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Pion photoproduction on the deuteron: The reaction pd; )rod

H. Garcilazo
Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9,

Unidad Profesional "Adolfo Lopez Mateos, " 07738 Mexico D F , .M.ezico

E. Moya de Guerra
Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientiflcas, Serrano 229, E 2800-8 Madrid, Spain

(Received 6 June 1994; revised manuscript received 21 March 1995)

We calculate the difFerential cross section, photon asymmetry, and initial deuteron polarizations
of the reaction 7d ~ m d in the energy region from threshold up to 1 GeV. We compare our results
with available data and give predictions where no data are available. The calculation is performed
fully relativistically, by applying the spectator-on-mass-shell prescription to the single- and double-
scattering diagrams. We study the sensitivity of this reaction to the use of pseudovector versus
pseudoscalar vrNN couplings when the elementary pN ~ AN reaction takes place on a bound
nucleon.
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I. INTRODUCTION
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Pion photoproduction on the deuteron can proceed in
practice only through the reactions

nonrelativistic treatment, and in some cases very dras-
tic approximations have been made such as the neglect
of the efFects of Fermi motion. Our treatment, on the
other hand, is fully relativistic (within the spectator-on-
mass-shell prescription), and we introduce approxima-
tions only in the higher-order rescattering term which is
in general small except at threshold. We test the accu-
racy of our approximate formula for the double-scattering
term, by calculating it exactly in the region near thresh-
old, and find it to be quite reliable.

which are closely related to the processes
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Unfortunately, the reactions with an initial m d state are
impossible &om the experimental point of view due to
the short lifetime of the neutral meson. Since the reaction
(la) is the only one that leads to a two-body final state, a
relatively large amount of experimental data are available
for it, while that is not the case for the reactions that
end up with a three-body final state. Thus the reaction
pd ~ m d is the logical first choice if one intends to study
the pion photoproduction reactions in systems of more
than one nucleon.

In a recent paper [1], we have constructed a model
of pion photoproduction and electroproduction on the
nucleon that describes this reaction qualitatively all the
way &om threshold up to 1 GeV and quantitatively up
to 800 MeV. In this paper we apply the model of Ref. [1]
to study the first of the pion photoproduction reactions
on the deuteron. Some preliminary results have already
been presented in Ref. [2]. The application of our model
to the reactions leading to three-body final states will be
presented elsewhere.

Previous studies of the pd —
& vr d reaction [3—8] have

been restricted to energies between threshold and the L
resonance region. They have also been restricted to a

II. FORMALISM

We calculate the cross section and polarization observ-
ables of the process pd —+ 7r d by evaluating the Feyn-
man diagrams depicted in Figs. 1(a) and 1(b) using the
spectator-on-mass-shell prescription. Following the rules
of Ref. [9], we write the differential cross section in the
c.m. kame as

~qq 1
64vr2S

~
j~ 6

where 8 is the invariant mass squared of the system, q
and k are the c.m. momenta of the pion and photon,
respectively, and the trace is given by

&, =2) (4)

where Ag, ~& are the amplitudes of the pd ~ m d pro-
cess corresponding to initial photon helicity A~ = 1 and
A; and Af are, respectively, the initial and final helicities
of the deuteron (the factor of 2 comes &om the ampli-
tudes corresponding to A~ = —1, which are of course
related to those with A~ = 1 by parity conservation and
time-reversal invariance). The initial state polarization
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FIG. l. pd —+ vr d amplitude. (a) Single-scattering term.
(b) Double-scattering term.
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observables Z (photon asymmetry), iT11 (vector analyz-
ing power of the deuteron), and T2p T21, and T22 (tensor
analyzing powers of the deuteron) are given in terms of
the amplitudes of Eq. (4) by

[A11A 1 1 A 1pA 10 + A 1 1A 11T
—AolAo-1+ IAQQI'/2],

2~3
T22 —— Re[A'1 1A1 1+A —loAlo+ A*11A11] . (9)T

In what follows we describe our calculations of the am-
plitudes entering in Eqs. (S)—(9).

