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p-cu mixing off shell and charge symmetry breaking in the X-S potential
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The role of the off-shell dependence of p-co mixing in the charge symmetry breaking nucleon-nucleon
potential is discussed. It is shown that models describing the off-shell dependence of p-co mixing are not
sufficient to determine the charge symmetry breaking nucleon-nucleon potential.
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I. INTRODUCTION

Charge symmetry breaking (CSB) has been studied for a
long time; see e.g. , the reviews [1—7] and especially the ref-
erences therein. We follow Ref. [7] in summarizing a few
main features. Charge independence and charge symmetry
breaking are caused by the d-u quark mass difference

mz —m„)0 and electromagnetic effects. The general goal of
this area of research is to find small but observable effects of
the breaking of charge independence and charge symmetry.
This provides significant insight into strong interaction dy-
namics since the underlying origin of the breaking is under-
stood. Over the years there has been substantial experimental
and theoretical progress. First, we recall the old idea that
mz —m„)0 along with electromagnetic effects accounts for
the observed mass differences between members of hadronic
isospin multiplets. This mass difference also leads to the no-
tion that the physical p and co mesons are isospin mixed
superpositions of bare states of good isospin. Indeed, sub-
stantial effects of p —cu mixing have been observed in the
e+e ~vr+7r cross section at q =m„[8,9]. These results
allow an extraction of the strong contribution to the p-cu
mixing matrix element (p~H, /co)= —5200 MeV [10,7].
Two nucleons may exchange a mixed p-co meson. If one
uses (p~H, /co)= —5200 MeV, one obtains a nucleon-
nucleon interaction which is consistent with the experimental
value Aacsa= a„„—a„„=1.5~ 0.5 fm [11].Such a force can
also consistently account for most of the strong interaction
contribution to the H- He binding energy difference [11]
and for much of the Nolen-Schiffer anomaly [12]. The
TRIUMF (477 MeV [13]and 350 MeV [14])and IUCF (183
MeV) [15]experiments have compared analyzing powers of

np and np scattering and observe charge symmetry breaking
at the level expected from m, y, and p-co exchange effects.
The latter effects are important at 183 MeV. Thus p-cu mix-
ing seems to describe most of the observed features or charge
synunetry breaking in nuclear physics. While it is certainly
true that other mechanisms cannot be ruled out, p-co mixing
appears to give a consistent description of the bulk of the
experimental data.
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Recently, this success has been called into question. The
momentum dependence of the p-cu mixing amplitude has
been calculated using several different models [16—19].
While these models are based on quite different physical
assumptions, they all share one important quality: The p-co
mixing at spacelike momenta in all of these models is quite
different from its value at the co pole —generally of the op-
posite sign and significantly reduced in magnitude. Indeed it
has been shown that for a wide class of models [20] the
mixing must go to zero at q =0, implying that amplitude
changes sign. Moreover, a QCD sum-rule calculation also
apparently gives a similarly large momentum dependence of
the coupling [21].Since the N Npotential p-robes the space-
like region, this appears to imply that the vector meson ex-
change part of the charge-symmetry-breaking nucleon-
nucleon NN potential is very different from one based on the
on-mass-shell mixing. Indeed, NN potentials have been con-
structed based on these momentum-dependent mixing ampli-
tudes and these are quite different from the ones used in the
successful phenomenology [16—19,22].

The purpose of the present paper is to study the general
role of the off-shell meson propagator in NN potentials. We
find that knowledge of the off-shell meson propagator is not
sufficient to determine the potential. In particular, one needs
the vertex functions computed from the same theory that
supplied the propagator. None of the present treatments of
the off-shell propagator deals with the issue of the necessary
vertex functions. It is not our intent to compute these func-
tions. Rather, we wish to clarify issues of principle. Accord-
ingly we have included a number of simple illustrative ex-
amples. We do show, however, that the CSB induced by the
p-co exchange potential can account for the existing data
even if the the q dependence is exactly as specified in any
of Refs. [16—19,21,22). This is done by using CSB vertex
functions.

