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We calculate the shape of the P and P+ spectra in the A = 14 system using constraints from measurements

of the width of the Ml transition, N(e, e') cross section, and logft values, as well as shell-model wave

functions. Our result for the shape factor assuming conservation of vector current disagrees by a factor of 2
with existing data from ' 0 P+ decay.
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I. INTRODUCTION

The energy dependence of allowed P spectra is given by
[1,2]

12

dN/dWe= s [Ao+ Co]FoLoC(We)peWe(Wo We)

(o ) C( W, )= (o ) (o )(WM) ( W, —Wo/2) (2)

where M stands for the nucleon mass. Thus, by measuring
the shape of the P spectrum, one can extract the (WM) ma-
trix element. A measurement of this kind in the A=12 system
was proposed by Gell-Mann [3] to check on the conservation
of the vector current (CVC) hypothesis [4] according to
which the operator WM in the P decay of ' B and ' N
should be equal to the M1 operator that determines the width
of the electromagnetic transition from the isobaric analog
state:

where W, and p, are the total energy and momentum of the

P, Wo its maximum total energy, Ao and Co are factors
containing all the matrix elements, Co is defined in Appendix
A, and, for 0+~1+ transitions, such as the one discussed in
this papel; A o

= 0. FOLo takes into account the Coulomb in-
teraction between the P's and the nucleus, and C(W, ) is
called the "shape factor. " It is this C(W, ) part of the energy
dependence of the spectrum that we want to address in this
work. In a typical allowed Gamow-Teller (GT) transition this
shape factor is dominated by contributions from the GT—
axial —matrix element and its interference with the weak-
magnetism (WM)—vector —matrix element:

discrepancies that go beyond their statistical errors, and leave
the impression that each experiment may be affected by sys-
tematic problems which are hard to estimate. What makes
these measurements particularly hard is the fact that the
slope corresponding to Eq. (2) is only about 5 X 10
MeV

In what follows we will address the problems of calculat-
ing the shape of the P spectra in the A =14 system and we
will analyze its potential for being used to test the CVC
hypothesis.

II. CVC AND THE IMPULSE APPROXIMATION

The P decay of ' C is famous for its extremely hindered
transition rate [8] due to a particularly small GT matrix ele-
ment which has been shown to be possible only if a tensor
force is at work [9]. This implies that the spectrum slope
expected according to Eq. (2) should be much larger than the
one expected in the A = 12 system. In the approximation de-
scribed by Eq. (2) the two matrix elements can be fixed by
requiring (cr) to give the correct half-life, and (WM) to be
equal to (Ml) in the analog electromagnetic transition, ac-
cording to CVC plus charge independence of the nuclear
interactions. One can approximately separate these two re-
quirements because the (a.)(WM) term vanishes to order a
when integrating over the whole P spectrum [10].Calaprice
and Holstein [11]calculated the expected shape factors in a
series of nuclei using Eq. (2) and obtained

C( W, ) = 1 ~ 0.38(0.05) W, for ' C(' 0) (4)

with M/', in MeV. This amplification of a factor =50 with
respect to the A = 12 system has some drawbacks. In our case

(Ml) =6 (3)

TABLE I. Results of measurements of shape factors in the
A = 12 system.

Adding the condition of charge symmetry one concludes that

(WM) = (M 1). Many authors [5—7] have undertaken the dif-
ficult task of measuring the shape of the A = 12P-decay spec-
tra. Table I presents the results of these efforts, which show

Reference

M.-K. [5]
Wu [6]
Ka. [7]

a (% MeV ')

+ 1.82~ 0.09
+ 0.41~0.1

+ 0.91~0.11

a+(% MeV ')

+ 0.60~ 0.08
—0.45 ~ 0.09
—0.07 ~ 0.09
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the GT matrix element is so small (=2X 10 for ' C) that
other terms not included in Eq. (2) become relatively impor-
tant and have to be taken into account. In fact, Calaprice and
Holstein noticed a discrepancy of about a factor of 2 between
the prediction of Eq. (4) and a measurement of the shape
factor of ' 0 [12] and suggested that this discrepancy could
be due to an enhancement of electromagnetic effects.

CVC relates the operators for the M1 electromagnetic
transition and the isobaric analog vector part of the weak
current, but in order to equate (Ml) with (WM) one needs
to demand the wave functions in the initial state (' C, ' N*,
and ' 0) to be equal. The electromagnetic interaction breaks
charge independence but these effects are usually very small ~

However, in the A = 14 case there seems to be a special can-
cellation at work which makes the GT matrix element very
small. This cancellation effect is sensitive to changes in the
wave functions and to renormalizations of the operator as is
evidenced by the large ft asymmetry: B(GT)('0)=
59 B(GT)(14C).

We note another singularity of the A = 14 system regard-
ing CVC: the anomalous magnetic moment contribution to
the magnetism is expected to be negligible, so there is no
anomalous enhancement of the weak magnetism, but CVC
still prescribes the nonrenormalizability of this operator.

We will now turn to the calculation of the matrix ele-
ments.

Genz et al. noted that, assuming Op oscillator wave func-
tions, the matrix elements necessary for the calculation of the
P-decay observables appear only in the following combina-
tions:

M 101
I (9)

jR~'I
'b' 5

0
121 ~ (10)

MR
V3 = — M1113

0
M101

MR
V4= M110.3

(12)

Here VI corresponds to the (o.) matrix element, Vs contains
the orbital part of either the Ml transition or the weak-
magnetism matrix elements, and V4 contains the contribu-
tions from the first-class induced tensor —see Appendix B for
a list of correspondences to Holstein's matrix elements.