A. Spectator-on-mass-shell prescription

(6)

~6
&Tll = Im[Ap 1A1—1 + AopA10 + AplA11 A01A —llT

ApQA 10 AQ 1A—1—j ]

The contribution of the diagram of Fig. 1(a) to the
amplitude A is given by (here in order to simplify the
notation we suppress all the helicity indices)

where P is the total four-momentum, t~~~ ~ is the pion photoproduction amplitude on the nucleon, and Vg~~ is
the deuteron-nucleon-nucleon vertex.

We now integrate over the fourth component of the loop integration in Eq. (10) by using the spectator-on-mass-shell
prescription [10]. That is, we integrate over the fourth component of the momentum pl in Eq. (10) by closing the

contour &om below and assuming that only the pole at pip ——QM2 + pl —is—:El —ie contributes to the integral
so as to get

() 1 M „ t ) —g—Pl+M P—g —Pl+ M

( )3 g Pl l(P1) dNN (Z )2 M2 + . &NmmN
P& I )2 M2 + . dNN 1(P1)

where vl ——ip2ul is a charge conjugate spinor [9]. By using the same kind of manipulations, the amplitude corre-
sponding to Fig. 1(b) can be written as

1 M M t P—f $2+M—
dPl dp2&2(P2) I dNN i i . t~N +~Nlj'1 (pl)-

2m Eg E2 I P —q —p2j2 —M2 + z~

g —g—ytl + M
(P i 2 2 ~ 2 (P2) PNMmN IP k y 2 M2 ~ dNN 1 (Pl)

P1 P2) fA + ZE —pq~ — + ze
(i2)

B. dNN vertex

In Eqs. (11) and (12), VdNN is the de% vertex with one nucleon on the mass shell (the spectator nucleon) and one
nucleon off the mass shell (the exchanged nucleon). This vertex has the form [ll—1S]

I dNN = +(P2) fd + +(P2)sd Pl + M JI(P2) Kd + Ml(P2)sd pl.
1 2 P2 —M 2 1

M (is)

where eg is the polarization vector of the deuteron and p~ and p2 are the four-momenta of the on-shell and ofF-shell
nucleons, respectively. The form factors E, G, H, and I are related to the four components of the deuteron wave
function, u, m, vq, and v„where u and m are the usual upper components described by the Sq and Dq states and
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vz and v, are the lower components described by the Pq and Pq states. As has been shown by Gross and co-workers
[12,13], the connection between the form factors and the four components of the deuteron wave function is

E(p2) = 7r +2Md(2E —Md) v(p) — u)(p) +—2 1 M
p

(14)

G(p2) = 7r /2M'(2E —Mg) u(p) + u)(p) +-M M(2Z+ M) M
8+M 2p' p

(15)

EM
H(p2) = ~/2M'

p
(16)

M2 1 E+2M Mg
I(p~) = —vr/2M' (2E —M~) u(y) — m(y) + &3v, (p) )8+M 22 p

where Mg is the mass of the deuteron, E = gp2 + M,
and p is the magnitude of the nucleon-nucleon relative
three-momentum in the c.m. kame, which is a Lorentz
invariant given by

(M~ + M' —p') '
4M2

d

The four components of the deuteron wave function are
normalized such that

f p'dp[u'(p) + ~'(p) + ~~ (p) + ~.'(p)] = 1.
0

The upper components u and vo are well known &om
standard potential models. The lower components vq

and v„on the other hand, can only be obtained by
using a theory that takes explicitly into account the
negative-energy degrees of freedom of the nucleon that
is going ofF mass shell. These lower components of the
deuteron wave function have been studied extensively by
Buck and Gross [13] within the framework of the Gross
equation [14] in which one nucleon is always kept on
mass shell. In their study, Buck and Gross [13] used
a one-boson-exchange (OBE) model with 7r, p, u, and
cr exchange, where the main responsible for the coupling
to the negative-energy states is the one-pion-exchange
(OPE) term. Therefore, they used a vr%N vertex which
is a linear combination of pseudoscalar and pseudovector
coupling as

with m and M the pion and nucleon masses, respec-
tively. Not surprisingly, Buck and Gross found that the
strongest coupling to the negative-energy states is ob-
tained with A = 1. That this should be so follows from
the structure of the vertices in Eq. (20).