We turn to an outline of this paper. In Sec. II we discuss
the problem that in hadronic field theoretic models there is
never a unique choice for fields, even in a renormalizable
theory [23—26]. This means that the propagator and the ver-
tex functions are not unique. We argue generally and with
two explicit examples that while the propagator depends on
the choice of field variables, the observables do not. Thus,
knowledge of the off-shell meson propagator by itself gives
no information unless one knows which field is used. One
may be able to deduce which definition of the field has been
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used from a complete theory by studying the interactions
with the other degrees of freedom in the problem. However,
if the theory is incomplete and the interactions of the field
with all of the other degrees of freedom are unknown,
knowledge of the off-shell propagator by itself is not physi-
cally meaningful.

There is an even more serious problem. Modern meson
exchange potentials are motivated by field theoretic con-
cerns. However, there is no first principles method for ob-
taining the "correct ' NN potential directly from either QCD,
or from some hadron field theoretic model, or from any ex-
perimentally accessible set of data of hadronic properties.
Given this essential difficulty, we believe it is sensible to
adopt the general approach used in the construction of meson
exchange potentials to the case of charge symmetry break-
ing. This approach makes the pragmatic assumptions of in-
cluding the long range features in the meson propagators and
the short range features in the vertex functions. This separa-
tion is discussed in Sec. III. Such a separation may be ques-
tioned, but a priori these assumptions should be no worse for
the case of CSB potentials than they are for the isospin con-
serving part of the interaction. Moreover, given the lack of
rigor in the construction of potential from the underlying
field theory, some assumptions must be made in order to
make any connection between p-cu mixing and the CSB po-
tential. Given this, it is highly desirable to make sure that the
assumptions are consistent with those made elsewhere in the
problem.

It is worth stressing at the outset that in conventional
treatments of meson exchange potentials the off-shell propa-
gator plays no role. This is discussed in Sec. IV where real-
istic boson exchange charge symmetric potentials are defined
to be those that are consistent with the separation discussed
in Sec. III. We show that for models with realistic spectral
functions the momentum dependence of the meson propaga-
tor can be absorbed into that of the vertex function. An ex-
ample of an unrealistic momentum dependent co self-energy
is presented.

The ideas of Secs. II—IV are applied to the CSB potential
caused by p-co exchange in Sec. V. We show that the infIu-
ence of the momentum dependence of the p-co mixing matrix
element can be included by allowing the p-nucleon coupling
constant to violate charge symmetry. In particular, if the
model of Ref. [21] is used, one needs CSB coupling con-
stants that are 0.8% of the standard coupling constants to
reproduce the results of a potential obtained without momen-
tum dependence in the p-co mixing matrix element and with-
out CSB in the coupling constants. We summarize the analy-
sis in Sec. VI.

Thus an off-shell propagator, taken in isolation, can have no
physical meaning.

To illustrate why this is so, let us consider the simplest
possible case, the field corresponding to a stable scalar par-
ticle in some nontrivial interacting field theory. The equation
of motion for this system may be written as

p(x)+m p(x)= —j(x).
This equation of motion is determined from a Lagrangian
density M(p, j). Furthermore, let us insist on studying the
renormalized field, mass, and current. This means that the
correlation function for @- will have a pole with residue of
unity at the physical mass I:

(@,p l @(x)l
vac) = e'" (2)

which implies that

lim (q —m ) d x 'e~'(vaclT[@(x) P(0)]lvac) =i.
q —+m

( 0',p l
j(0) I

vac) = 0. (4)

This can be seen simply:

(p,plj(x)lvac)=(@,pl( +m )p(x)lvac)

=(-p'+ m')(O, pl e(x) 1vac).

where p is the square of the four-momentum of the state
which is m .

Now we come to the crux of the issue. There is enormous
freedom in the choice of field variables, and consequently
the Green's functions. In particular, we introduce a new
renormalized field and a new source current according to

P'(x) = @(x)+a(x),

j'(x)= j(x)+( +m )a(x),

(5)

(6)

We are concentrating on the renormalized quantities be-
cause un-renormalized properties are not observable and de-
pend on the details of the renormalization procedure. Ulti-
mately we will be interested in the spectral decomposition of
the propagator in terms of the physical states of the system
and this is directly related to the renormalized fields and
sources.