In Cartesian notation, these matrix elements are

III. PREVIOUS WORK IN THE A = 14 SYSTEM

f
0M1p1: 0 (13)

Recently, Genz et al. [13] presented calculations of the
shape of the P spectra in the A = 14 system, using OA, co wave
functions (i.e., two-Op-shell holes in ' 0). General LS
coupled wave functions have the form

3 ('(or)r (I/3)a. .r—
121- 2" R

(i4)

"»=-I'st)+ Pl'P')+ rl'D, ),

"c)=(-I's.&+ ~-I'Po),

I' N*) = (OI's )+ rg
I

P ),

"0)=g, I' s,)+ ~,

(5)

(6)

(7)

Genz et al. fixed the coefficients by requiring agreement with
the following data set: (1) elastic and inelastic e scattering
on ' N; (2) the log ft's measured for the P- decays; (3) the
shape factor of ' C measured by Sonntag et al. [14], and of
'"0 measured by Sidhu and Gerhart [12].In order to make
these comparisons they used the formalism of Behrens and
Biihring [2] and the impulse approximation to calculate ma-
trix elements. The formalism accounts in a consistent way
for the Coulomb interaction of P's with the nucleus, and the
expressions include contributions of all matrix elements to
the spectrum shape. Expressions from an equivalent formal-
ism by Holstein [15] do not include all terms containing
products of induced weak-current matrix elements. The latter
is particularly important in the present case, because, as we
mentioned earlier, the fact that the GT matrix element is so
small makes it necessary to include all the usually neglected
terms that contribute to the shape of the P spectra. We shall
also use the formalism of Behrens and Biihring [2].

0
f cxXr

J R (is)

r
MIIO=P&J rs'R. (16)

C(W, )=1—0.67(0.10)W, for C( 0).

We note that Genz et al. 's wave functions show too strong
a charge dependence. For example, a simple overlap of the
'0(0+) and ' N(0+) wave functions differs about 1.3%
from unity, while this difference is supposed to be at least a
factor of 5 smaller [16].In addition, Genz et al. 's wave func-
tion for the 0+ level has much too high of a probability for
the p3/2 configuration compared to the p„zconfiguration—

We note that the M coefficients defined by Behrens and Bu-
hring do not contain contributions from induced currents.
The induced currents are correctly accounted for in the defi-
nition of the F terms defined in Appendix A, which are used
to calculate the the measurable quantities.

Genz et al. showed that none of the previous "Ofi, co" cal-
culations could account for all experimental observations in
the A=14 system. They carried out a calculation releasing
the constraint of charge independence and obtained better
agreement with experiment. The values they obtain for the
four matrix elements are shown in Table II ~ The resulting
values for the shape factors are
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TABLE II. Results for V coefficients using different wave functions.

Reference

Genz [13] (' C)
Genz [13] (' N)
Genz [13](' 0)
C and K (POT) (Genz)'
C and K (BME) (Genz) '
C and K (POT) (This work)'
C and K (BME) (This work) '
WBT [17]
WBTM [17]
WBTM2 [17]

Vi

0.002
0.085

—0.006
0.220
0.071
0.218
0.072

—0.084
0.063
0.063

V2

—0.364
—0.477
—0.353
—0.905
—0.916
—0.904
—0.915
—0.911
—0.923
—0.375

V3

—0.524
—0.585
—0.518
—0.489
—0.452
—0.488
—0.453
—0.410
—0.472
—0.472

V4

0.006
—0.002
0.006
0.091
0.144

—0.092
—0.144
—0.223
—0.168
—0.168

'We obtain values of V4 of opposite sign to those published by Genz et al.
C and K (POT) and (BME) are defined in Ref. [18].

the ratio of squared amplitudes is 3.5 for ' 0 whereas ex-
periment shows this ratio should be about 0.2.

mine the mixing by reproducing the experimental 0+ T= 1

to 1 T=0 B(M1) value of 0.017p,~ [19].The mixed wave
functions are

IV. OUR SHELL-MODEL WAVE FUNCTIONS

We now turn to discuss our shell-model wave functions
and the expected effects of charge-symmetry breaking. and

i

1+low) = 0.993' I +
( I ) ) + 0.118' 1+(2)) (18)

A. Wave functions

The initial wave functions were obtained in the Op-shell-
model space with the Op-shell part of the Warburton-Brown
(WBT) Hamiltonian [17] (the interaction labeled PWBT in
Table X of Ref. [17]).This interaction was determined from
a least-squares fit of 51 Op-shell binding energies together
with 165 Op-Od1s cross-shell binding energies. The rms de-
viation for the 51 Op-shell data (Table III of [1]) was 378
keV. The Op-sheH part of the WBT interaction can be con-
sidered a refinement of the original Cohen-Kurath [18] for-
mulation of the interaction.

We are interested in further refining the wave function for
the 0+ T= 1 and 1+ T= 0 states in A = 14. We do this in two
ways. First we note that the M1 and GT transition strengths
to the lowest 1+ state are very small compared to the
strengths of the transition to the second 1+ state at
F,=3.95 MeV. Thus any small mixing between these two
1+ states in the model will have a large effect on the weak
transition rate. This small mixing could originate from non-
Op-shell parts of the wave functions as well as from effective
three-body forces not present in the calculation. We deter-

~1+high) = —0.118~1+(I))+0.993~1+(2)) (19)

where (1) and (2) refer to the first and second WBT model
states. The B(MI) values before and after mixing are 0.113
p,~ and 0.017p,j, respectively. We will refer to these mixed
wave functions as WBTM. In perturbation theory this mixing
results from an off-diagonal interaction of about
0.118X(3.9MeV) =460 keV which is not inconsistent with
the 378 keV rms deviation found for the energy levels. The
0+ T= 1(' C) to 1 T=O('"N) GT matrix element changes
from —0.181 to 0.136. In order to compare these to fr values
one needs to include contributions from other matrix ele-
ments and we shaH do this later. We could also mix the wave
functions to give gero for the GT matrix element with the
result

11+low) =0.9977' 1+(1))+0.067811+(2)) (20)

and

~

I+high) = —0.0678~1+(1))+0.9977~1 (2)). (21)

This mix gives B(Ml) =0.047p~. One should not expect
any purely nucleonic wave functions to reproduce both
B(M1) and B(GT) exactly because the mesonic exchange

TABLE III. Expected variations on matrix elements V s due to INC effects: isospin mixing.

