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Using multiple scattering theory the scattering lengths of g mesons on helium nuclei are calculated
and checked against Gnal state g interactions from the pd ~ g He and dd —+ g He reactions. The
existence of an g He quasibound state is indicated.
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I. INTH. ODU CTIC)N

In this paper we concentrate on the few-body interac-
tions of q mesons. These could complement our knowl-
edge on the g-nucleon interaction and give us possible ev-
idence of g-nuclear quasibound states. Such quasibound
states were predicted by Haider and Liu [1] and detailed
calculations performed by Li et al. [2], when it turned out
that the q-nucleon interaction was attractive. To be ob-
servable these states should be narrow enough, and this
is not likely to happen for the lowest g states in large
nuclei. On the other hand, it was suggested by Wilkin
[3] that the rapid slope seen in the pd -+ rl He ampli-
tude of Ref. [4] just above the threshold may signal that
a quasibound state is generated already for small nuclei
(A = 3). In contrast, a recent study of the dd ~ rl He
reaction shows no structure due to any final state q He
interaction [5]. All this could indicate a large rl He scat-
tering length and a small one for g He. However, quite
an opposite interpretation is put forward in this paper.
We calculate the g He and g He scattering lengths and
find that the former is smaller than the latter, and that
they also di8'er in the sign of the real part. This suggests
that the g-nucleus attraction is not strong enough to give
any binding efFect in the g He system, but it is likely to
give one in the g He system.

In the standard theory of final state interactions the en-
ergy dependence of reactions is assumed to be determined
by the scattering amplitude between the final state par-
ticles [6]. In this paper we show that the shape of the low
energy g production cross section is also significantly in-
Quenced by an interference of the Bee and scattered waves
in the final g-helium states, because the corresponding

scattering lengths are not very large. This interference
is such that the decrease with energy becomes steeper
for both He and He than that calculated IIrom the fi-

nal state scattering amplitude alone. However, in the
scattering amplitude itself the real and imaginary parts
of the scattering amplitude, due to the above mentioned
difFerence in the sign of the real parts, could be expected
to conspire so that the slope in the He case would be
somewhat smaller than for He. Numerical results do not
support this for gN scattering lengths considered realis-
tic.

Before this physical interpretation of final state inter-
actions is discussed in Sec. III, a formaliszn is developed
in Sec. II to calculate the g-helium scattering lengths. By
some formal manipulations the multiple scattering series
is summed. The procedure used is shown to converge
quickly in the case of gHe optical potentials, which may
be solved exactly using the Schrodinger equation. Then,
necessary corrections to the optical potential limit may
be easily implemented by modifying the equivalent mul-
tiple scattering series.

The conclusions are not fully quantified since the @-

nucleon input is not determined uniquely. Also the g
production mechanism is not under full control. Here a
method for calculating only the final state interaction is
given. However, this method is presented in suKcient de-
tail that a more complete comparison with the data and
the determination of the input uncertainties can be made
when measurements proposed at proton storage rings,
such as the one at Celsius, are performed. Comparing
specifically with the q He data we also perform an ex-
tensive variation of the gN scattering length in search
for a constraint on it, complementing elementary photo-
production or electroproduction.
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II. SCATTEB.INC LENCTHS

The g-helium scattering lengths are calculated in this
section. At first we consider the simplest optical model
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expressed in terms of the g-nucleon scattering length.
This problem may be solved numerically, but in order
to improve the method an equivalent alternative for the
optical model is provided, which consists of a partial sum-
mation of the multiple scattering series generated by the
optical potential. The sum is expressed in terms of mul-
tiple integrals.

Next, some necessary improvements to the optical
model are introduced into the partial sum. These are es-
sentially twofold: (i) removing multiple collisions on the
same nucleon and (ii) introducing an off-shell i)-nucleon
scattering matrix. Other effects, e.g. , the Pauli princi-
ple, are less significant. These improvements introduce
massive changes to the g-helium scattering lengths de-
fined here as the zero-energy limit of the effective range
expansion

=1 1 2pcotb = —+ —rop
Q 2

an analogous expression for the scattering from A non-
6xed centers to have the form

T(&A) = (T)[1+P]-',

where

(A —1)(TDT)
A(T)

(4)

with

D = —m/(2' r —r'~)

the zero-energy propagator for a &ee g. Here m is the
reduced mass of the gA system. The factor (A —1)/A
generalizes the exclusion factor 1/2 in Eq. (2) in the
following way. The averaged double scattering can be
presented in terms of individual scatterings 6.om different
nucleons as

In particular, for the g He system, the simplest optical
model yields a large negative real part of the scattering
length, indicating the existence of a quasibound state.
However, when the corrections are included, a sizable
positive scattering length emerges. On the other hand, in
the g He system we do find indications for a quasibound
state close to threshold.