It is worth noting that the renormalization conditions put
quite stringent constraints on matrix elements of the renor-
malized source. In particular they imply that source does not
connect the vacuum to a one particle state

II. FIELD REDEFINITIONS AND OFF-SHELL
PROPA| ATORS

It has been known for quite some time that value of an
off-shell propagator is completely dependent on the choice of
field. This is an example of a general theorem proved by
Haag [23], Ruelle [24], and Borchers [25] which has been
discussed by Coleman, Wess, and Zumino [26].The off-shell
propagators depend on the choice of interpolating fields,
whereas all S-matrix elements are independent of this choice.

where a(x) is an operator such that (vacla
l P,p) = 0. Thus,

for example, a(x) may be a multiple of the renormalized
source j(x) or a(x) could have the form a(x)
= ( + m )b(x) where b(x) is an arbitrary renormalized lo-
cal composite operator. The new field and source satisfy an
equation of motion with the same form as the original:

( +m )@'(x)=j'(x).
It also satisfies the same renormalization conditions
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( @,p ~
P'(x)

~
vac) =e'"',

f
lim (q —m ) d xe'~' (vacua T[@'(x)P'(0)]~vac) =i

q ~m
(9)

The field variable @' is as good a choice for the field

variable as the original field P—its equation of motion is of
the same form and it satisfies the correct renormalization
conditions. It makes no difference to any physical amplitude
whether one chooses to describe the physics in terms of the
field P or P'. Thus, the masses of particles and possible
bound states and S-matrix elements for scattering states must
be identical with either description. Going from one to the
other amounts to nothing more than a change of variables.

While the physics clearly does not depend on which field
is chosen, the propagator depends strongly on this choice:

d xe'~'(vac~T[P'(x)@'(0)]~vac)

r

d xe' '

(vacua T[P(x)P(0)])+ d"xe' '(T[P(x)a(0))+ T[a(x) P(0)]+T[a(x)a(0)]~vac).

Equation (9), which picks out the pole at q =m, is obtained
since by construction a does not connect the vacuum to the
one P state. Clearly, this is necessary since the correlation
functions for P and @' satisfy the renormalization conditions
in Eqs. (3) and (9). Off shell, however, there is no require-
ment that this term vanish and the two propagators will in
general differ. Moreover, since the overall scale of a is arbi-
trary, it is clear that one can make the difference between the
two descriptions arbitrarily large.

Let us make these ideas explicit by considering two ex-
amples from a theory in which the current j is a static exter-
nal source. In this case the energy of the system is given by

f
F.= d r j(r)@(r)—2

1
F-' = d r 2'(r)[P'(r)+—a(r)].2 (14)

But Eq. (5) tells us that E' =E. Even though the current j'
of Eq. (6) is different than j, the energy of the system does

not depend on the choice of the function a(x).
A more interesting example is obtained by letting

@=[1+f(x)]P' [or a(x) = —f(x)I[I +f(x)] P(x)]. We

place the static source j at the origin and choose f(x) to

vanish at large values of ~x~ faster than e ~"~/~x~. This
maintains the original value of the renormalized coupling
constant (which is proportional to the asymptotic field) and
therefore is the analog of our renormalization for problems
with static sources. In this case the equation of motion is

or

where

Dp' = —j'', (15)

1E= d3r j(r)G(r, r')j—(r'), (12) D= (1+f) ( —V +m )——2(1+f)BQB" (1+f)V f—
(16)

where G(r, r') is the inverse of the operator V —m . Let us

first take a(x) to be a simple function of x, which is inde-

pendent of P. Then (P,p~a(x)
~

vac) =0 and the renormal-
ization conditions of Eqs. (3,9) are satisfied. One may deter-
mine a new Lagrangian density M' and a new Hamiltonian~' by starting with the original M~ and transforming the
variables. Then the new energy F' is given by

and

j '=j (1+f). (17)

Clearly the Green's function G' (the inverse of D) and cur-
rent j' are both fairly complicated. The use of the new
Hamiltonian density ~' gives

F. '= d r (V[qb'(r)+a(r)] [P—'(r)+a(r)]
J 2

f ]
E = d'. [(I+f)'V4 V 4-+(0 )'Vf Vf

J 2

+m [P'(r)+a(r)] +2j(r)[@'(r)+a(r)]),
(13)

+2/'(I+f)Vf VP'+(mP') (1+f)
+2j 0'(I+f)l (18)

and using the equation of motion (7) in the static limit leads
to

Integration by parts and the equation of motion (15) allow
one to obtain
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which is just the original energy since (1+f) P' = P.
Thus we have seen two explicit examples in which trans-

formations of field variables change the equation of motion,
the Green's functions, and the currents without changing, the
physical observable, the energy of the system.