WBTOB WBTOBM

14C 14N 14O 14C 14N 14O

V]

V2

V3

V4

(Pl p,„)V, /v2+ V3'—
—0.0605
—0.9196
—0.4230
—0.2276
—0.6241

—0.0642
—0.9142
—0.4194
—0.2177
—0.6328

—0.0647
—0.9106
—0.4179
—0.2111
—0.6329

0.0025
—0.9268
—0.4515
—0.2029
—0.4432

—0.0014
—0.9196
—0.4472
—0.1947
—0.4518

—0.0020
—0.9178
—0.4452
—0.1881
—0.4518

'"Magnetic" matrix element: proportional to the M1 matrix element in the y decay, and to the WM matrix
element in the P decay.
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current corrections are different for the vector (Ml) and
axial vector (GT) decay [20]. However, a quantitative evalu-
ation of the exchange current effects for these weak M1 and
GT matrix element is probably not reliable. Given the gen-
eral observation that M1 transitions in light nuclei are close
to the "free-nucleon" calculations while the GT transitions
are systematically hindered [20], we have chosen the WBTM
solution for the mixing. The very weak GT matrix element
will be fine-tuned later by using the experimental logitift
value.

Secondly, we explicitly consider the effect of 2A, ~ admix-
tures into the OIi, co Op-shell wave function. It is technically
straightforward to carry out calculations which include
2Itcu and even 4A, to admixtures [21].However, such calcu-
lations are not fully appropriate because the 2A, co and 4fico
admixtures will effectively modify the Op-shell part of the
WBT interaction (which was obtained under the assumption
of pure OA to configurations). The task of redetermining the
appropriate effective interaction to be used in the mixed
space has not yet been carried out. Thus we consider the
2Ii, ~ admixture in perturbation theory where its effect on the
transition can be isolated from its effect on the interaction.
The perturbed wave function has the general form

a~Ofico)+ b~ Ip lb;2fitu), (22)

where ~Ofito) represents the WBTM Op-shell wave func-
tions, and 1p 1 h indicates a one-particle one-hole excitation
relative to the Op-shell configuration. This includes the ex-
citation of Os to Odls and Op to Of 1p First-order .pertur-
bation theory accounts for terms of order b/a neglecting the
small (bla) contributions. The 2p2h;2fico admixtures do
not affect the transition matrix element to first order because
the one-body operator cannot connect OpOh (the Op wave
function) with 2p 2 &;2fi, to. The effect of 1p 1 h and
2p2h;2Ii, co on the Op-shell effective Hamiltonian is implic-
itly taken into account by the WBT interaction and its modi-
fication to WBTM. Such perturbation calculations for the F2
matrix elements (r I' ), are well established [22,23] and
show that Ip 1 h;2fi, to admixtures (the giant quadrupole reso-
nance) greatly enhance the E2 transition strength. For our
perturbation calculations we use the 8-function interaction of
Ref. [22].We find that these Ip 1 h;2fit0 admixtures have an

important effect on the shape of the isovector M1 form fac-
tors. The result for the ' C M1 transition is to bring the first
maximum and first minimum in the form factor into much
better agreement with experiment compared to a pure Op
calculation [24]. The effect on the ' N M 1 transition is to
quench the form factor at its peak. When B(M 1, q) is plotted
as in Fig. 1 the effect of 2Ii, cu admixtures is to reduce the
slope. We will come back to discussing this figure in Sec. V.
The 2ftco admixtures have no effect on the B(Ml) and
B(GT) values because the matrix element terms proportional
to ab vanish. The results in which WBTM are modified by
the addition of 2fi, co admixtures are referred to as WBTM2.

We have also examined other properties of the ' N
ground state. The transverse elastic electron scattering data
are well reproduced with WBTM and WBTM2. The calcu-
lated magnetic moments are 0.340p,z and 0.312p,z for WBT
and WBTM (and WBTM2), respectively. Using the relations
p, = g i(L,) +g, (S,) and J= (L,) + (S,), where the expecta-

6.0

4.0

E

2.0

C)
C)

0.0
0.0

I

0.2
I

04
I

0.6

q.„(fm )

FIG. 1. Comparison of measurements of inelastic scattering
cross section to our fits. We have plotted the points using q,«as
defined in the text. The factor exp( —d) represents the center-of-
mass and single-nucleon-form-factor corrections. The data are from
Huffman et al. [27] (squares), Ensslin et al. [28] (circles), and Genz
et al. [13] (diamonds). The point at q =0 corresponds to a width

for the M1 transition of 6.7~0.3 meV. The curves correspond to the
values of the V matrix elements shown in Table II, except for
WBTM2, for which we have made plots both including (long
dashed) and not including (short dashed) the q contributions from
"2fi,cu" admixtures.

tion values are taken in the M= J substate and where
gh= 0.5 and g, =0.880 are the isoscalar g factors, the isosca-
lar moment can be used to obtain the (S,) expectation value

[25]. The results for the ' N ground state are —0.25,
—0.42, and —0.49 for experiment, WBT, and WBTM, re-
spectively. One observes a quenching of the (S,) value
which is consistent with that for the A = 15, T= 1/2 ground
state isoscalar moment (the average of the mirror moments)
which is —0.084 and —0.166 for experiment and Op&&2,

respectively —the Op-shell model for A=15, T=1/2 is a
pure Op»2 single-particle state and this should be compared
on the same footing with the WBTM (or WBT) result for
A=14. The particular higher-order mixing which affects
these isoscalar observables is not relevant for the isovector
quantities which are needed in the P decay. The calculated
quadrupole moments are 1.19, 0.92, and 1.57 e fm for
WBT, WBTM, and WBTM2, respectively. The first two are
obtained with free-nucleon effective charges and the last one
includes the standard effective changes of e =1.35 and
e„=0.35 which result from the 2fito admixtures [26]. The
WBTM2 value of Q agrees with the experimental Q moment
of 1.6e fm .

