"'(q, p', p+ k) Si'l(p+ k) Si'l-'(p)

i ebs, , ~~ A (q) A(q ——k) A5 (q —k, p', p), (4.iO)

which on-mass shell gives a conserved current, provided
both the bare and dressed nucleon propagators have
poles at the physical nucleon mass. Thus we have con-
structed a gauge invariant amplitude for pion photopro-
duction starting with the Green's function for the process
m% ~ N in which the final nucleon propagator has less
pionic dressing than the propagator in the initial state.
We proceed in the next section to demonstrate that this

gauge invariant amplitude is identical to that resulting
from the solution of the coupled equations, end that it
satisfies two-body unitarity.

V. IS THE GAUGE INVARIANT AMPLITUDE
UNITARY V

In the preceding section we demonstrated how one may
construct a gauge invariant amplitude for pion photopro-
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duction given the vrN E—N Green's function and the
transformation of the pion propagator, nucleon propa-
gator, and the mN E—N amplitude under the gauge
symmetry. In Sec. II these gauge transformations were
given for the difFerent terms in the basic meson-baryon
Lagrangian. Here we are going to use the gauging of
these basic terms in the Lagrangian to derive the re-
sults of gauging the pionic dressed nucleon propagator
S(p), the pion propagator K(q), and the one-particle ir-

reducible AN E—N amplitude As . From this point on
we will drop the superscript (1) on the dressed nucleon
propagator assuming that S(p) includes the necessary pi-
onic dressing to include two-body unitarity. These re-
sults, when used in the definition of the three-point func-
tion, will give us the amplitude for pion photoproduction
with the application of Lehmann-Symanzik-Zimmerman
(I SZ) [50] reduction to the resultant Green's function.
The amplitude resulting from this gauging procedure is
identical to that resulting &om the solution of the cou-
pled set of integral equations derived in Sec. III. In this
way we establish the gauge invariance of the pion photo-
production amplitude resulting &om the solution of the
coupled integral equations, which already satisfy unitar-
ity.

Since the nucleon propagator So(p') need not include
pionic dressing, but might include the quark-gluon struc-
ture, we may use the result of Sec. II to write

s, ~ s, +s, r() s, .U(1) 3 (5 1)

~ U~(1) ~ + ~ rm(1) ~ (5.5)

In our meson-baryon Lagrangian the only dressing the
pion can have is via nucleon antinucleon loops [51]. If
we ignore these loop corrections to the pion dressing, the
only dressing we could have is the result of the underlying
quark-gluon structure. The pion current in this case can
be written in terms of the gauge invariant current, i.e. ,
rm(l) r~{2)

P
To gauge the one-particLe irreducible mN amplitude

t{ ), we need to first gauge the vrN propagator g. Since
only two-body unitarity need be considered, the nucleon
propagator in g can be taken to be the bare propagator
Sp, and the ~N propagator reduces to g = SpL. To first

If we assume that our bare nucleon has the quark-gluon
structure, and this structure does not contribute to uni-

tarity, then the nucleon current is r& ——r~. Note that(3) =
in the absence of the quark-gluon structure, this current
will be the standard Dirac current for a point fermion.
In a similar manner, the gauge prescription for the basic
input into our coupled integral equations, which are also
the terms in the Lagrangian, are given as

A(2) t U(1) A(2) t + rcT(3) (5.2)
A(2) ~() A(2) + r(3) (5.3)
t(2) ~) t(2) + ~(3) (5.4)

Here, in addition to the gauging of the vrNN vertex, we
have included the gauging of the two-particle irreducible
AN ~ mN amplitude. For the pion propagator we take

order in the e.m. coupling the gauge transformation of
the vrN propagator reduces to

g "~ g + a s, r(') s, + s, z r (')z
(3)g+ gE3.~ g . (5.6)

With the help of the two-body equation for t( ), and the
transformation properties of the vr N amplitude t{ ) and g,
the gauging of the one particle irreducible 7t N amplitude
t( ) reduces to

t(1) ~(') t(1) + F-,

With these results in hand, we can now determine how

As behaves under gauging. Given that the one-particle
irreducible amplitude for 7rN +— N is given, using
Eq. (3.5), by the relation

A(' ~ = t('}g+1 A,
' ~, (5.9)

we can make use of Eqs. (5.2), (5.6), and (5.7) to write

the gauge transformation for As as

A(1)t ~(1) A(&}t + M5 5 (5.10)

where to first order in e.m. coupling the aN ~ pN am-
plitude M' is given by

r +r"gA'"
+t{')gr" g A"' (5.11)