In the study of Buck and Gross, a family of deuteron
wave functions was constructed by considering A = 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0, where in each case the pa-
rameters of the OBE model were adjusted to reproduce
the static properties of the deuteron (binding energy,
quadrupole moment, magnetic moment, and asymptotic
D/S ratio). Thus we will use their models in order
to evaluate the amplitudes of the processes depicted in
Figs. 1(a) and l(b). As far as we know, this is the first
calculation of the pion photoproduction reactions on the
deuteron, where the lower components of the deuteron
wave function have been explicitly taken into account.

C. Doub1e-scattering term

Since the contribution of the double-scattering term
given by Eq. (12) is know to be much smaller than the
single-scattering term as one goes away &om threshold
[3], we will calculate this amplitude using an approxi-
mate formula. At threshold, however, where the sixfold
integration in Eq. (12) simplifies considerably, we evalu-
ate it exactly in order to test how good our approximate
formula is. The latter is obtained as follows. First we
notice &om Fig. 1(b) and Eq. (12) that

& ~~ = &e&5+ (1 —&)—&5 4, (20) p' =P —k —p (22)

where the case A = 1 corresponds to pure pseudoscalar
coupling, while the case A = 0 corresponds to pure pseu-
dovector coupling. Using the equivalence theorem [15],
the pseudovector and pseudoscalar coupling constants are
related as

m
2M

p~ =P —q —p2,

q'=P —pg —p

Therefore, if we decompose the propagators of the ex-
changed nucleons into their two possible time orderings
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and keep only the forward-going part, i.e.,

+ M M 1 I
2(& 2) 2(& 2) ( )

P2 — + Z6 2P2P — 2+ ZE

gP~+M M 1
E, +,,ui(& i)ui(A') (26)

P1 — + te 1P10 — 1+ Ze

we can write Eq. (12) as

g(b) dP1 dP24d(Pf)&1(P])&mN~mN&1(P1) I2 2 . &2(P2)&PNmmN&2(P2)@d(Pi)2' s Ei E2 qI2 m2 + X6

where

Qd(pi) =
( ( q ~ 112(P2)+dNN+1(pl)
2P20 2+

0d (Pf ) Eg g P . +2(j 2) dNNui(P 1)
1 P10 1

(28)

(29)

are the initial and Anal deuteron wave functions which depend on the initial and final relative momenta in the
deuteron's rest frame g7; and py. Since the deuteron wave function @d(pQ peaks very strongly when p = 0, the main
contribution to the integral comes &om the configuration where the kinematics of the double-scattering term is as
shown in Fig. 2. Therefore, we can evaluate the AN —+ vrN and pN —+ mN t matrices at the kinematics of Fig. 2 and
take them out of the integral. We thus get

(b) 1 M M 1
+1 vrN~~Niiiii2tyN +mN112 -s dpi dp24'd(pf) I— . 4 (dpi) y (30)

27l (gS —Ei —E2)2 —(pi + p2)2 —m2+ ie

with gd(p, ) and @d(py) given by Eqs. (28) and (29). No-
tice that in the kinematics of Fig. 2, which is used to eval-
uate the mN —+ mN and pN ~ mN t matrices, the fourth
components of all the particles are completely determined
due to the fact that the two spectator nucleons are on
mass shell. In particular, as a consequence of the small-
ness of the deuteron's binding energy, the two exchanged
nucleons are almost on mass shell. The propagator of
the pion which appears inside the integral in Eqs. (27)
and (30) contains singularities at ~S = Ei + E2 6 E
The singularity at ~S = Ei + E2 + E is well known,
and it arises due to the fact that we can have an inter-
mediate mNN state with all three particles on the mass
shell. The singularity of ~S = Ei + E2 —E, on the
other hand, is unphysical and it arises as a consequence of
the spectator-on-mass-shell approximation [10]. This un-

physical singularity gives rise to a logarithmic singularity
after integrating over the angles. Since this logarithmic
singularity appears at very high momenta )J71

~

and ~pq ~,

it will be avoided by integrating ~pq~ and [pq~ from 0 up
to 0.1 fm before the singularity.