Regarding the spectroscopic factors, the values calculated
with the WBT wave functions for ' N to ' N are
C S(psi2, Jf =1+)=0.146, C S(p»2, Jf =1+)=1.22, and

C S(p»2, Jf =0+)=0.45, in very good agreement with ex-
perimental values of 0.10~0.08, 1.24~ 0.09, and
0.47~0.01, respectively, obtained from the ' N(d, t)' N re-
action [27]. In contrast, Genz et al. obtain 0.187 for
C S(p,&2,Jf"=0+). The effect of mixing the 1+ states by
the amount given by Eq. (18) has a negligible effect on these
spectroscopic factors.
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I
I+»w) = o 998711)+o 0509712) (23)

The results for WBTOBM are given in Table III. We observe
that the V& matrix element can vary so that

Vt(P )/V& (P+)= —1. This is very different than the square
root of the ratio of B(GT)'s which is about 7. However, as
we pointed out before, given the high suppression of the GT
matrix element one has to take into account other terms in
calculating the ft values. We will show later that a ratio of
the (o.) matrix elements of = —4 would yield a ratio of
B(GT)'s in agreement with experiment. We speculate that
the difference between our prediction and measurement is
due to further modifications due to the renormalization of the
axial operators. However, one should keep in mind that this
large relative asymmetry in the GT matrix element implies
variations of about 2% in the "magnetic" matrix element.
We will come back to this point later. Other quantities also

B. Effects of charge-symmetry breaking

The effects of charge-symmetry breaking are traditionally
broken down into two corrections, (1) the "isospin mixing"
correction 6&M which takes into account the change in the
model-space wave functions due to the presence of Coulomb
and isospin nonconserving (INC) nuclear interactions and (2)
the "radial overlap" correction BRO which takes into account
the difference between the proton and neutron radial wave
functions between the initial and final states. Both correc-
tions are due to INC interactions (Coulomb and nuclear) but

(1) takes into account mixing inside the Op model space and

(2) takes into account mixing beyond the Op model space. In
Ref. [28] these INC effects were calculated for the ' 0
Fermi P decay and we will use the same procedures here.

We first consider the IM correction by adding onto the
isospin conserving WBT interaction the isospin nonconserv-
ing (INC) interaction of Ormand and Brown [28]. This INC
interaction is made up of Coulomb, charge-asymmetric, and
charge-dependent components whose strengths were ob-
tained from the displacement energies observed for the ana-
log states in the Op shell. The results for WBTOB are given
in Table III.

There is a small shift in the values from WBT due the fact
that the Coulomb interaction contains a small isospin con-
serving (isoscalar) part which adds to the WBT interaction.
In addition there is now some dependence on T, due to a
change in the 0+ wave functions. The (p„2),(p3/2)
probabilities for ' 0, ' N, and ' C are (0.899, 0.101),
(0.906, 0.095), and (0.918, 0.081), respectively.

The overlap of the ' 0 and ' N configurations gives a
correction of less than 0.01% for the Fermi matrix element
and is consistent with the results given in Ref. [28].We note
again that the correction of 1.3% obtained with Genz et al. 's

wave functions is unrealistic —the total mismatch correction
expected from universality and unitarity [16] is about 0.5%
percent, and is expected to be dominated by the charge de-
pendence of the nucleonic binding energies, and not by the
configuration mixing for which Genz et al. 's wave functions
yield 1.3%.

In order to see to what extent the variations in the ex-
tremely forbidden GT matrix elements can be accounted for,
we again remix the ' N 1+ wave functions in order to get an
arbitrarily small value for ' C. The mix this time is

TABLE IV. Expected variations on matrix elements V's due to
INC effects: radial overlaps.

14C 14N 14O

V1

V2

V3

V4

(P ~
—P„)V, / +2+ V3

'

—0.0035
—1.1080
—0.4287
—0.2029
—0.4403

—0.0015
—1.1061
—0.4471
—0.1947
—0.4521

—0.0009
—1.0963
—0.4462
—0.1881
—0.4492

"'Magnetic" matrix element: proportional to the Ml matrix ele-
ment in the y decay, and to the WM matrix element in the P decay.

V. FINE ADJUSTMENTS OF MATRIX ELEMENTS
TO FIT DATA

We will now discuss the modifications in the matrix ele-
ments which are needed to obtain a better fit of experimental
data. Our approach is to try to fix only the matrix elements
needed for the calculation of the shape factor by a minimal
adjustment which is required to obtain agreement with ex-
perimental data.

We will use the WBTM2 wave functions discussed above
to calculate the value of V2 and V4. The calculations of the
matrix elements necessary for P decay were performed in the
formalism of Holstein [15],which we show in Table V, and
then translated according to the recipes shown in Appendix
B. We note (see also Table II) that our value for the relative
sign of d

&
and b differs from that obtained by Genz. We have

checked our sign convention against three previous calcula-
tions for other mass systems [29—31].We also calculated the
V matrix elements in LS coupling and obtained agreement
with Genz et al. except in the sign of V4. In our calculation
we included a ( —) s+' sign change due to the translation
from "particles" to "holes. "

Following, we fix Vt( y), V", (p ), and V3 requiring
agreement with the width of the M1 transition, the inelastic
scattering ' N(e, e') data, and the P log ft. We use the
following relations.