These same arguments of Eqs. (5)—(10) can be used to
show that the various n-point vertex functions also depend
on the specific choice of field. The generalization of the ar-
gument to vector fields rather than scalars and to correlation
functions of two different fields uses standard techniques.
Again one finds that off-shell propagators and the vertex
functions depend explicitly on the choice of field.

It is clear what is going on here. Neither the off-shell
propagators nor the vertex functions are directly observable.
From a theoretical point of view, the values of these quanti-
ties depend explicitly on which arbitrary choice of field one
makes. Various combinations of the propagators and the ver-
tex functions correspond to physical quantities and it is only
these combinations which can be measured. Choosing a par-
ticular field amounts to making a bookkeeping choice—it
only determines whether some bit of the physics will be
found in the vertex or in the propagator.

The point we wish to stress is that knowledge, however
precise, of the off-shell propagator contains no physical in-
formation unless one specifies the choice of the quantum
field or equivalently unless one has knowledge of how the
field couples to the rest of the system —i.e., knowledge of the
vertex functions which arise from the same field choice.
Thus, a model for the off-shell propagator in the absence of
a consistent model for the vertex functions is not complete.
The models of Refs. [16—19,22] present the mixed p-co
propagator off shell, but do not give the necessary simulta-
neous consistent description of the CSB N-N —vector-meson
vertices.

III. PHILOSOPHY OF MESON EXCHANGE POTENTIALS

The preceding argument that off-shell meson propagators
are not sufficient is entirely based on field theoretic consid-
erations. Clearly, this does not help us to to compute observ-
ables; it does not address the question of how one can com-
pute CSB (or any other) observables in nuclear physics. One
typically constructs a nucleon-nucleon potential and then
computes wave functions, hoping that the potentials capture
the essential aspects of the underlying field theory. Neverthe-
less, there is no unambiguous way to construct potentials.
Nontrivial assumptions must be made.

Here we will assume that the assumptions underlying phe-
nomenologically successful meson exchange models are rea-
sonable. While one can construct equally successful purely
phenomenological models, the meson exchange models
make a connection to the spectral properties of the underly-
ing theory. Moreover, the entire question we are
investigating —the role of p-~ mixing in CSB effects in
nuclear physics —can only be addressed in the context of a
potential model which employs vector mesons.

There is a definite philosophy underlying the construction

of NN potentials from meson exchange. One principal idea is
the need for a separation of momentum or length scales. One
explicitly includes the exchange of mesons lighter (and
hence more long ranged) than some scale separation point.
All short ranged effects are either incorporated in phenom-
enologically determined vertex functions or by some other
purely phenomenological means. The physical picture under-

lying this philosophy is that the nucleon has a three-quark
core which cannot be described efficiently in terms of me-
sons, while at longer distances the nucleon structure is domi-
nated by a meson cloud.

To some extent, the fact that short ranged effects are
handled as pure phenomenology is of little importance in
most low energy nuclear physics applications. Because of
repulsion at short distances, nuclear wave functions have
strong short distance correlations which prevent the system
from feeling the truly short range part of the potential. More-
over, at very short distances the concept of an NN potential
becomes particularly inappropriate. Typically, in meson ex-
change potentials this scale separation point, which we will
call A, , is taken to be of order 1 GeV so that p and co

~esons are explicitly included while heavier vector mesons
are not. It is worth observing, however, that this does not
mean that the short distance physics does not have important
long range consequences. In particular, the value of the
meson-nucleon coupling constant, determined by short dis-
tanced physics, plays an essential role in the potentials at
long and intermediate ranges. ,

We believe that this general'approach of treating the short
range part of the NN interaction phenomenologically while
explicitly including the effects Of lighter mesons is reason-
able. This general approach ought to be applicable to charge-
symmetry-breaking effects.