A. Multiple scattering expansion for the inverse
scattering length

(TDT) = ).).Hol&'DT'l@o)

The exclusion of successive scatterings on the same nu-
cleon is effectively incorporated in the factor (A —1)/A,
after which (TDT), etc. , include total scattering ampli-
tudes on all nucleons as in the optical potential, i.e.,
T=P, T, .

However, as it now stands Eq. (3) cannot be correct
beyond O(T~), since it does not give the required form

In Ref. [7] a multiple scattering scheme was proposed
to calculate the energy shifts and widths in the atomic
states of antiprotons interacting with a light nucleus. In
this paper we apply the same method to gHe scattering
at threshold. First the procedure is presented in some
detail, since it is important to understand to what extent
the basic form of the multiple scattering scheme is, in
this case, numerically equivalent to the standard optical
model approximation.

The scattering matrix T(gA) for an q meson interact-
ing with a nucleus of A nucleons may be expressed as a
series in the following way by first considering the scat-
tering from two nonoverlapping axed centers. In that
limit it can be shown that the scattering matrix at zero
energy has the exact form [8]

Ti+ T2
i (Tx+Tz)D(T~+T2) '2~ =
2 (T&+T&)

where D = 1/l is the propagator of the scattered parti-
cle, with l being the distance apart of the two scattering
centers, and the Ti are the scattering matrices &om the
separate centers. This expression has the following fea-
ture that is important in few-body systems. By expand-
ing the denominator, a multiple scattering series emerges
which through the factor of 1/2 in the denominator au-
tomatically takes into account the exclusion of successive
scatterings &om the same center. Being guided by this
and denoting T = g T;, one might then naively expect

T(i)A) = (T) +
~

~(TDT)
E A

2+I"
I
(»»T)

A )
(TDTDTDT) +

A
(7)

when expanded in powers of T. One way of ensuring that
this correct expansion results is to modify Eq. (3) to

T(qA) = (T)[1+P + Q + R + .] (8)

where the quantities P, Q, R, . . . are of order T, T,T, ...,
respectively, and are chosen in turn to guarantee Eq.
(7). For example, on expanding the denominator of
Eq. (8) the term of O(T ) is —Q + P2, which in Eq.

(7) should give ( & ) (TDTDT). Since P has al-
ready been fixed by the second term in Eq. (7), we get

A —1
Q = P2 —(~ i) (TDTDT). This is a unique procedure
and, neglecting for the moment the above exclusion of
consecutive scatterings on the same nucleon, it leads to
the expressions

(TDT) (TDT) 2 (TDTDT)
(T)

' (T)' (T)
(TDT) s (TDTDT) (TDT)

(T)' (T)'
(TDTDTDT)

(T)
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for the erst three terms of the series in the denominator.
Also in Q, R, ... it is immediately seen that the integers
multiplying each term cancel each other; e.g. , in Q we
see +1 and —1, in B we see —1,+2,—1, etc. In the fixed
center limit all of the integrals reduce to the same value,
so that Q, R, ... are then all zero as found in Ref. [8].
The important point is that numerically this cancella-
tion continues to a great extent even away &om the Axed
center limit as seen below. Therefore, one could hope
that the introduction of the ratios (TDT)/(T), etc. , of
double and triple scatterings and other "disconnected"
terms at various places would speed up the convergence
of the multiple scattering series.

The multiple scattering expansion in Eq. (7) is a sim-
ple version of the Watson multiple scattering series ap-
plied to the case of identical scatterers [9]. In its full
generality T is a sum of t(i), the scattering matrices of
the eta on the ith scatterer. The latter is the scattering
matrix in the medium and it comes as a solution of the
Lippman-Schwinger equation t(i) = v(i)+v(i)Dt(i) with
some potential v(i) and a full propagator D for the eta-
helium system. The same D describes the propagation
between two successive collisions. In this paper we sim-
plify the problem by using the &ee eta-nucleon scattering
matrices in the low energy form t(i) = —a/(1 —iKa),
where a is the scattering length and K is the relative
eta-nucleon momentum. It is justified by the short range
of the eta-nucleon-¹ vertices involved in the interac-
tion models [1,10], which are discussed brieHy in the Ap-

pendix. In principle, one could expect medium efFects in
particular in the pion-nucleon decay channels. A brief
estimate is given in the Appendix where we find these to
be small. Another simpli6cation involves the propagator
D in the intermediate states between collisions. This we
take as a projection on the helium ground state and a
free propagation of the eta given by Eq. (5). With these
simplifications we compare the summing of the multiple
scattering series for two models: (1) optical potential,
t(i) = —a and (A —1)/A -+ 1; (2) improved model,
t(i) = —a/(1 —iKa), where K involves binding plus re-
coil corrections along with the (A —1)/A factors. While
the first model is used to check the convergence of our
summation, the second one is to discuss the physics of
eta-helium scat tering.