(1) The width of the M 1 transition is related to the vector
form factor by

exhibit some T, dependence but the change is small com-
pared to the larger variation found, for example, from the
remixing of the 1+ states.

We consider the radial overlap correction by redoing the
WBTOBM calculation, replacing the harmonic-oscillator ra-
dial wave functions with those obtained from the SGII
Skyrme Hartree-Fock calculation [28].The results are shown
in Table IV. The results for ' 0 and ' C use the overlaps
obtained with the proton radial wave function on one side
and the neutron radial wave function on the other side of the
matrix elements, while the results for ' N use the overlaps
with the same radial wave functions on both sides.

We note some increase (relative to the harmonic-oscillator
results) for the Vz matrix element which depends upon the
r radial matrix element. However, the change is relatively
small compared to that obtained from the 2fi, co core polar-
ization. There are further changes in the V& matrix element
which are again consistent with experiment. The radial over-
lap effect on V3 and V4 is small.
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TABLE V. Results of the calculation of A = 14 matrix elements.

Definition '

c, =zMGTH

H
c2 = —[M „2+(I/~10)Mty]

(gMMoT+ g vMs. )
di = RAM~I,

h = —(2/v10)(MA) XM, /(A. c) AgpM—oT

h, = —(2/ V 10)(MA) k M, y /(6c)

WBT

—1.8110
7.47x10 '

—2.36x 10'
1.35x 10

—5.18x 10'
—5.05x 104

WBTM

1.3610
1.14

—9.04
1.02x 10'

—4.65x 104
—5.12x 10"

WBTM2

1.3610
5.99x 10

—9.04
1.02x 10

—1.61x 104
—2.08x 104

'We use k=1.25; g~=4.7; gp= —(2M„/m ) k= —222, related to f„used with Behrens and Janecke
notation by f„=gp /2M; M„=938.9 MeV and M =931.5 MeV.

( 3~3 Ze'
q,ff= q 1+

2F~ 4(")~.
'F'„,= $9r, /(~B'Z', ) (24)

(29)

where we use r ~= 6.7~0.3 meV, from Ref. [32].Taking into
account the third equation in Appendix A, this equation
translates to to account for the distortion of the electron wave by the

Coulomb field of the nucleus [36]. Here Eo indicates the
beam energy and (r ) the mean square radius. Also, in Fig. 1

we have divided the experimental data by the center-of-mass
and single-nucleon-form-factor corrections. Although Eq.
(27) is complete in a Op-shell calculation, there are addi-
tional contributions from outside the Op shell, that come to
order q and become important as q gets larger. For that
reason, we have only used electron scattering data with

q ~0.6 fm . In Fig. 2 we show the electron scattering data
up to higher momentum transfers. We plot the WBTM2 re-
sults both with and without the q contributions. Because
these q contributions do affect the slope even at

q ~0.6 fm by about 15%, as can be seen in Fig. 1, our
number in the right hand side of Eq. (28) has been decreased
from the best fit of —0.497~ 0.007 by 15%.

(3) The ft value is given by

V i ( y) + U&
~

= 0.256~ 0.006.
2

(25)

(2) The inelastic scattering cross section is proportional to

R
u'B(MI q)= F»i(q ) (26)

where R is the nuclear radius and

(

F», (q ) = —(/J;„p,„)V, (y)/Q2 —V—s+ (/J„p,„)—
X[V,(y) —V,] z 'exp( —z —d) (27)

is the form factor [33], and z= (qb/2), with the oscillator
parameter b=1.7 fm; the term exp( —d) accounts for the
center-of-mass and single-nucleon-form-factor corrections,
with d = q (a„—b /A)/4, and a„=0.43 fm [34,35].

The first term gives the M1 width that we used in the
previous item, and the term dependent on q gives the con-
dition

60.0

50.0—

40.0

6170

CQC(W, )
(30)

i

—V, (y)+ V2~ =0.422 0.006 (28)

where the expression contained within the absolute value
bars has to have the same sign as the expression inside the
absolute bars of Eq. (25). This sign arrangement is the only
way of getting agreement with the width of the M1 transition
and the inelastic scattering data simultaneously as can be
seen from Eq. (27). The numbers and errors in the right side
of Eqs. (25) and (28) were obtained from a y fit to the
inelastic scattering plus B(M 1) data shown in Fig. 1, with a
correction to the number in Eq. (28) that we explain below.
We also show the predictions of the WBT, WBTM, and
WBTM2 wave functions. We translated the momentum
transfer into q,ff using the following equation:

E
30.0—

CQ 20.0
Ioo 10.0

0.0
0.0

I

2.0
I

4.0 6.0

q.„(fm )

FIG. 2. Same as Fig. 1, but including larger values of q to show
the effects of q contributions.
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TABLE VI. Calculated parameters for shape of p spectra with V2 and V4 from shell-model calculation;
Vi's and V3 fitted to reproduce experiment, assuming V, (p )= V", (p ).

V2 and V4 from V, (P ) Vi(y) (WM)/(M I ) P (MeV ')
' C(WBTM2)
'4C(WBT)
' C(WBTM)
' O(WBTM2)
' O(WBT)
' O(WBTM)

0.0016
—0.0034
—0.0033
—0.0077

0.0063
0.0063

0.0470 —0.3750
—0.4886 -0.9106
—0.5012 —0.9232

0.0470 —0.3750
-0.4886 -0.9106
—0.5012 —0.9232

—0.4111
1.3687
1.4160

—0.4111
1.3686
1.4105

—0.1683
—0.2227
—0.1683
—0.1683
—0.2227
—0.1683

1.5904
—5.3235
—5.4880

1.7121
—5.4481
—5.6116

—0.497
—1.176
—1.179
—0.079
—0.147
—0.151

'From shell-model calculation.
We calculated the shape factor with the values obtained for a, b, and c, according to the last equation of

Appendix A, and then obtained the best straight line that fitted it. This column is the ratio of the slope to the

value at zero energy.