There is another important assumption which underlies
these models. It is assumed that except at short distances the
vector part of the potential is dominated by the vector me-
sons. Thus it is assumed that continuum two-pion vector-
isovector and three-pion vector-isoscalar, exchange contribu-
tions are small —i.e., that the only substantial strength arising
from the two pion vector-isovector exchange is sufficiently
concentrated at the p mass as to be well described by p
exchange and analogously for three pions and the co ex-
change. We note that this assumption can be questioned. In
its favor we note that in e+e ~ pions, the p and co peaks
do, in fact, completely dominate the low-lying spectral func-
tion.

In our discussions we will adopt the Bonn potential [27]
strategy of incorporating all short range effects in vertex
functions. In such a strategy the scale separation between
long and short range is particularly easy to enforce: The phe-
nomenological vertex functions are analytic for q ~A,
while the propagators are analytic for q ~A, , where q is
the square of the four-momentum.

IV. MOMENTUM-DEPENDENT SELF-ENERGIES
IN MESON EXCHANGE POTENTIALS

It is probably useful to discuss an analogous and perhaps
somewhat simpler problem before discussing charge symme-
try breaking. The p-cu mixing matrix element is an off-
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diagonal mass term. Models which give momentum depen-
dence to this off-diagonal mass can also be expected to give
momentum dependence to the analogous diagonal mass
terms —i.e., to the vector meson self-energies. It is clearly
useful to understand the role of the momentum dependence
of the p and m self-energies in the charge-symmetry-

preserving potential before taking on the challenge of under-
standing the momentum dependence of the p-co mixing.

For simplicity we examine the one ~ exchange contribu-
tion. First consider the traditional meson exchange model
description with the scale separation as outlined above. The
potential is given by

fg'. (q') r,"'+g'. (q')q ~.",'f(g ' q"q "i—m'. )I:g:(q')V'."+g'.(q')~.pq~l
V„q

Pl
(2o)

where g'„(q ) and g'„(q ) are the vector and tensor couplings of the omega to the nucleons. The superscripts 1 and 2 label the
nucleon. These couplings are analytic functions of q for q (A, the propagator is clearly analytic for q )A, .

In principle, we could consider a more sophisticated model consistent with the philosophy outlined above. For example, one
could explicitly include the exchange of three low energy pions (with the quantum numbers of the rho) along with an omega
self-energy due to its coupling with the three pion channel and a longer range part of the co-N vertex due to three-pion
exchange. In practice, one expects such effects to be small: In part they serve to simply widen the omega pole by an amount
of no practical significance to the potential; other effects of coupling to the three-pion channel are small because they are
weakly coupled. In any event, we will stick to the conventional assumptions underlying meson exchange models and neglect
such effects. In the remainder of this paper we will ignore such effects.

Let us now suppose that we had a detailed microscopic model of the co meson which enables us to calculate a momentum-
dependent co self-energy, ~ (q ). As a matter of convention, we will include any effects of mass and wave function
renormalizations of the co in m„(q ). This means that m„and its derivative vanishes at q =m„. The omega exchange part of
the N-N potential with such a model is given by

I:g:(q') r',"+g'.(q') q ~".,'fig"" q "q "im'. ) I:g:—(q') r'."+g'.(q') ~.pq~l
V„q

q —m„+ m.„(q )
(21)

We have written the couplings as g'„' and rather than g'„' to
make evident the fact that the vertex functions used in the
model in Eq. (21) need not be the same as the vertex func-
tions used in the model in Eq. (20): These vertex functions
are phenomenological and depend on how the rest of the
problem is treated.

Given that the vertex functions may differ between the
two models, we note that the two models may be identical-
i.e., they may be two equivalent ways of representing the
same physics. One way for this to occur is if the vertex
functions in the two models are related by

i 1/2
q

2"
(q —m„+7r„(q ))

(22)

Note that the square root factor is unity for q =m„due to
the renormalization of vr (q ) The result (22.) is not surpris-
ing in light of the formal analysis of Sec. II. Neither the
propagator off shell nor the vertex function are separately
meaningful.