Here now T denotes a scattering matrix of the g &om A
nucleons in the impulse approximation. At "zero" energy
mT(gA)/2vr reduces to minus the qA scattering length
a(gA) and

2~T = —tA p(r),
p

with t being the g-nucleon scattering matrix at the ap-
propriate energy, Ap(r) the nuclear density, and p, the
reduced mass for the gN system. The expectation values
appearing in Eqs. (9) can be expressed in terms of the
propagator and nuclear density as

2K 2K
(T) = tA dr p(—r) = —tA,

P p

2m fm )'
/ 1

(TDT) = ——
~

t
~

A —drdr' p(r) p(r'),
m (p,

1 (12)

TDTDT)= —
~

—t
~

A dd'd", , t.
m (p ) x p/ x / r, //

Using the Gaussian density pro6le

p(&) = [1/(~7rRp) ] exp[ —(r/Ro) ], (14)

one obtains now the expansion coeKcients

(Rrmsp f

3" S 3/2

R = t
/

—
/

—2
/

—
/

+ 0.7796 v 2 /—
&Rrms&) (~J (~) g7r)
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where R, , = /3/2Ro is the rms matter radius of
the A nucleons. The number 0.7796 in B is the re-
sult of a double summation and is expected to have
an accuracy of +0.0001. When the terms of the series
in the denominator are clustered into increasing pow-
ers of t as indicated in Eqs. (8),(9), it is found that
there exists a considerable amount of cancellation, e.g. ,
P/d = 0.977, Q/d = —0.045, and R/d =0.0076 where
d = t ( Am/R, ,p). Therefore, if t/R, , is reasonably
small —as it is in the present case of gN scattering-
the series appears to converge rapidly.

A check on the convergence is given in Table I, where
a comparison is made between the above series expan-
sion for T(iIA) and its value calculated directly &om the
equivalent optical model potential

2~
V(opt) = tA—p(r).

P
(16)

In this comparison the factors (A —1)/A in Eq. (7) inust
be neglected. For completeness, the impulse approxima-
tion (IA) result

(17)

is also quoted in Table I [i.e. , T(ilA) with P = Q = R =
0]. As a first approximation t is taken to be minus the rlN
scattering length, i.e. , t(E = 0) = a(AN). T—he actual
numbers used are a representative sample from the fol-
lowing sources. Several groups have performed coupled
channel analyses of g-nucleon and m-nucleon scattering
[1—3,10,12,13]. These difFer in the input data and also in
some details of the extraction of the a(AN). The AN scat-
tering lengths obtained are 0.27+ i0.22 and 0.28+ i0.19
[12] and (0.50 + 0.20) + i(0.33+ 0.06) fm [3]. The re-
cent electroproduction data yield 0.476+ i0.279 fm [10],
while photoproduction experiments suggest the possibil-
ities 0.430+ i0.394, 0.579+ i0.399, 0.291+i0.360 fm [13].

The multiple scattering effect is dramatic as compared
with the impulse approximation alone, changing the at-
tractive real part of the gN amplitude into a repulsive
real part for the gA amplitude. However, the near equal-
ity between a(rIA) and a(opt) gives confidence that, in-
deed, the series in Eq. (8) is rapidly convergent and the

use of only the terms P, Q, and R gives a sufficient ac-
curacy.

Having shown in some detail that, indeed, the standard
optical model approach can be replaced by the multiple
scattering series of Eq. (8), it now seems justified to mod-
ify the latter to include effects not so easily incorporated
directly into the optical model.

B. Corrections to the optical model

Several improvements can be made to the optical
model approach and these can be implemented into the
partial sum of Eq. (8).

(i) First, as shown in Eq. (7) the factors Ai ~ s in the
rescattering quantities P, Q, and R calculated in Eqs.
(15) should be replaced by (A —1) '2' to prevent the
g &om interacting successively with the same nucleon,
i.e. , a(iIA) + a~ i(iIA). In Table II this efFect is demon-
strated for the gN scattering lengths used in Table I, and
it is seen to have a large effect in all cases. In particu-
lar, this correction makes the real parts of the scattering
lengths small for He, making the existence of a quasi-
bound state in the g He system indicated by the optical
model questionable. The absence of such a state seems to
be further con6rmed by later corrections for He. How-
ever, the real parts tend to become even more negative
in the case of He.