Co and C(W, ) are given in Appendix A in terms of
Vi, V2, Vs, and V4. We use logio ft=9.04 for ' C, and

Iogto ft=7.27 for ' O.
It is important to use the measured log ft to determine the

GT matrix element because, as we mentioned before, small
variations in the wave functions produce large changes in it,
and consequently in the estimated shape of the P spectra. For
example, Genz et al. 's wave functions give log, o ft=9.48 vs
a measured logto ft=9.04. Although this discrepancy of a
factor of 2.5 in the decay rate does not translate with power
1/2 into the shape factor as one could naively expect from
Eq. (2) [37] due to the relative importance of higher-order
terms, it does have a 10% effect.

Vi is the matrix element of the tr operator. The P-decay
matrix element depends upon a linear combimation of opera-
tors some of which originate from vector currents (such as

F»& in Appendix A) and some of which originate from
axial currents (such as "F,o, in Appendix A). The o. opera-
tors originating from these two cases are labeled V, (P) and

Vi(P), respectively. The conservation of the vector current

hypothesis relates V, (P) to Vi(y). However, if the operator
is axial, there can be renormalization effects from mesonic
exchange currents and Vt(P) is in general not equal to

V, (P). In view of the high sensitivity of V, to small varia-
tions in the wave functions, and given the effect of exchange
currents, we let V& take different values for the axial and
vector currents in the P decay. Moreover, because we expect
charge symmetry breaking, we should allow the vector Vi
matrix element to have different values in the P, y, and
P+ decays. Assuming charge-symmetry for the matrix ele-
ments that do not have a special suppression (V2, V3, V4) we

have a total of eight matrix elements to fit:

V, (P ), V, (y), V", (P ),V2, V3, and Vq. Because we have

only six observables, namely, the log ft's, two observables
from electron scattering, and the P shape factors, we follow
two alternative paths.

(1) We assume axial and vector matrix elements to be
equal, V", (P ) = V, (P ) = Vi(P ), but let Vi(y) vary in-

dependently.
(2) We assume the vector matrix elements to be equal,

Vi(P )= Vi(y)= Vi, but let Vi(P ) vary independently.
Our option (1) follows the lines of the work of Genz et al.
but, knowing the significant modifications that axial currents
are subjected to in the nuclear medium and based on our
estimates for charge-symmetry breaking from Sec. IV B, we
believe our option (2) should be more accurate. For either of
the options we have six matrix elements to fit: (1)
Vi(p ), Vi( y), V2, Vs, V4; (2) V, , V", (p ),V2, V3, V4. In
both cases we take only the solutions yielding negative
slopes for both the P and P+ decays, because experiment
indicates this is the case.

A. Calculation assuming V, (P ) = V, (P )

We now calculate the shape of the P spectra assuming
V", (P ) = V, (P ). We first fix the values of V2 and V4 us-

ing our shell-model calculation. Next we use Eq. (28) to get
the value of V, (y), and then Eq. (25) to fix the value of
V3 Finally, we fix the values of Vi (P ) that satisfy Eq.
(3o)

The results are shown in Table VI. The C(W, ) factors do
not deviate from a straight line significantly so we have cal-

TABLE VII. Arbitrary values for V2', V4 from WBTM2; assuming V, (p ) = Vi(p ).

Vt(P )

0.0011
0.0013
0.0015
0.0018
0.0020
0.0022

v (y)

—0.0780
—0.0280

0.0220
0.0720
0.1220
0.1720

Vi(P+)

—0.0083
—0.0080
—0.0078
—0.0076
—0.0073
—0,0071

V2'

—0.5000
—0.4500
—0.4000
—0.3500
—0.3000
—0.2500

0.0042
—0.1619
—0.3281
—0.4943
—0.6605
—0.8266

V b

—0.1683
—0.1683
—0.1683
—0.1683
—0.1683
—0.1683

P(14C)

—0.041
—0.265
—0.430
—0.556
—0.654
—0.733

P(14O)

—0.017
—0.045
—0.069
—0.090
—0.108
—0.124

'Arbitrarily fixed to this value.
"From WBTM2 shell-model calculation.
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TABLE VIII. Similar to Table VI, but assuming V, (p ) = V, (y).

Vz and V4 from VA
1

Vv
1

a V (WM)/(M 1) p (MeV ') b

' C(WBTM2)
' C(WBT)
'4C(WBTM)
140(WBTM2)
"O(WBT)

O(WBTM)

0.0015
0.0007
0.0008

—0.0079
—0.0087
—0.0087

0.0470
—0.4886
—0.5012

0.0470
—0.4886
—0.5012

—0.3750
—0.9106
—0.9232
—0.3750
—0.9106
—0.9232

—0.4111
1.3687
1.4106

—0.4111
1.3687
1.4106

—0.1683
—0.2227
—0.1683
—0.1683
—0.2227
-0.1683

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

—0.363
—0.413
—0.418
—0.054
—0.065
—0.064

'From shell-model calculation.
We calculated the shape factor with the values obtained for a, b, and c, according to the last equation of

Appendix A, and then obtained the best straight line that fitted it. This column is the ratio of the slope to the
value at zero energy.

culated the values for c and s such that C(W, ) =c+ s W, has
the minimum y deviation from the calculated shape and we

give the value P= s/c. In order to give an idea of the model
dependence we also present in Table VII the results of taking
only V4 from the shell-model calculations and a variety of
arbitrary values for Vz. The contour plots in Fig. 3 are meant
to exhibit the dependence of the ' C shape factor on both
V& and V4. Similar percentual deviations are observed for
14O