D. mN ~ mN amplitude

The 7rN —+ mN t matrix is needed only for the evalu-
ation of the double-scattering term, which in general is
very small; therefore, we have constructed a simple phe-
nomenological model for it. We write the pion-nucleon
amplitude for a given isospin channel I as a sum of
projection operators for the various angular momentum
channels as

N = fo(s)(P+ Vs)+ fi(s)(P —Vs) + &1(s)(P+ Vs) ~. V'+ +-
+t,I(,)(~ ~) (31)

where P = p1 + q' = p1 + q is the pion-nucleon total
momentum in the notation of Fig. 1(b) and s = P .

If one evaluates u1t ~ ~u1 in the pion-nucleon c.m.
frame, the first two terms in Eq. (31) generate the scat-
tering amplitude with j = 1/2 for I = 0 and L = 1,
respectively, while the last two terms generate the scat-
tering amplitude with j = 3/2 for l = 1 and l = 2,
respectively. Therefore, the functions for, fi, hi, and
hz are directly related to the corresponding partial-wave

-pk

PIG. 2. Kinematics used in the evaluation of the dou-
ble-scattering term with the approximate formula (30).
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scattering amplitudes of each channel as

(32)

f, (s) = 4—vr(E+ M) . [rl, (s)e ' ~(') —1],

E + M 2ip3

hz(s) = 12vr(E—+ M) . [gz(s)e ' &(') —1],

(34)

with

E = gp2+M2,
p2 = —[s —(M + m)'][a —(M —m)2] .

48

(36)

(37)

Since Eq. (31) is manifestly covariant, it can be used in
any reference frame as well as in the case when any of
the initial or 6nal particles are oE the mass shell.

Finally, taking into account the isospin structure of
the deuteron, the product of amplitudes t ~~ N t~~ + ~
that enters into Eq. (30) is written explicitly as

sidering all the possible couplings consistent with gauge
invariance and satisfying the requirements of parity, spin,
and isospin assignments for each resonance. In the case
of spin-3/2 resonances, the vertices V„are required to
satisfy the subsidiary condition

in order to guarantee coupling to the pure spin-3/2
component of the Rarita-Schwinger propagator [16,17].
Once the vertices had been constructed, the mNN' cou-
pling constants were determined Rom the decay widths
N* + 7rN. The pNN* coupling constants, on the other
hand, were obtained from the well-known resonance cou-
plings obtained &om pN —+ vrN partial-wave analyses
[18,19]. We refer the reader to Ref. [1] for the precise
form of the vertices and the values of the various cou-
pling constants.

It was found in Ref. [1] that at high energy the crossed
resonance diagrams depicted in Fig. 3(g) give rise to a
much too large contribution to the amplitude which in
general tends to spoil the agreement with data. There-
fore, it was necessary to regularize these diagrams by
means of a cutoE of the form

A
~(&') = ~, +,+p (40)

= t .„.„t» .„+t .„
t~+„~ opt—~r~„+„—t~ r~~o„t~„~-~ „.(38)-

E. pN -+ mN amplitude

The pN ~ mN amplitude is needed in the evaluation
of both the single- and double-scattering terms. Our
model of the pN —+ mN amplitude has been discussed
in detail in Ref. [1] and is shown diagrammatically in
Fig. 3. It consists of the Born terms [Figs. 3(a)—3(d)],
the t-channel contribution of the vector mesons p and
&u [Fig. 3(e)], and the s- and u-channel contributions of
the nucleon resonances P33 P»y S&&) S3» D&3y and D33.
The pNN* and mN¹ vertices were constructed con-

where p2 is the Inagnitude of the pion-nucleon relative
three-momentum squared given by Eq. (37) and A = 300
MeV/c.