(ii) Another improvement to the above series is to use
an gN scattering amplitude that is more appropriate for
scattering on a bound nucleon in a medium. This can
be approximately taken into account by extrapolating
a(AN) ofF the energy shell through replacing the above
scattering amplitude a(0) at zero energy by a(ofF) at a
negative energy de6ned via the equation

1 1 1 —iK„,
a(0) a(off) a(0)

where K„= i+2@(E„p+ E„,) with E„~„,being the
A ~ (A —1) + 1 separation energy and the recoil en-
ergy of the gN pair relative to the residual nucleus. For

He ( He) these quantities have the values E„&——7 (21)
MeV and E„, = 12 (12) MeV. The efFects are shown

TABLE I. Comparison for i1-He scattering lengths a(ilHe) (in fm) from various stages of the
series expansion in Eq. (8) with the results from direct calculation with the corresponding optical
potential [ll]. The numbers are for He and those in the brackets refer to He. The results are
illustrated with four sets of the gN input: a(ilN) = 0.476 + i 0.279 fm (I), 0.579 + i 0.399 fm (II),
0.430+ i 0.394 fm (III), and 0.291 + i 0.360 fm (IV). In all cases R, , = 1.788 [1.618] fm.

a(gN)
I

IV

a(IA)
1.89 + i1.11

[2.63 + i1.54]
2.30 + i1.59
[3.20 + i2.20]
1.71 + i1.57

[2.38 + i2.18]
1.16 + i1.43

[1.61 + i1.99)

—2.00
[
—2.46
—2.41
[
—2.24
—1.67
[
—2.03
—0.93
[—1.62

A=O
+ i3.01
+ i1.27]
+ i1.94
+ i0.83]
+ i2.12
+ i1.13]
+ i1.92
+ i1.38]

R= 0
-1.94 + i2.65

[
—2.14 + i1.12]
—2.16 + i1.71
[
—1.91 + i0.79]
—1.56 + i1.93
[
—1.78 + i1.06]
—0.90 + i1.81

[
—1.47 + i1.28]

a(ilA)
—1.89 + i2.60

[
—2.05 + il. l3]
—2.08 + i1.70

[
—1.81 + i0.83]
-1.52 + i1.92

[
—1.70 + i1.08]
—0.89 + i1.80
[—1.42 + il.30]

a(opt)
—1.87 + i2.59

[
—2.01 + il.l6]
—2.06 + i1.72

[
—1.79 + i0.90]
—1.51+ i1.93

[
—1.70+ i1.12]
—0.88 + i1.80

[
—1.42 + i1.31]
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TABLE II. The notation is the same as Table I except that the A, factors in P, Q, and R are
now replaced by (A —1), giving a& i(gA) as indicated by Eq. (7).

a(r12V)
I

Q' = R' = 0
0.53+i4.27

[
—3.01+i2.94]
—1.52+i4.40

[
—3.03+i1.84]
—0.53+i3.35

[
—2.38+i2.23]
—0.13+i2.36

[
—1.53+i2.25]

R'=0
0.30+i4.19

[
—2.76+i2.55]
—1.61+i4.06

[
—2.67+i 1.64]
—0.61+i3.21

[
—2.16+i2.02]
—0.16+i2.31

[
—1.45+i2.10]

a~ i(gA)
0.28+i4.16

[
—2.67+i2.51]
-1.59+i4.01
[
—2.56+iI.65]
—0.60+i3.18

[
—2.09+i2.02]
—0.16+i2.30

[
—1.41+i2.09]

a(opt)
—1.87+i2.59
[
—2.01+ii.16]
—2.06+i1.72

[
—1.79+i0.90]
—1.51+i1.93

[
—1.70+iI.12]
—0.88+ii.80

[
—1.42+i1.31]

in Table III. There it is seen that our best estimate
aA i(rfA, ofF) of the rIA scattering length is quite differ-
ent from that predicted by the optical model. For exam-
ple, in tlsHe scattering, the negative Re a(opt) has turned
positive and comparable to that of the original impulse
approximation. This indicates that there is no binding
in this system. However, for g He the negative sign of
Re a(opt) is maintained, suggesting a quasibound state.
At the end of this section these effects are interpreted
in terms of poles in the scattering matrix. One should
note in this context that, since in Eq. (18) a significant
nonzero value is assigned for the g momentum, the next
term in the efFective range expansion (1) could become
important if ro is large. This could have now the efFect
of changing the energy variation present in Eq. (18).

(iii) The major inechanism that generates the imagi-
nary part of a(GAIA) is the reaction iIA; m ¹(A—1) +

vrAy, where N* is the nucleon resonance N*(1535) with
a strong coupling to both the q and the pion. Therefore,
for g scattering on deuterium or He—both isoscalars
the Anal nucleus Ay cannot be an isoscalar. Because
the spin is not involved in this 8-wave scattering, then,
for example, with the deuteron the final NN state must
be the P~ state and also the transition operator must
be spatially antisymmetric. This opens up the interest-
ing possibility that pionic inelastic channels are damped
in these cases, leading to a reduction of the in-medium
value of Im a(gN). However, as shown in the Appendix
this turns out to be only a very small effect and so this
correction is not included in the present calculations.