We observe in this case a high sensitivity of the shape
factor with respect to Vz. The reason is that, given a value of
Vz, Eq. (28) determines the value of V&(y), and Eq. (25) the
value of V3. In this case the weak-magnetism matrix ele-
ment grows apart from the electro-magnetic M1 matrix ele-
ment, because there is no direct constraint between these
two. This means that a "wrong" value for V& will yield
wrong values for the shape factors. We have seen in Sec.
IV A how sensitive Vz is to "26co" contributions:
Vz = —0.9 for WBT and WBTM, while Vz = —0.4 for
WBTM2. En other words, it is clear that using a 06~ space
calculation together with equating the axial and vector (cr)
matrix elements can yield very unreliable results. This is why
Genz et aI. get high values for the shape factors-
P= —0.67 MeV ' for ' C, and P= —0.10 MeV ' for
' 0, and a value for the ratio (WM)/(M 1) of = 1.7 for both
the P+ and P decays.

Although we observe a large model dependence of the
shape factors, the relationship between the p and p+ shape
factors is well determined, as we show in Fig. 4, so that,
even in this case, there is a clear constraint between the
shape factors that originates in CVC.

B. Calculation assuming Vt( y) = Vt (P )

We note that our charge-symmetry-breaking calculations
of Sec. IV B indicate (see Tables III and IV) that one should
expect variations is the "magnetic" matrix element,

(p,„—p,„)V, /+2+ V3, of about 2% due to isospin mixing
effects and of about 3% due to radial overlap differences.
These are much smaller than the variations we observe in the
seventh column of Table VI. So we use now an alternative
procedure that guarantees the variations of the vector part of
V& to be zero: we assume V&(y) = V, (p ). This is not an
exact representation of what we believe is happening, but it
is more faithful than the previous assumption. We first fix, as
we did previously, the values of Vz and V4 using our shell-
model calculation. Next we use Eq. (28) to get the value of
V, = Vt( y), and then Eq. (25) to fix the value of Vs . Finally,
we fix the values of V", (p ) that satisfy Eq. 30.

-0.04

-0.10-

y4 -0.15-

-0.20

-0.5
-0.6

-0.7

L0
V
c5I
CL
6$

lfJ

0

-0.06

-0.08

-0.10

-0.12

-0.14
-0.80

I

-0.70
I

-0.60
I

-0.50
I

-0.40 -0.30

-0.25
-0.50

I

-0.45
I

-0.40
I

-0.35
I

-0.30 -0.25
C shape factor

V2

FIG. 3. Contour plots of constant shape factor (in MeV ') for
' C vs Vq and V4 assuming V", (P )= V, (P )4 V, (y).

FIG. 4. Value of the shape factor in '"0 vs the shape factor in
' C assuming V", (p )=V, (p )4V, (y). Under these conditions
we observe a high model dependence of the shape factors, but the
relationship between the p and p+ shape factors is well deter-
mined.
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TABLE IX. Arbitrary values for V2, V4 from WBTM2; assuming Vi (P ) = V, (y).

V, (P ) yV
1

V", (P+) V3 y b
P( C) p( 14p)

0.0013
0.0014
0.0015
0,0015
0.0016
0.0017

—0.0780
—0.0280

0.0220
0.720
0.1220
0.1720

—0.0080
—0.0080
—0.0079
—0.0078
—0.0077
—0.0077

—0.5000
—0.4500
—0.4000
—0.3500
—0.3000
—0.2500

0.0042
—0.1619
—0.3281
—0.4943
—0.6604
—0.8266

—0.1683
—0.1683
—0.1683
—0.1683
—0.1683
—0.1683

—0.376
—0.371
—0.366
—0.361
—0.356
—0.351

—0.056
—0.055
—0.054
—0.053
—0.052
—0.051

'Arbitrarily fixed to this value.
From WBTM2 shell-model calculation.

Tables VIII and IX are similar to the ones presented in the
previous section, but now we observe a much smaller model
dependence, because the shape of the p spectra is now fixed
by the CVC constraint. This can also be seen, for ' C, in the
contour plot of Fig. 5. Similar percentual variations are ob-
served for ' O.

We note that the ratio of the values for V", for p+ and

p decays that yields agreement with the measured log ft's
is only about 4 to 5 as opposed to the square root of the ratio
of the measured ft values. This is due to the fact that terms
other than the GT matrix element contribute significantly to
the half-life.

VI. CONCLUSIONS

-0.10

V4 -0.15

-0.20

-0.25
-0.50

I

-0.45
I

-0.40

V2

I

-0.35
I

-0.30 -0.25

FIG. 5. Contour plots of constant shape factor (in MeV ') for
' C vs V2 and V4 assuming V, (P ) = V, (y) 4 V", (P ).

We have calculated the shape of the p spectra in the
A=14 system. Our goal was to find out whether second-
order and charge-symmetry-breaking effects could somehow
be enhanced in this system due to the special cancellation
that is observed in the GT matrix element and whether this
would imply big deviations from the naive CVC expecta-
tions. We have first taken the wave functions obtained with
the Op-shell part of the WBT Hamiltonian and added a small
mixing between the two lowest 1+ states to obtain good
agreement with the measured width of the M1 transition. We
have further added "2fi,~" contributions and obtained agree-
ment with the ' N(e, e') data without fitting any parameters.
These wave functions (WBTM2) cannot account on their