An important modi6cation made here of the model of
Ref. [1] concerns the form of the 7rNN vertex used in
the evaluation of the Born diagrams [Figs. 3(a)—3(d)].
In Ref. [1] we used pure pseudovector coupling [A = 0
in Eq. (20)]. However, as we have discussed above, the
deuteron wave functions used in the dNN vertex have
been obtained with the nNN vertex of Eq. (20) which
is a linear combination of pseudoscalar and pseudovec-
tor couplings. Therefore, in order to be consistent with
the deuteron wave functions, we use also the same linear
combination of pseudoscalar and pseudovector couplings
given by Eq. (20) in the evaluation of the Born diagrams,

Mao, „=AMB~,„+(1 —A)MB~,„. (41)

(e)

(b)

N

(f)

(c)

N

(g)

The contact term in the case of pseudovector coupling
arises naturally &om the principle of minimal coupling
[17]. In the case of pseudoscalar coupling, on the other
hand, the contact term arises only as a consequence of
chiral symmetry [20,21]. As discussed in Refs. [20,21], if
one starts with the I agrangian appropriate to pseudovec-
tor (PV) coupling, one ends up with the Lagrangian ap-
propriate to pseudoscalar (PS) coupling by performing a
chiral transformation.

The pN ~ mN amplitude is written as

M = yz ) m;(A r; + A 2[r, , rs] + A+6; s)yq, (42)

FIG. 3. Elementary pl@ -+ s'1V amplitude. (a)—(d) Born
terms (e) Vector m. eson terms. (f) and (g) direct and crossed
resonance terms. N' stands for the P33 PI.g, S).y) &3&) D&3,
D33 resonances.

where A, A, and A+ are the dynamical amplitudes
for the various isospin terms. The contact term in the
case of pseudovector coupling gives a contribution to the
dynamical amplitudes of
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A = ——u2 gpsux,m
A =0,
a+ =0,

(43a)

(43b)
(43c)

III. RESULTS

A. Accuracy of the double-scattering formula

A = (r„+~„)u2 g' gpsux,2M 2

(44a)

(44b)

while the requirement of chiral invariance, in the case of
pseudoscalar coupling, leads to a contribution &om the
contact term to the dynamical amplitudes of

Before presenting our results and their comparison
with the data, it is important to discuss the reliability of
our approximate formula for the double-scattering term
given by Eq. (30). For this purpose, we considered the re-
gion very near threshold where the calculation simplifies
considerably. In this region, the pion-nucleon scattering
axnplitude (31) is determined by the S wave alone, i.e.,
the first term in Eq. (31). Then

(44c) a (P+ vs)r 4~ I
2M (48)

Therefore, when we use the mNN vertex given in
Eq. (20), the contribution froxn the diagram of Fig. 3(d)
to the dynamical amplitudes is

where a is the corresponding pion-nucleon scattering
length. If we now take into account the isospin struc-
ture of the pN ~ mN amplitude given by Eq. (42), we
get, for the sum of terms in Eq. (38),

A = —(1 —A) —u2 gpsux,
m

A„= A (~„+Ic„)u2 g gpsux,2M 2

(45)

(46)

& 0&~ OJ&»~~OJ +t ~ ~ ~ && ~ O~

3M
= —"(P+ ~s)(2as~'+ ax~2)A+, (49)

A~+ = A (r.„—Ic„)u2 g' gpsux,2M 2 (47) (g + vs)(a ~ —a ~ )A . (50)

with f and g related by Eq. (21). s and k are the photon's
polarization vector and four-momentum, while K,„=1.79
and e = —1.91 are the anomalous magnetic moments of
the proton and neutron, respectively.

The pN ~ xrN amplitude (41) with the contribution
of the contact term given by Eqs. (45)—(47) is indepen-
dent of the value of A in the case of a &ee nucleon. It
is therefore very interesting to investigate this chiral in-
variance in the case when the nucleon is bound inside the
deuteron. As we will see later, chiral invariance is broken
for bound nucleons.

Finally, we should mention that the contribution of the
diagram of Fig. 3(a) to the process of Fig. 1(a) generates
the diagram depicted in Fig. 4. This diagram contains
a pole due to the fact that the processes pd —+ NN and
NN ~ md are both open channels even at threshold.
Therefore, the numerical integration must be designed
to take into account accurately this pole. This pole
gives rise to an imaginary contribution to the diagram
of Fig. 1(a) even at threshold as required by unitarity.
Actually, at the pion threshold the diagram of Fig. 1(a)
would be real if it were not for this contribution.