Given that vertex functions are fit to some set of data, the
only reason the condition in Eq. (22) would not be satisfied
would be due to practical and philosophical limitations in the
forms used in the fitting of the vertex functions. The practical
limitation is that one must take some limited trial form for
the phenomenological coupling. To the extent that meson
exchange models make sense in the regime where they are
used, the trial forms must be rich enough to describe the data
with reasonable precision. Thus, apart from the philosophical

concerns discussed below, Eq. (22) can be satisfied well
enough so that any difference between the potentials of Eqs.
(20) and (21) will have a small effect on the physics. The
philosophical limitation is that the vertex functions are sup-
posed to only contain effect of a range shorter than A, '.
Longer range effects are to be included by explicit dynamics
of the lighter degrees of freedom in the problem.

Thus, the issue of whether the two models are equivalent
comes down to whether both g, ,(q ) and g, ,(q ) can be
analytic for q (A, while satisfying Eq. (22). In effect, the
question is whether

( 2 2 l ti2

f(q') ='
tq —m„+7r (q2))

is analytic for q (A, . Nonanalyticity can occur when either
the numerator or denominator vanishes or when ~„ is
nonanalytic. In fact, we should relax this restriction
slightly —the nonanalyticity associated with the ~ coupling
to three low energy pions which slightly broadens the pole
and gives a small nonresonant contribution is, as discussed
above, innocuous. In any event, this issue does not arise in
the context of the models in Refs. [16—19].

Clearly, the analytic structure of f(q ) depends in detail
on the choice of model. The simplest way to make the phys-
ics explicit is to make a spectral representation [28] for the
propagator:
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1 " p(s)
z z z

= ds z . + subtraction terms.
q

—m+m„q J q
—s+iE

7r„(q ) =(q —m„) Bq . (25)

This form is motivated by the renormalization requirements
that m (q ) and its derivative vanish at q =m„. One deter-

mines the nucleon-nucleon potential generated by the propa-
gator of Eq. (24) by taking q to be spacelike
qz= —Q (0; the potential is proportional to the integral

f
dQQ

sin(Qr) 1

—Q —m —(Q +m„) BQ

One does the contour integration by identifying the poles.
There is always a pole at Q = —m„which is the standard

term expected from the exchange of an co meson. There are
other poles at positions determined by the value of B. One
finds that if m„)m —4/B)0 there will be poles with Q
real and negative. At least one of the poles must be at

Different models will give rise to different spectral functions.
However, if the model is realistic, the only substantial spec-
tral strength for q (A, occurs at or near the omega pole.
Accordingly any model which gives significant amounts of
spectral strength below A, (apart from the co pole) can be
considered as unrealistic in our philosophy. If, however, all
of the spectral strength is either at the co pole or above

A, , then f(q ) is analytic for q below A, . The apparent

nonanalyticity due to the denominator vanishing at q =I„
is precisely canceled by a vanishing numerator. (Recall that
all renormalization effects are included in vr„so that the
position of the co pole does not shift. ) In this case, one may
redefine the vertex functions according to Eq. (22).

To see how the spectral representation constrains the al-
lowable forms of the self-energies consider the following
simple example in which the self-energy has the form

I Q I
(m„, which is unrealistic in our philosophy. If

m —4/B) m„, the poles occur for Q )0 which are physi-
cally unallowable tachyonic excitations. Similarly, if
m„—4/B(0, there are poles off the real axis, which violates
the spectral representation and also renders the model for
m„(q ) as useless. This analysis demonstrates that a spectral
function of the form in Eq. (25) is not viable.

Let us now summarize the effects of the momentum de-
pendence of the co self-energy on the meson exchange po-
tential. In any realistic model (i.e., any model without un-

physical low q spectral strength in the cu propagator) all of
the effects of the momentum dependence of the self-energy
can be reabsorbed into the momentum dependence of the
phenomenological vertex functions. Accordingly, there are
no observable physical effects in the WN potential induced

by such a momentum dependent self-energy. Moreover, in-

cluding the short range part of the momentum dependence in
the propagator of a meson exchange model violates the
bookkeeping arrangement in which all of the short range
effects are segregated into phenomenological vertices.

V. CHARGE-SYMMETRY BREAKING NN POTENTIAL
AND THE MOMENTUM DEPENDENCE

OF p-eo MIXING

The preceding section gives us a paradigm for what hap-
pens in the charge-symmetry-breaking part of the potential.
We will show, for any realistic model of the momentum de-
pendence of the mixing amplitude, that all of the effects of
the momentum dependence can be absorbed into phenom-
enological short-ranged charge-symmetry-breaking nucleon—
vector-meson couplings.