All that is left to determine is how the nucleon propagator
S behaves under gauging when the 7t N unitarity cut has
been exposed. From Eqs. (3.6) and (3.7) we have that

y(1)

= sp+spz( ) s, (5.12)

where

Z(') = A"s g s (5.13)

With the help of Eqs. (5.1), (5.3), (5.6), and (5.10), the
dressed nucleon propagator can be gauged to give

(5.14)

where the dressed N E—pN amplitude I"( ) is given, to
first order in the e.m. coupling, by

r(1) r(3) +r( ) A( )t+ A( )
s

r(2) + A{1) rcT + ~(3) g A(1)t (5.15)

where, to first order in the e.m. coupling,

t(1) + j /{ ) ] + gt( ) + t(1) /( } t(1)
3jc )

(5.8)
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In writing the second line in Eq. (5.15), we have made
use of Eqs. (3.22) and (5.11). If we now compare the
dressed nucleon current resulting from the gauging of the
dressed nucleon propagator, and make use of Eqs. (3.16)
and (3.32), we find that this current is in fact identical
to the one-particle irreducible current derived in Sec. III,
1.e. )

~i —

Z (~) F(i) (5.16)

Therefore the nucleon propagator S behaves, to first or-
der in the electromagnetic coupling, under gauging as

S U~(') S+ SF(j.) S (5.17)

(5.18)

where M results from substituting Eqs. (5.17), (5.10),
(5.5), and (5.1) into Eq. (4.7) with the result that gauging
the three-point function for the process mN +—N is given
by

Gg m Gg+SOA M S,
U(1)

(5.19)

and the corresponding pion photoproduction amplitude
M is of the form

M = r(') S,A'"'+ F (') ~A'"'+ A"'SF(') + M'.
(5.20)

Thus exposing the AN unitarity cut in S, and gauging,
leads to the same results as exposing the pmN unitarity
cut, which is what one expects.

To complete the proof of the equivalence of the two
formulations of Secs. III and IV, we are required to show
that

FIG. 7. The non-Born diagrams that contribute to the pion
photoproduction amplitude; the number in the circle gives the
irreducibility of each amplitude.

in Eq. (3.12) to write Eq. (5.22) as

(5.23)

If we compare this result with Eq. (3.17), we observe that
the right-hand sides of both equations are identical. This
proves the fact that the amplitude, which is a solution of
the coupled equations that include the pN, mN, and pmN
thresholds, is identical to that derived using the gauging
of the mN f—N Green's function with the help of the
Ward- Takahashi identities. Thus we have that

(5.24)

and in this way we have established the fact that the
solution of the coupled integral equation, Eq. (3.17), gives
us an amplitude that satisfies two-body unitarity and is
gauge invariant.

To establish the connection with previous results in the
literature, we iterate Eq. (5.23) with the result

In writing Eq. (5.19), we have restricted ourselves to first
order in the electromagnetic coupling.

Substituting for M' froin Eq. (5.11) and making use of
the definition of the two-particle irreducible AN +—pN
amplitude M~2l given in Eq. (3.32), we get

M~ l = v+ (v+ vgv+ vgvgv+ . .) v

t(') g+1 v

)g+1 8~+ t ) g+1 v~, (5.25)

M = t( ) g+1 M( ) +A( ) SI'( )

= M(') + t(') g M(') + A5"'SF(') (5.21)

In writing the second line we have made use of Eq. (3.15)
to relate the one-particle and two-particle irreducible
m N +—pN amplitudes. Making use of the adjoint of
Eq. (5.3), we can write M as

M = M(') + W")'SF(') + t(') M(') + W""SF(')

=M(')+~,("'S, F(')+~(')gM(') + &')gM«) .

(5.22)

The second line of Eq. (5.22) is derived by making use of
Eq. (3.19) to write S I'&il in terms of M~o~ and Eq. (3.14)
to get the last term on the right-hand side. We now em-
ploy the defi.nition of the Born amplitude for pion photo-
production v, Eq. (3.33), and the vrK potential v given

where v~ is the Born term, illustrated in Fig. 1, and has
often been used as a gauge invariant term on its own.
The factor of (t& & g+ 1) gives the distortion in the vrK
channel. The second term, illustrated in Fig. 7, is re-
quired to maintain gauge invariance at the operator level
for M( ) and results from including the pmN channel into
our integral equations. This inclusion of the p7rN chan-
nel eR'ectively allows us to couple the photon not only to
the initial nucleon in the AN f—N vertex, but also to
the nucleon in the final state. In this way we have cou-
pled the nucleon to every propagator and vertex in the
three-point Green's function for mN +—¹