In the situation of a single channel scattering and a
weak attractive force a positive scattering length is gener-

ated. An increasing attraction makes the length grow un-
til one meets the first critical point as a -+ oo. This point
signals a bound state at zero energy. When the binding is
made stronger but a second bound state (the second crit-
ical point) is not yet reached the scattering length stays
negative. The sum in Eq. (8) converges quickly in some
region well below the critical point. Now, even if there
is no bound state on a nucleon, there might be a bound
state on a nucleus and such situations are well handled
by Eq. (8) at least around the first nuclear bound state.
A negative a(iI, A) would signal a bound state. The weak
attraction is approximately the situation encountered in
the eta-nucleon case, but a more realistic description re-
quires addition of the pion-nucleon channel. Here some
caution is necessary, since the latter may reduce or en-
hance the attraction and induce an absorptive part into
the effective eta-nucleon potential and scattering length
Im a. Also there is two-nucleon absorption present [14].
In such a situation the relation between the sign of Re a
and the sign of the real part of the effective eta-nucleon
potential becomes more involved. In particular, even a
mildly attractive potential may generate a repulsive (neg-
ative) length. This is known as the repulsive efFect of the
absorption and similar effects are expected for the bound
state energy and width [15]. On the other hand, if there
is only one bound state, its existence is still correlated
with the sign of the Re a provided Re a is large and the
effective range is small or comparable to the force radius.
Such a situation is not met in the eta-nucleon case, but
to some extent the condition is fulfilled in the eta-helium
cases.

If there exists a pole in the scattering matrix close to

TABLE III. The notation is the same as in Table II except that a(gN) is now calculated off-shell
using R„~+ E„,= 19 (33) MeV corresponding to iK„= 0.581 (0.766) fm

a(re, 0)
I

a(rIN, off)
0.39+i0.17
[0.37+i0.15]
0.47+i0.22
[0.44+i0.18]
0.39+i0.24
[0.37+i0.21]
0.29+i0.26
[0.29+i0.23]

R' = 0
2.01+i2.85

[
—1.56+i5.30]
1.36+i4.38

[
—3.14+i3.88]
0.93+i3.08

[-1.76+i3.69]
0.59+i2.17

[
—0.78+i2.95]

a~ i (gA, off)
1.99+i2.86

[
—1.59+i5.19]
1.32+i4.37

[
—3.O7+i3.77]
0.92+i3.07

[
—1.73+i3.62]
0.58+i2.17

[
—0.78+i2.93]

a~ i(gA, 0)
0.28+i4.16

[—2.67+ i2.51]
—1.59+i4.01
[-2.56+iI.65]
—0.60+i3.18

[
—2.09+i2.02]
-0.16+i2.30

[
—1.41+i2.09]
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the threshold, the scattering lengths may become larger
than the nuclear radius. To some extent this situation is
met here, in particular in He. In the case of a bound
state Re a ( 0, while a virtual state corresponds to
Re a ) 0. The connection is unique provid. ed the ef-
fective range is small, which is assumed here. However,
the validity of this assumption is not clear. Another com-
plication arises because of the presence of decay channels
described here by Im a(riN). Even though there is no de-
tailed many-channel structure of the scattering matrix,
let us, however, look for the poles given by the cond. i-
tion (1 —ipa)= 0. With our best values a~ i(ilA, off)
we have a pole in the upper complex momentum half
plane, i.e., a quasibound state in the g He case. This
situation is, in fact, typical for all Re a(gN) in the range
0.3—0.6 fm or even higher. On the other hand, with pos-
itive Re a~ i(ilA, off) one meets a virtual state in il He
systems.

III. FINAL STATE INTERACTIONS

Since there are no beams of g mesons, the interactions
of these mesons may be seen only via final state interac-
tions or via the decay mechanisms of quasibound states.
As seen in Fig. 1, the pd ~ g He production amplitude
displays a rapid falloK away &om the threshold region,
which led Wilkin to conjecture that an g3He quasibound
or resonance state exists nearby [3]. This is reflected by
the approximate proportionality of the cross section to
the final state interaction factor [6]

a(gA)
1 —ipa(ilA)

where a(gA) is the il-helium scattering length and p is
the g momentum. It was found by Wilkin in the optical

potential approach [3], recalculated here in Sec. II, that
Im a(i/He) is rather large, which gives the required slope
and indicates a singularity. However, surprisingly the
recent data on the reaction dd ~ g He indicate no such
slope in the cross section close to the threshold [5]. We
now analyze these two measurements below.