own for the big ft asymmetry observed in the A = 14 system.
The reason is that one has to further take into account pos-
sible renormalizations of the axial operators and charge-
symmetry-breaking effects. We have done this by indepe-
dently "fitting" the axial matrix elements so as to obtain
agreement with the corresponding log ft values. Here we
have followed two alternative paths. On the one hand, we
have shown that assuming the axial and vector (o) matrix
elements to be equal, as was done previously by Genz et al.
can lead to a very large charge-symmetry-breaking effect on
the magnetic matrix element. The reason is a combination of
a lack of enough degrees of freedom in their shell-model
calculation, and the fact that the asymmetries in the axial
(o.) matrix element translate to asymmetries in the vector
magnetic matrix element. Next we have noted that our
charge-symmetry-breaking calculations indicate that the M1
matrix element is not likely to have differences between the
decays of ' 0, ' N*, and ' C beyond the 4% level. We note
that the "big" observed ft asymmetries imply big asymme-
tries relative to the size of the GT matrix element, but not
with respect to the M1 matrix element. So we have per-
formed a different calculation assuming this vector matrix
element to have the same value in all three decays. We see
the ft asymmetries as arising from a combination of a renor-
malization of the GT operator that does not affect the vector
operator, plus charge-symmetry-breaking effects. So our
main conclusion is that, with respect to the magnetic matrix
element, one should not expect very large charge-symmetry-
breaking effects in the A =14 system Our calcul. ation
indicates that the shape factors should be
P(' C) = —0.37~0.04 and P(' 0) = —0.055~0.005 where
the error bars are supposed to give an idea of our rough
estimation of model dependence and are dominated by the
uncertainty in the charge-symmetry breaking of the vector
matrix elements U, and U3.

Present data in ' 0 favor a large-shape-factor solution.
Sidhu and Gerhart [12] obtained 30 years ago
p= —0.110~0.005 MeV '. Measurements of the shape fac-
tor of ' C are being undertaken presently. Reference [38]
finds P= —0.45~0.04 MeV '. As can be seen from Tables
Ix or even VII this implies a value for the ' 0 shape factor
in strong disagreement with the measurement of Sidhu and
Gerhart [12].However, the authors of Ref. [38] point out that
there could be some systematic problems in this measure-
ment. Data from other experiments are still under progress
[39—41]. A new measurement of the ' 0 shape factor with
special attention to possible systematic errors is highly desir-
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able. We stress the fact that the present accepted value for the
shape factor of ' 0 cannot be understood simply on the basis
of INC effects. Moreover, if it is true, as we are suggesting,
that the measurement of Sidhu and Gerhart had some sys-
tematic problems, this would affect the value presently ac-
cepted for the branch to the 0+ analog level in ' N, and
could significantly change the conclusions extracted from
0+ —+0+ transitions regarding universality and unitarity.

In summary, we have calculated the shape factors for the

P decay in the A = 14 system and shown that they should be
related by CVC at the 10% level.
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APPENDIX A

"F)2)=~X5

The form factor coefficients can be written in terms of the V factors presented in Eqs. (9)—(12) as [13]

Fioi= ~)i. +3V V2~ —Q2 ~ Vi, F111
= — [(p~ —p,„)Vi /+2+ V3],

3 f„( 6 l ( —3Q3l

)(
5+3) bl f„(—3l

101 2 R 1 R MR 1
) ( )

I(1,1,1,1) l 0.823 046 f„QP 0.095 968 —1.525 276

I(2, 1,1,1) 0.789 061 R 3 0.111 351 —1.413 945
'

I 1 1
F„,[I(1,1,1,1)]= —V30.249 939 +2[—V, 3.515 985+ V2( —0.379 335)]— Vi( —0.823 046),

2 MR

"F»0[I(1,1,1,1)]= ~ )i. V40.249 939~— WoR ~ —uZ [P5V20 014 577+.Vi( 0 338 465)1.

' I( 1,1,1,1)

I(1,2,2,2)
AF1

I(1,2,2, 1)

, I( 1,2, 1,1)

0.823 046 ' 0.052 235 ' —0.509 881

1.174 618 —0.675 066

, —0.060 537 0.015 385 0.111 352

1 f 0.087 325

0.883 583 3 R 0.036 848 ' —0.621 254

With these one can calculate

1
Co= F&0]+ WpRA 0

3
0F»0+ Fiii + (Wp 1)R Fipi — cl'Z Fiip( 1~1~1~1)

F111(1,1,1,1)+ —WiiR[ —"F1111(1,1,1, 1)+ 2 +2"F121(1,1,1,1)] + —( nZ) "F101(1,2,2,2),

2
Ci= ——

3 Fiii+ 27 W11R[—5 Fipi+ Q2"F121] 3
uZ —"Flpl(1, 1,1,1)——Q2"F,21(l,1,l, l)+"Flpi(1,2,2,1),

10~ t 2

27 Fioi 27+

1
Do= ——

3
0F&io+ F„,+ 27 [—"F',0, +2&2"F121]~

6 Floi(1,2, 1,1),
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1 11„4
D =— "F—— Q—2"F

1 18 3 101 3 121

Fp= 0
F11O+ V 0 W 0 t W 1 W 0Fttt WpR Ftz~ crZ g2 Flpt(1, 1,1,1) Ft~t(1, 1,1, 1)

0
F11o

1 0Fttt ——WpR[2+2"FIpt+ "Ftqt]
5

crZ"Ftqt(2, 1,1,1).

These coefficients are now used to calculate the shape pa-
rameters:

2
a=R 2CoC1+2RDoD1 —W0REo /Co,9

b= —2RDplCp,

1
c =R Ct+ 2CpCp+ —(Ep+ kzFp]/Cp.9

H1
V1= c1,

3P

( fic
V = hH

3)t, ~aMA
(B2)

The shape factor is

C(W, ) = 1+a W, + p t ytb/W, + c W, . (Al)

1
H PP PnV3= ~b — ~ Vt, (I33)

APPENDIX 8

We translate the matrix elements from Holstein's notation
to the V matrix elements using the results of Table III of Ref.
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2 +3XA
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