If we now use the fact that the pion-nucleon scatter-
ing lengths satisfy 2c ~ + a ~ = 0, the contribution
of Eq. (49) is negligible and we need to consider only the
contribution of the charge-exchange processes given by
Eq. (50). Moreover, since the charged pions are heavier
than the neutral pion by about 5 MeV and the deuteron's
binding energy is about 2 MeV, the three-body singulari-
ties of the double-scattering term start to create problems
at only approximately 7 MeV above threshold (more pre-
cisely at u = 147.1 MeV) so that below this energy the
integration in Eqs. (27) and (30) is &ee of three-body sin-
gularities. Also at threshold the diagrams of Figs. 3(c)
and 3(d) are exactly zero for the amplitude A that en-
ters into Eq. (50), while the vector mesons do not con-
tribute to A . Finally, the contribution of the nucleon
resonances is very small at threshold [1] so that they can
be safely neglected. Thus the calculation of the double-
scattering term simplifies enormously at threshold. We
calculated the double-scattering term using both the ex-
act expression (27) and the approximate formula (30)
using A = 1 in Eq. (20). As an example, we show in
Table I the results for ~ = 145 MeV and 6I = 75' for
the nine independent helicity amplitudes that appear in
Eqs. (4)—(9). As seen in Table I, the accuracy of our

TABLE I. Accuracy of the approximate formula for the double-scattering term given by Eq. (30)
as compared with the exact result given by Eq. (27) for cu = 145 MeV and 8 = 75'.

Exact
Approx.

A
—0.001
—0.003

A —ip
0.116
0.113

—0.121
—0.119

Ap
—0.001
—0.003

App

0.122
0.117

Apg

0.047
0.049

—0.001
—0.002

Agp

0.064
0.060

Agg
0.115
0.113
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approximate formula is about 5%.
We found that the results of the double-scattering term

produced by our approximate formula (30) are essentially
independent of the value of A used in the vrNN vertex
(20). This is due to the fact that in the double-scattering
term, as already mentioned, the two exchanged nucleons
and the two spectator nucleons are almost exactly on the
mass shell due to the spectator-on-mass-shell approxima-
tion and to the deuteron wave function. Therefore, only
the intermediate pion in the double scattering term is oE
the mass shell, which has no eKect at all with regard to
the structure of the vertex.

B. Threshold region

The most complete calculation of the pd -+ m d re-
action existing in the literature are those of Bosted and
Laget [4] who used for the pN m mN amplitude the
Blomqvist-Laget model [22], which is a nonrelativistic
reduction of the relativistic model of Olsson and Osy-
powski [23]. They evaluated also the single- and double-
scattering terms within a nonrelativistic framework (al-
though keeping relativistic kinematics for the pion propa-
gator). Since the model of Refs. [4,22] is based in a 7rNN
vertex with pseudovector coupling, it should correspond
approximately to our model with A = 0 in Eq. (20).

We show in Fig. 4 the results for the reduced cross
section near threshold (threshold lies at 139.8 MeV) us-

ing only the single-scattering term. The short-dashed
line is the result of pure pseudovector coupling [A = 0
in Eq. (20)], and the solid line is the result of pure
pseudoscalar coupling [A = 1 in Eq. (20)], while the
dashed and long-dashed curves correspond to A = 0.2
and A = 0.6, respectively. The most interesting feature
of this figure is the strong sensitivity with respect to the
form of the mNN vertex given in Eq. (20). Very close
to threshold the results of A = 0 and A = 1 difFer by
more than one order of magnitude. Our results for pure
pseudovector coupling are in good agreement with the
corresponding ones of Bosted and Laget shown in Fig. 9

FIG. 5. Lowest-order contribution of the intermediate NN
state to the reaction pd —+ vr d.