Consider the charge-symmetry-breaking potential arising
from vector meson exchange. Let us begin by implementing
this according to the philosophy of scale separation dis-
cussed in the previous two sections. Assuming that only the
meson exchanges we need to consider are the p and ~, the
charge-symmetry-breaking interaction potential can be writ-
ten as

I:s'.(q') r'"+s'.(q')q ".„']I:s"' qq "/ '.ll:s'."'(q'—) 3"r'."+s'."'(q') 3" ".p'q~]
2 — 2

[:(q')r'"+s'.(q')q '."]I:s'" q'q'/ '.]Ls".'"(q')—"'r'."+s"."(q') "' '."qp]
+ 2 2

q
—I„

Ls', (q') r',"r'"+ s', (q') q ~".,'r'3" ]I:s" q "q "/m', PLs',"'—(q') r'."+s,'"'(q') ~ p q~]
+ 2 2

q —m

I:s",(q') "'r',"+s',(q')q ".,' "'](s'" q'q'/ ',]I:s', "(q'—)r'."+s', "(q') '."qp]
+

q I
, I:s'.(q') r„"'+s".(q')q ~'."]:s ' qq'/ '.]I:s" q'q /—,')Ls,'(q') s"r'."—+s,'(q') 3" ".p'qp]

(q —m„)(q —m )

, Ls'.(q') r„"'+s'.(q')q ~".,']I s ' qq'/m'. Its'" q'q "/m,'f—ts,'(q') r'3" r'."+—s,'(q') r'3"~".p'q~]

(q —m )(q —m )
(26)
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This form is rather general: In addition to p-co mixing, it
explicitly includes possible charge-symmetry-breaking cou-
plings between the vector mesons and the nucleons arising
from short distance effects: These couplings are labeled by
the superscript CSB. The coefficient I „ is the mixing pa-
rameter which in this model is taken to be independent of
q .

It should be noted that the general form of Eq. (26) is
consistent with the general philosophy of meson exchange
used here. In particular all short ranged effects are merely
parametrized, while the long ranged effects are treated dy-
namically in terms of the mesons. For this reason we must
include the p-~ mixing explicitly rather than including all of
the effects in terms of the charge-symmetry-breaking cou-
pling s.

The couplings s'„' (q ) are presumed to have been deter-
mined in fits to the charge-symmetry-conserving interac-
tions. In principle, the coupling constants s'„' (q ) must

be determined phenomenologically from experimental data
on charge symmetry breaking. In fact, in the treatments of
CSB in Refs. I 11,12,10,7] these couplings were all taken to
be zero. In that work, model assumptions and existing
nucleon-nucleon and pion-nucleon scattering data were used
to make a priori arguments that these couplings should be
small and hence could be neglected. See, for example, Refs.
I 5] and

I 7] which reviews the charge dependence of the cou-
plings. The neglect of charge dependence in the meson-
nucleon coupling constants is not invalidated by present data.
In particular, descriptions of all known CSB effects do not
require the inclusion of such terms. Had the data required the
inclusion of such terms, they could have been included with-
out violating the spirit of a meson exchange potential model.

Now suppose that we had a detailed model for the struc-
ture of the vector mesons in which the p-~ mixing amplitude
has a nontrivial momentum dependence. The form for the
CSB potential is very similar to the form above:

I:s'(q')r'"+s'(q')q ~'"]I:s '—
q q &m']I:s'"'(q')""r'"+s""(q')""~'"q']

co, p
V q

q pl

I:s'.(q') r,"'+s'.(q')q '."ll:s'"—
q q "~ '.lI:s'."'(q') 3"r'."+s.""(q') s" ".p'q~]

q I
I:s,'(q')r"' 3"+s,'(q')q ".,' s"]I:s'"—q'q"~ ',]Is","'(q')r'."+s,""(q') ".pq~]+

q I
I:s', (q') s"r',"+s',(q')q .",' 3"']I:s""—q q "~,']I:s;"'(q') r'."+s',"'(q') ".Js'qp]

q I
, I:s'.(q') r"'+s'.(q')q ".,'ll:s" qq'~ '.]I:s'" q—'q "~,']Is—',(q') "'r'."+s',(q') "' '."qP]

(q —m„)(q —m )

, I:s'.(q') r"'+ s'.(q') q ~".„']I:s"—q'q'~m'. ]I:s" q'q'~m', ]—I:s', (q') r's" r'."+s', (q') r's" ~".
p q~]

(q —m„)(q —m )

(27)

We have labeled the CSB coupling as g'„' rather than
g'„' to make explicit the fact the CSB couplings in Eq.
(27) may be different from the CSB couplings in Eq. (26).