First, let us note that Eq. (19) provides a good de-
scription only if ~a(gA)

~

)) B, „a condition not well
satisfied here by the B, , for He. A more general model
needs the final 8-state wave function for the g-He system

(r). One particularly simple form of g (r) is that
from a separable potential with the Yamaguchi form fac-
tors (1+p2/P2) [17], which gives

@ (r)= sin(pr), [exp( —iver) —exp( —Pr)]+f*
pr r (20)

Here f = I"i ——a(gA)/[1 —i@a(qA)] is the on-shell @-
helium scattering matrix, where the a(ilA) are taken to
be the a~ i(ilA, off) from Sec. II and not the a(gA) given
by the separable potential. Since the factor [exp( —ipse)—
exp( —Pr)] determines the behavior of the scattered wave
inside the range of the interaction, it can be interpreted
as producing an off-shell effect into the reaction. A plau-
sible choice of P = 1/R, , is taken, but, as shown below,
the shape of the cross section is rather insensitive to the
actual value of P.

In the reaction process the g's are produced with some
amplitude H(r, p;) that depends both on the initial pro-
jectile momentum (p;) and on the spatial extent of the
process. For g energies in the range of 0—5 MeV the de-
pendence on p; (=1 GeV) is presumably small. So far
there is no complete understanding of the actual produc-
tion mechanism [3,18]. However, for the present purposes
it is suKcient to make only some rather general quali-
tative statements concerning this mechanism. Here we
simply assume a proportionality of the production am-

1.0-

0.5-

0.0
1.5

FIG. 1. The pd ~ g He amplitude square

~
f(expt)~ defined in Eq. (22) plotted against

the g momentum in the c.m. system for the
four elementary gN amplitudes I—IV given in
Table I. Dashed curve, optical model; dotted
curve, optical model corrected by A —+ A —1
but described by Eq. (19); dash-dotted
curve, ofF-shell efFect also included in Eq.
(19); solid curve, the full model with cor-
rections to the optical model and with the
background term in the wave function (20).
The data are from Refs. [3,4,16].
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p„(frn ')
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plitude to the nuclear density used to derive Eq. (15),
H(r) = exp (r—/Ro), with Rp ——A/2/3R, , and
A —1 being a natural choice. In this way, the final state
interaction factor becomes

l+~(i P)l' = f 0 (~) &(~)« (21)

The difFerence between E~ and E2 is from the unscattered
background term in Eq. (20).

At first sight it appears that this model for incorpo-
rating final state interactions contains two adjustable pa-
rameters A and P. However, in practice the P dependence
is weak with even P = oo being not unreasonable. As said
above, we typically fix P at 1/R, „leaving only the A

dependence. Lacking an actual model for g production,
in all cases the results are normalized to give the experi-
mental value of the spin-averaged quantity

[f(expt)[ = (pd ~ il He) = 0.63 6 0.02pb/sr
p„dO

(22)

at p„= 0.246 fm
The original hope had been that, with A around unity,

a good fit would be obtained to the shape of the exper-
imental data. However, this was only so for potential
IV. In that case, with %=0.88 and P = 1/R, , there was
a very shallow minimum in the y fit to [f(expt)[ . It
should be added that this fit did not include the low-
est experimental point at p„= 0.051 fm, since this is
thought to be subject to large systematic errors due to
beam width efFects, including energy losses in the target
[3]. The results are shown in Table IV and Fig. 1.

Table IV illustrates the following points:
(1) As seen from columns 3 and 4 the dependence on

P is weak. Both P = 1/R, , and oo yield good fits to the
data, since fixing P = 1/R, , gives y /data point (dp)
= 0.35, which is increased to only 1.02 for P = oo.

(2) In column 5 the use of only ~Ei[ as in Ref. [3] is
clearly inferior with its y /dp = 6.63.

(3) The normalization factors needed to fit the exper-
imental value of 0.63 pb/sr at p„= 0.246 fm are 0.87,
0.31, 1.50 for columns 3, 4, 5, respectively. This shows
that [E2[ is 1.7 times stronger than ~Ei[ and so could
account for a significant part of the factor of 2.5 by which

the model of Ref. [19] underestimated the experimental
data.

It should be added that there is a strong correlation
between A and P; e.g. , for P = 2/R, , the minimum

y /dp is still 0.35 but with %=0.97. The dependence on
the parameter A is also weak as it is with P. Therefore,
the main dependence may be expected to arise &om the
input values of the elementary qN scattering amplitude.