~p&I'NN-+~d+&d-+NN & (51)

where the mNN vertex enters only in the NN ~ md

amplitude as indicated in Fig. 5. Moreover, at the pion
threshold the modulus of the NN + hard amplitude is
isotropic so that it enters in Eq. (51) essentially as a
multiplicative constant. Thus, at threshold, if we study
the sensitivity of the NN ~ hard amplitude with respect
to the form of the vrNN vertex, this determines also the
sensitivity of ImA~ ~ on the mNN vertex. We have cal-
culated the two independent amplitudes f„and f of the

10

0 I

of Ref. [4]. The strong sensitivity of our results with re-
spect to the form of the mNN vertex can be understood
by considering the contribution of the pole term shown in
Fig. 5, which is very important. This pole gives rise to an
imaginary part for the amplitude A( ) given by Eq. (11),
which at threshold is proportional to

io

139 14i 143 145 147 149 151
u(Mev) -15

FIG. 4. Reduced cross sections of the pd —+ vr d reac-
tion near threshold calculated using only the single-scattering
term. The short-dashed line corresponds to the model with
A = 0 in Eq. (20), the dashed line to A = 0.2, the long-dashed
line to A = 0.6, and the solid line to A = 1. Data are from
Ref. [24].

0.2 0.4 0.6 0.8 1.0

FIG. 6. Two independent amplitudes f~ and f of the
NN m md amplitude at threshold (see text) as functions of
the parameter A of Eq. (20).
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i39 141 143 145 147 149 15i
~(MeV)

FIG. 7. Reduced cross sections of the pd —+ m d reaction
near threshold calculated using both the single- and dou-
ble-scattering terms. The meaning of the curves is the same
as in Fig. 5. Data are from Ref. [24].

process NN ~ hard in the forward direction that corre-
spond, respectively, to the spins of the two nucleons be-
ing parallel or antiparallel. As mentioned before, these
amplitudes are essentially isotropic. We show in Fig. 6
the two amplitudes f„and f as functions of the parame-
ter A of Eq. (20). As seen in this figure, both amplitudes
are approximately 0 for A = 0 and become very large
when A approaches 1, that is, when the vertex becomes
pure pseudoscalar.

We show in Fig. 7 the results for the reduced cross
section when we include both the single- and double-
scattering terms. As one sees, for pure pseudovector

coupling the reduced cross section at 140 Mev changes
&om 0.55 to 3 pb due to the double-scattering term.
The fact that the double-scattering term is very im-
portant in the threshold region is well known [4—8] and
is due to an accidental cancellation of the elementary
pN —+ vr N amplitude at threshold. Our results for
pure pseudovector coupling when we include the double-
scattering term are about 20%%uo larger than the corre-
sponding results of Bosted and Laget [4]. However, they
are about 20%%uo smaller than the corresponding results of
Koch and Woloshyn [8]. The theoretical results for all
values of A lie above the data. The fact that there is dis-
agreement between theory and data is not so surprising,
since the importance of the double-scattering term tells
us that also the third- and higher-order scattering terms
are not negligible at threshold. Thus, in order to be able
to understand the experimental results at threshold, one
would have to perform a full three-body calculation of
the final state.

C. First resonance region

We show in Fig. 8 our results for the differential cross
section at energies in the region of the first resonance.
The short-dashed, dashed, long-dashed, and solid curves
correspond, respectively, to the models with A = 0, 0.6,
0.8, and 1. As the energy increases, the region of large
angles clearly seems to favor the models with A large. At
these energies the double-scattering term has an effect

10. 10
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+=270 MeV

0 30 60 90 120 150 180
8(de )

10.

a=300 MeV

0 30 60 90 120 150 180
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10.

FIG. 8. Differential cross
sections of the pd ~ vr d reac-
tion at 270, 300, 340, and 400
MeV. The short-dashed line
corresponds to the model with
A = 0 in Eq. (20), the dashed
line to A = 0.6, the long-dashed
line to A = 0.8, and the solid
line to A = 1. Data are from
the compilation of Ref. [25].
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FIG. 9. Polarization observ-

ables of the pd ~ m d reac-
tion at 375 MeV. The meaning
of the curves is the same as in
Fig. 8. Data are from the com-
pilation of Ref. [25].
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FIG. 10. Differential cross
sections of the pd ~ vr d re-
action at 500, 600, 700, and
800 MeV. The meaning of the
curves is the same as in Fig. 8.
Data are from the compilation
of Ref. [25].
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that goes Rom around 10—20% in the forward direction
to as much as 50—100% in the backward direction.

