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Exact solution of the bound-state Faddeev-Yakubovsky equations for one-dimensiona&
systems with a b-function interaction
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The Faddeev- Yakubovsky equations for four identical spinless particles in one-dimensional space
interacting via b-function potentials are solved analytically for a bound state.
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During the last decade the Faddeev-Yakubovsky (FY)
equations [1] were utilized to obtain approximate wave
functions of various four-body systems [2—10]. However,
due to the complexity of these equations, to check the
validity of the approximations used is not an easy task.
Thus it is important to investigate the exact solutions of
the FY equations with model two-body forces. In spite of
the fact that FY equations are necessary to solve uniquely
quantum four-body scattering and reaction problems, the
Faddeev method has become increasingly popular also in
bound-state calculations.

In our recent paper [11]we derived the FY wave func-
tion for any excitation and arbitrary value of the to-
tal angular momentum, for four identical particles in
three-dimensional space interacting via harmonic oscil-
lator two-body forces. Up to now in the literature there
are no solvable examples of the FY equations for four
particles interacting through a short range pair poten-
tial. That is why it is interesting to find an exact solu-
tion of the bound-state FY equations for four identical
spinless particles in one-dimensional space interacting via
b-function potentials. The Schrodinger equation in this
case is exactly soluble. The bound and scattering states
for these systems have been found by McGuire [12] and
by Yang [13]. In [14] it was shown that the three-body
Faddeev equations, in this case, are exactly solvable.

In this paper we show that the FY equations are ex-
actly solvable for the bound state of a one-dimensional
system of four identical particles connected via b-function
two-body forces. We do it using the general approach of
Ref. [11].

In the case of four identical particles we have only two
independent FY components 4~, , ) and 4~~, ~, ), corre-
sponding to partitions a2 ——(1,2, 3) (4), b2 ——(1, 2) (3, 4),
and a3 ——b3 ——(1,2)(3)(4), which can be represented as
follows [11]:
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where Hp is the kinetic energy operator, 4 is the solu-
tion of the Schrodinger equation, and V~ is the potential
between particles i and j

V~ = —gb(r;, ) . (3)

Let us introduce the Jacobi coordinates
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here (i, j, k, l) are four numbers forming a permutation of
(1,2, 3, 4) and the masses of the four identical particles
are set to unity.

The only bound-state solution of the Schrodinger equa-
tion

( a2

Dr

V = —g) h(r;, )

In order to calculate the Green function 1/(E —H p —V12)
let us consider the Green function equation
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which in the momentum representation has the form

corresponds to the energy E = —
2 g and has the

form [12,13]
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Here k12, q12, and p12 are the Jacobi momenta connected with the Jacobi coordinates r12, z12, and y12.
Using the notation

(k12 q12 P12 I E II V lk12 q12 PIi2) = ~(q12 q12)~(P12 P12)+(q12 P12 k12 k12)
0 12

we can get from (7) and (8)
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Substitution of Eqs. (8), (9), and (10) into (1) and (2) gives the following expressions for the FY components:
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In order to calculate (k12, q12, P12~(V13 + V23) 4) and (k12, q12, P12~V34lll) let us introduce
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Using the relations
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and (12) we can get from (11) the following expressions for the FY components:
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It is very easy to see that integrals (14) and (15) can be calculated analytically. Indeed, substitution of (10) and
(12) into (14) and (15) gives
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and
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Integrals (18) and (19) have the structure
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h„(z) = apz" + alz" + . + a„.
One can use therefore the result of [15]
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In order to illustrate it let us now evaluate, for example, the FY component lII(b, b, ) given by Eqs. (17) and (19). The
evaluation of the FY component lII(, , ) given by Eqs. (16) and (18) could be done in exactly the same way.

We can rewrite (19) as

g
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Comparison of' (23) and (20) gives

g, (k'„) = 4k, ', + (5P'„+ 45g'),
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Using (24), (22), and (17) we obtain
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In conclusion, we have found analytically solutions
of the four-body Faddeev-Yakubovsky equations in the
case of four identical spinless particles in one-dimensional
space interacting via a b-function two-body potential.
We have shown that the FY components in the momen-

I

turn space have simple momentum dependence and are el-
ementary algebraic functions. The FY components in the
coordinate space could be found by the three-dimensional
Fourier transformation, which, however, though feasible,
is rather tedious and is expected to lead to a complicated
answer. It therefore will not be performed here. As we
expected [11]the FY components in this case have no os-
cillations and no arbitrary constants, in contrast to the
FY components corresponding to four particles interact-
ing via harmonic-oscillator two-body potentials.

The b-function potential example gives a unique pos-
sibility to check the validity of the di8'erent approxima-
tions of the FY equation for four particles interacting via
short-range potentials. Note that in the same manner,
in principle, it is possible to evaluate the Ave-body FY
components.
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