Unfortunately, the refinement in going from [Ei~ to
~E2

~

gives fewer benefits with the other potential options.
(a) For potential III, with P = oo, a y /dp minimum of

0.58 occurs at A = 0.38 to be compared with y /dp=0. 71
for [Ei[; i.e. , little is gained by the refinement, in both
cases a good fit being achieved to the data. Again there
is a strong correlation between A and P with the above
y /dp=0. 58 arising also for P = 1/R, , and A = 0.14.

(b) Potential I gives already a good fit to the data using
~Ei~ with y /dp=0. 61. This cannot be matched by [E2~
which gives y /dp=16 with P = 1/R, , and A = 1. This
only improves as P increases and A decreases, i.e. , finally
back to [Ei[ .

(c) Potential II is the worst combination. Here ~Ei[
gives y2/dp=6. 5. In comparison ~E2[ using P = 1/R,
and A = 1 gives y2/dp=49; i.e. , neither model gives a
reasonable fit to the data. As with potential I, this only
improves as the [Ei[ limit is approached.

The corresponding results with potential IV for He are
shown in Fig. 2. There it is seen that [Ei [

from Eq. (19)
gives a visually better fit to the data and that [E2(A =
0.88, P = 1/R, ,)[ appears to produce too much energy
dependence. However, it should be noted that here the
experimental data have large error bars and exist only
at a few energies. In the opinion of the authors, this
should not be considered a fatal problem. Clearly some
reduction of the experimental errors would be welcome
to make these data more selective.

So far the values of a(ill) used are those suggested by
experiment. However, these difFer considerably among
themselves with a(rIN)=[0. 3—0.6]+i[0.3—0.4] fm being a
more reasonable estimate (see caption of Table I). In

TABLE IV. The final state interaction factors [I",(A, P)~
in units of pb/sr for the elementary amplitude IV
[a(iIN) = 0.291+i0.394], with A = 0.88 aud p = 1/R, , or oo.

20—

Pn
0.051
0.115
0.166
0.202
0.246
0.295
0.337

l&(expt) I'
0.53(0.02)
1.07(0.03)

0.86(0.015)
0.74 (0.014)
0.63(0.020)
0.50(0.016)
0.45(0.018)

1.37
1.06
0.86
0.75
0.63
0.52
0.44

l&z(& = ~) I'
1.32
1.02
0.84
0.74
0.63
0.53
0.46

1.21
0.95
0.80
0.72
0.63
0.55
0.49

10

0
0.0 0. 1 0.2

p (ten ")
0.3

FIG. 2. The dd ~ g He amplitude squared for the elemen-
tary AN amplitude IV. Dots, data from [5] (normalized as the
total cross section). Curves as in Fig. 1.
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view of this, it is of interest to make a global variation
of the input a(AN) to recognize the optimal regions to
fit the pd ~ g He cross section data within different
model regimes. Such a calculation was performed for
P = 1/B, , and A = 1, i.e., in a crude model where these
are not varied. Figure 3 shows the results for gy2/dp
in the complex a(gN) plane. In the hatched regions this
parameter is smaller than unity and other contours show
the values 2,3,...,10. It can be seen that there is a sys-
tematic change due to each correction introduced in this
work into the optical model results, with all these ad-
ditional effects being in the same direction. There may
be a common area around a(qN) = 0.4 + i0.3 fm for
the optical model [3] without a Born background intro-
duced in Eq. (20) and for the full model, but elsewhere
the models are exclusive. The He data would allow in
each model a valley of minimum y in different regions
for a(gN). So it is clear that (even assuming that the
production mechanism were known) these data cannot
uniquely determine the scattering length, although they
set a strong constraint. It may be noted that similar fits
could be attempted for the He data. However, there the
quoted experimental errors are so large that as such the
fit would be useless. Even so, the energy independence of
the production amplitude indicated by the four existing
data points close to the dd ~ g He threshold is very sug-
gestive. It was not possible to produce this feature with
any reasonable value of the elementary scattering lengths
allowed by the above considered models for 3He. Similar
energy dependences in the He case are also obtained by
Wilkin in Ref. [20].

IV. CONCLUSIONS

This paper is in two distinct parts. In the first, the
basic q-nucleon scattering length a(i1N) is converted into
effective i1-s 4He scattering lengths a(g He), which, in
the second part, are then used to calculate the final state
interactions in the pd m g3He and dd m g He reactions.

The step from a(gN) to a(il ' He) is made in two
stages, applying a multiple scattering expansion and us-
ing &ee qN scattering as a starting point. The accuracy
of this procedure was first checked in the optical model
limit, a limit that could be calculated directly from the
Schrodinger equation (see Table I). Both the first stage,
in which the replacement A ~ (A —1) is made, and
the second stage, in which the scattering &om a nucleon
that is bound is taken into account, give large corrections
that tend to go in the same direction. The overall effect
is to give a(rP 4He)'s that are very different f'rom those
expected using the pure optical model (see Tables II and
III). However, it should be added that this calculation
ignores the effect of the possible presence of a sizable
efFective range in the basic gN interaction.