Very few data are available for polarization observables
in this energy region. We show in Fig. 9 as an example
of polarization observables the photon asymmetry Z, the
deuteron vector analyzing power iT~~, and the deuteron
tensor analyzing powers T20 and T2~ at 375 MeV. We
have used here the same four values of A as in the previ-
ous figure. The comparison with the available data for Z
is reasonably good, but clearly one cannot distinguish be-
tween the various models. The polarization observables,
at this energy, are not very sensitive to the value of A.

D. Second resonance region

We show in Fig. 10 the results for the differential cross
section at 500, 600, 700, and 800 MeV. In this energy
region there is similar sensitivity to the value of A as
observed in the region of the first resonance. Again in
this case the models with A large, and particularly the one
with A = 0.8, describe better the data. The results of the
models with A = 0.2 and 0.4, which are not shown, lie in
between those of A = 0 (short-dashed lines) and A = 0.6
(dashed lines). The efFects of the double-scattering term
in this energy region are less than 20% for the angles
where data are available.

We show in Fig. 11 the polarization observables Z,
iTqq, T2O, and T2q at 600 MeV. Unlike the results of
Fig. 9, the polarization observables in this energy region
are very sensitive to the parameter A. A few data points

are available for the photon asymmetry Z, but with re-
gard to the deuteron polarization observables, there are
no data whatsoever.

E. Results at a fixed angle

A reasonably good amount of data exist in the form
of excitation functions, that is, at a fixed angle and as
functions of energy. This is particularly true for di6'eren-
tial cross sections, but also to some extent for the photon
asymmetry Z. In a previous work [2], we have presented
our results for do/dO and Z at 8 = 130' for energies
between 400 and 900 MeV.

We start by showing in Fig. 12 our results for the dif-
ferential cross section at 8 = 90, 100', 110', and 120'
for energies between 200 and 1000 MeV. The same four
values of A have been used as in the previous figures. The
most striking feature of this 6gure is the strong sensitiv-
ity of the theoretical results on the parameter A in the
energy region of the Roper resonance (between 600 and
700 MeV), an efFect already noticed in Ref. [2]. As seen
&om this figure, for energies up to about 800 MeV the
data are clearly consistent with A = 0.8. The fact that
the A = 0.8 model fails above 800 MeV is of no relevance,
since as pointed out in Ref. [1] our model of the elemen-
tary pN ~ ~N amplitude is only valid up to about 800
MeV.

We show in Fig. 13 the differential cross section and
photon asymmetry at 8 = 130 and the remaining
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FIG. 11. Polarization ob-
servables of the pd —+ m d reac-
tion at 600 MeV. The meaning
of the curves is the same as in
Fig. 8. Data are from the com-
pilation of Ref. [25].
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photon-asymmetry data available at 90 and 135'. The
differential cross section at 0 = 130 is very well described
up to 800 MeV by the model with A = 0.8. With regard
to the photon asymmetry at 0 = 130, the model with
A = 1 describes the data better. The photon-asymmetry
data at 0 = 90 and 135 are restricted to energies below
500 MeV and they are consistent with all four theoretical
models.

An interesting result of our calculation, which was al-
ready pointed out in Ref. [2], is the fact that the strong
sensitivity with respect to the type of vrNN coupling orig-
inates almost entirely from the deuteron wave function.

of the deuteron. Prom our results in the threshold region,
we concluded that the inclusion of the single- and double-
scattering terms alone does not suKce to understand the
data at threshold and a full three-body calculation is re-
quired there. In the first resonance region, the data seem
to favor the models with A large which correspond to a
vrNN vertex of predominantly pseudoscalar nature. In
the region of the second resonance, the sensitivity with
respect to the form of the vrNN vertex is similar and
the best description of the data was obtained with the
A = 0.8 model.
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