The question we wish to address is whether the model in
Eq. (27) is equivalent to the model in Eq. (26). The issue
comes down to whether the effects of the momentum depen-
dence of the mixing can be entirely absorbed into differences
between g'„' and g" without introducing any unnatu-
rally long range effects into the CSB couplings. We shall
show that this can be done.

The p-cu mixing is measured rather accurately at the pole
at q =I„.Accordingly, it is sensible to express

Bm „(q)
(q —m )(q —m„)

"v,tCSB v, tCSB
g CO CO

(29)

2 t 2
v, tCSB v, tCSB P~

gp gp 2 2 gp
q

—m„
(30)

has no ~ pole. All effects with this term are indistinguishable
from terms arising due p exchange with a CSB vertex. In
particular, if

m „(q ) =m „+6m (q ),

with Bm „(m„)=0. Thus, the expression

(28)
then the potential in Eq. (27) is identical with the one of Eq.
(26). This result can also be obtained from Feynman dia-
grams. Let an co be emitted from a nucleon and then be
converted via m „(q ) into a p. One can draw a box which



52 p-co MIXING OFF SHELL AND CHARGE SYMMETRY. . . 3435

includes the strong vertex and m „(q ). This box is the

charge-dependent p-nucleon coupling constant. Alternatively
one can regard the m (q ) as part of the propagator. Either
way, the result is the same.

We can do a specific calculation. For example, suppose
8m „(q ) =(q —m„)m lm„. This is a good approxima-
tion to the m (q ) obtained in the sum rule work of Ref.
[21]. Then the difference between g" and g" is a
simple constant = —0.008g"; if g" were chosen as the

negative of that constant, one would obtain the standard form
of the p-co mixing contribution to the NN potential. See also
Ref. [29].

Moreover, for any reasonable model of the momentum
dependence of the mixing, Eq. (30) can be satisfied without
introducing unnaturally long ranged effects into the meson-
nucleon vertex functions. The issues are completely analo-
gous to the ones raised in connection with the co exchange
potential discussed in the previous section. First, it should be
noted that there is no ~ pole singularity on the right hand
side of Eq. (30)—it is eliminated because Bm „vanishes at
the co pole. Thus, the only source of long range contamina-
tion of the couplings is in Bm „(q ) itself. Note that by
construction 8m „(q ) cannot have a singularity associated
with either the p or the co. Moreover, we know that the only
substantial strength in the vector channels at q ~A, is
through the p and m mesons. Thus, any model which yields
long range effects in 8m „(q ) must be regarded as unreal-
istic according to our philosophy.

VI. SUMMARY

We are working in the framework of boson exchange po-
tentials. This means that in realistic boson exchange models

long range effects are included via boson exchanges and that
short range effects are included in the vertex functions. For
any such realistic model of the momentum dependence of the
p-co mixing parameter, there are no effects in the CSB break-
ing potential which cannot be absorbed into a redefinition of
a short ranged CSB p-N vertex. Thus, a model which pro-
vides knowledge of the momentum dependence of the mix-

ing parameter alone, without simultaneously giving a self-
consistent model for the short ranged CSB vector-meson—
nucleon couplings, gives no information about the CSB N-N
potential.

The work of Refs. [16—19] found major differences be-
tween the CSB potentials based on the on-shell p-co mixing
and models with a large momentum dependence. Our boson
exchange model view is that this is because the short ranged
CSB vector meson-nucleon coupling is assumed to be zero—
just as in the models based on the on-shell p-~ mixing.
However, there is no reason a priori that this assumption is
true for the models under discussion. Indeed, there is a pos-
Ieriori evidence that the assumption may be wrong: The
models based on the on-shell p-co mixing and negligible
g'„' reproduce the available data with reasonable accu-
racy.
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