When the above a(iP He)'s are used to extract the ef-
fect of final state interactions &om the pd —+ g He reac-
tion, it is found that only one (option IV) of the a(gN)'s
proposed in the caption of Table I is able to give a good
fit to the He data, but not the less restrictive He data

(see Figs. 1 and 2).
In an attempt to see if there exist other values of a(gN)

that can give a good fit to He and, in addition, give a
better Gt to the He data, a search was made in the re-
gion 1.0 & Re a(ilN) & —1.0 and 1.0 ) Ima(gN) & 0.0.
However, this did not produce any a(gN) significantly
better than the earlier option IV. If one may disregard
the He data either as too inaccurate or arising from too
complex a reaction, it seems that the He results indi-
cate some potential for constraining the elementary gN
scattering length.
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APPENDIX: ISOSPIN 0 STATES

The g-deuteron and g- He systems are special cases.
These are isospin 0 systems. Therefore, some decay
modes to the pion-nucleon channels are not allowed by
isospin conservation. In the multiple scattering expan-
sion this blocking is due to a cancellation of pionic waves
emitted &om several coherent sources. This effect has
been shown to be important in coherent g-production
processes [21].

Here we Grst summarize brieQy a two-channel descrip-
tion of g-nucleon scattering. Then we discuss the ques-
tion of blocking the pionic channel in isospin 0 systems.
We follow the standard description [1,10] in terms of a
separable matrix T or V dominated by coupling to the
N*(1535) resonance. Let V be

E —Mo' (A1)

where Mp is the bare mass of the ¹ and the f, are cou-
plings to the different channels. The latter are functions
of the channel momenta q„and q . The scattering matrix
T follows &om the Lippman-Schwinger equation

T = V+ V(E —Hp+ ie) 'T. (A2)

The separability of the interaction (Al) then allows for
the simple solution

2

E —Mp —Qq(Gg)
' (A3)

where
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FIG. 3. Contour diagrams of gy~/dp for
different models: (a) optical model, (b) op-
tical model corrected by A —+ A —1 but de-
scribed by Eq. (19), (c) off-shell effect also
included, and (d) the full model with cor-
rections to the optical model and with the
background term in the wave function (20).
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eKect. An average quantity

(Afi)
The value of the total Re (G) yields an energy shift for
the ¹,while Im (G) determines its width. With a rel-
ativistically invariant normalization N(q) for both the rl

and N in Eq. (A4) one obtains, for the partial width into
channel k,

(A5)

and T„„(0)= —a(re%). The parameters of the coupling
strengths and form factor ranges may be 6tted to g-
photoproduction (electroproduction) and vr-nucleon scat-
tering data as well as to the N* decay properties. Anal-
yses of this sort have been performed by several groups
[1,10,22]. These differ slightly in the treatment of rela-
tivistic effects and on the (uncertain) input, and there
is significant variation in the actual predictions for the
scattering lengths a(re%).

Now, let us consider g scattering on a correlated S =
1, T = 0 pair of nucleons forming a quasideuteron state.
The intermediate states in the pionic channels have T = 1
and so, due to the Pauli principle, the intermediate nu-
cleons must be antisymmetric in space coordinates. This
may reduce the available phase space and so lead to a
blocking of virtual (or real) rI-7r transitions. As a con-
sequence, the effective Im a(re) may be reduced in a
nuclear medium. To allow for this efFect we calculate
the correction to the (G ) of Eq. (A4) due to this Pauli

is calculated with an antisymmetrized &ee NN propaga-
tor, the average being taken over the NN ground state.
Further, in this estimate a zero-range interaction is as-
sumed between the meson and nucleons, which are con-
sidered to be fixed. In this way a correction term (AG )
is obtained in the form

~( )
f.'(q-)+(q-)

(2')s E —E (q )
' (A7)

where

&(q) = /~~4~~(~)»~~' ( 2 )
—~ = —i(q)

(A8)

Here P~~ is the initial KN wave function and p is the
Fourier transform of the related density. For large sys-
tems this correction disappears, since (2 sin (~z")) -+ 1.
But it could be sizable, if the inverse B, , of the sys-
tem is comparable to the moments involved. However,
for Im (AG ) acq p(q )f (q ) withq = 2 fin one
finds only a few percent change of the ¹ width in the
deuteron and in helium. This is so small a correction—
also obtained at high momentum, where the wave func-
tions tend to be uncertain —that it is reasonable to
neglect its efFect.
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