VI. CONCLUSION

To employ pion photoproduction at medium energies
to examine nucleon structure and, in particular, the reso-
nances observed in vrN scattering, we need a theory that
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incorporates charged current conservation and the con-
servation of probability, i.e., gauge invariance and uni-
tarity. If in addition we would like to test current models
of QCD, based on being able to separate quark-gluon
from meson-baryon degrees of freedom, we need to in-
clude form factors in which we have consistency between
the vrNN and pNN form factors resulting from QCD.
In the present investigation, we considered a Lagrangian
written in terms of the meson-baryon degrees of free-
dom. This Lagrangian has form factors that, in prin-
ciple, could be derived from a QCD model. We then
gauged this Lagrangian. This gauging procedure could
have been carried out for a specific QCD model (see, e.g. ,
Ref. [32]); however, to maintain generality we assumed
that the gauging of the vrN Lagrangian gives rise to pho-
ton vertices that satisfy the Ward- Takahashi identity.

Within the framework of this Lagrangian, which in-
cludes not only the meson-baryon degrees of freedom but
also the coupling of the photon to these degrees of free-
dom, we derived a set of coupled integral equations that
satisfy two-particle unitarity. This was achieved by ex-
posing the vrN, pN, and vrpN thresholds following the
analysis of Taylor [37,38]. To prove that the solution
of these coupled equations is also gauge invariant, we
employed the Ward-Takahashi identities, derived for the
basic terms in the Lagrangian, to gauge the one-particle
irreducible three point function for the process 7t N E—N.
Since we demanded that our amplitude satisfy only two-
body unitarity, we assumed that the final nucleon prop-
agator in the mN ~ N Green's function did not have
any pionic dressing, and the initial nucleon propagator
had the minimal dressing to include the 7tN threshold,
while the vrNN vertex in the three-point function was
one-particle irreducible. This gauging procedure gave us
an amplitude that is identical to that resulting from a
solution of coupled integral equations. We found it essen-
tial that we include the pvrN threshold into our coupled
integral equation.

The need for the inclusion of the pmN threshold to sat-
isfy gauge invariance at the operator level, raises some
questions regarding the application of Watson's theo-
rem [14] or its off-shell modification [7] to unitarize the
gauge invariant Born term represented in Fig. 1, and to
maintain gauge invariance in the final result. In fact,
when we cast our amplitude into a form of Watson's the-
orem, i.e., a distorted wave in the AN channel, we found
that we had an additional term that has not been in-
cluded in most calculations in the past. These additional

terms are required. in order to preserve gauge invariance
of the photoproduction amplitude at the operator level.

The present coupled integral equations for AN m AN
and pN + AN reactions are four-dimensional Bethe-
Salpeter [52] equations, and any reduction to a three-
dimensional equation, e.g. , the Blankenbecler-Sugar re-
duction [53], will destroy the gauge invariance. This
could be overcome by either deriving the Ward- Takahashi
identities within the &amework of propagators in three
dimensions [54] or developing the necessary numerical
procedure for solving the Bethe-Salpeter equations. We
are presently examining both approaches.

The 4 resonance has not been considered explicitly in
the present analysis, since we have not detailed our model
for mN scattering. We could include the contribution of
the 4 in one of two ways depending on the dynamics used
to generate the 7rN amplitude: (i) In a model where the
L is taken to be a baryon to be treated on equal footing
with the nucleon, we will need to consider the inclusion of
the 4 explicitly. In this case we will need to determine
the gauging of the L propagator to generate the cou-
pling of the photon to the A. (ii) If the A is considered
a AN resonance that is generated dynamically, then the
gauging of the vrN amplitude detailed above will include
the contribution of the 4 to pion photoproduction. For
the AN amplitude to satisfy both unitarity and crossing
symmetry will require the solution of a nonlinear integral
equations, and to that extent we have not considered the
inclusion of crossing symmetry in the present analysis.
To include higher order 7tN resonances, we need to in-
clude the vrmN threshold as well as the pvrvrN threshold
into the formulation. At this stage we have developed
the formalism to include the vrvrN threshold [2,46] with
application in the cloudy bag model [55] for ~N scatter-
ing. We propose to examine the inclusion of the pmvrN
threshold, which will allow us to extend the coupled chan-
nel approach to energies above the threshold for two-pion
production and the rich spectrum of mN resonances.
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