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Exchange current corrections to neutrino-nucleus scattering. I. Nuclear matter
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Relativistic exchange current corrections to the impulse approximation in low and intermediate energy
neutrino-nucleus scattering are presented assuming nonvanishing strange quark form factors for constituent
nucleons. Two-body exchange current operators which treat all SU(3) vector and axial currents on an equal
footing are constructed by generalizing the soft-pion dominance method of Chemtob and Rho. For charged
current reactions, exchange current corrections can reduce the impulse approximation results by 5 to 10%
depending on the nuclear density. A finite strange quark form factor may change the total cross section for
neutral current scattering by 20% while exchange current corrections are found to be sensitive to the nuclear
density. Implications on the current LSND experiment to extract the strange quark axial form factor of the
nucleon are discussed.
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I. INTRODUCTION

The existence of two-body meson exchange currents
(MEC's) in electromagnetic and weak axial interactions in
nuclei has by now been firmly established [1—3]. In the elec-
tromagnetic sector the need for two-body currents has been
realized even before the discovery of the pion by Siegert in
1937 through his consideration of vector current conserva-
tion [4]. However, it took almost 35 years before the first
solid quantitative evidence for MEC was discovered when
the 10% discrepancy between theory and experiment in the
threshold radiative np capture rates was remedied in terms of
one-pion exchange current correction [5]. The explanation
soon after of the cross section for the inverse reaction, the
electrodisintegration of the deuteron, in terms of MEC [6]
left little doubt of the important role that two-body currents
play in electromagnetic interactions of the deuteron. For
larger nuclei, it is well known that effects of MEC are best
found in low and intermediate energy magnetic isovector
processes. These two-body currents play important roles in
realistic descriptions of diverse nuclear phenomena such as
the renormalization of orbital g factors, Bgt [7], magnetic
form factors of light p-shell nuclei [8], transverse (e,e')
response functions in the dip region [9—11] and cross sec-
tions for electromagnetically induced two-nucleon emission
reactions [12].

The role of MEC in weak axial transitions in nuclei has
been investigated by Kubodera, Delorme, and Rho [13]who
predicted a large renormalization of axial charge due to two-
body currents. An ideal place to test their prediction is in the
first-order forbidden P decays whose transition amplitude
involves a cancellation between time and space components
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of the one-body nucleon current, thus making it sensitive to
two-body MEC effects. Indeed, Guichon, Giffon, and
Samour [14] found that the impulse approximation predic-
tion of the ratio of p, capture to P-decay rates for the
0+~0 transition between ' 0 and ' N was a factor of 2
larger than the measured value. This large discrepancy dis-
appeared when they included two-body MEC corrections to
the impulse approximation. In addition, recent shell model
analysis of first forbidden P-decay rates covering a wide
range of nuclei [15—17] indicates a substantial exchange cur-
rent contribution to the renormalization of weak axial charge
in nuclear medium, thus confirming the prediction of Ku-
bodera, Delorme, and Rho. These solid empirical evidences
of two-body currents in electromagnetic and weak axial pro-
cesses in low and intermediate energy nuclear phenomena
strongly motivate to investigate whether charged and neutral
currents, where both vector and axial currents are involved,
are also subject to renormalizations in nuclei due to MEC.

Another reason to study MEC effects in low and interme-
diate energy neutrino-nucleus scattering is that it has been
receiving increasing attention as a means to measure the
strangeness matrix elements of the nucleon [18—25]. The
measurement of polarized structure function g &

and the ex-
traction of the sum rule suggested the possibility of a rather
large strange quark axial matrix element for the proton lead-
ing to the so-called "spin crisis" [26]. Although there are
numerous works attempting to understand the role of hidden
fiavor in nucleons [27], the situation regarding the strange-
ness degrees of freedom in the nucleon is far from clear and
it is hoped that neutral current neutrino-nucleus interactions
might be able to shed a new light into this problem [28].

For example, Garvey et al. pointed out that the ratio of
proton-to-neutron yield in quasielastic neutral current
neutrino-nucleus scattering, hereafter denoted by
R(p/n) —= cr(v, v'p)/tr( v, v'n), is an observable that is sen-
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sitive to the strange axial form factor of the nucleon [22,24].
This ratio is currently being measured in the LSND experi-
ment at Los Alamos [22]. In their work Garvey et al. calcu-
lated R(p/n) within a nonrelativistic random phase approxi-
mation (RPA) framework using the impulse approximation
and later included the effects of final state interactions expe-
rienced by the ejected nucleon with a continuum RPA for-
malism [24]. This correction was found to have about 30%
effect on individual neutrino-nucleus cross sections but can-
celled out in the ratio of proton-to-neutron yields. A similar
calculation by Horowitz er al. [25] using a relativistic Fermi
gas (RFG) model in the impulse approximation did not in-
clude the final state interactions but the resulting R(p/n) was
found to be similar to that of Garvey et al. However, in order
to extract strangeness matrix elements of the nucleon from
neutral current neutrino-nucleus scattering it is necessary to
investigate the reliability of calculating the cross sections for
this process by assuming finite strange quark form factors for
the constituent nucleons. Previously, neutral and charged cur-
rent neutrino-nucleus scattering have been investigated be-
yond the impulse approximation in [29] but without strange
quark form factors and MEC corrections. In addition, this
and other proposals [20,21] to extract strange quark form
factors of the nucleon from neutrino-nucleus scattering in-
volves kinematics ranging from low energy inelastic scatter-
ing to the quasielastic region. Experience from electron scat-
tering suggests that MEC corrections to neutrino-nucleus
cross sections in this kinematic range might be important.

The same LSND collaboration has recently announced
their measurement of the cross section for the inclusive
charged current reaction ' C(v —,p, )X near threshold [30]
which is significantly lower than existing model predictions.
This discrepancy is in some cases more than 100% [31]and
it is conjectured that nuclear effects which are. important in
low-energy neutrino-nucleus interactions have been left out
in these model calculations. One such effect is the MEC
corrections to the impulse approximation and it is therefore
interesting to explore whether two-body corrections to the
one-body nucleon current will help to remedy this recently
observed discrepancy.

Previously, MEC corrections have been investigated only
in neutrino-deuteron reactions using nonrelativistic kinemat-
ics and without assuming any strange quark form factors
[32—35]. In a recent work [36] a method to construct relativ-
istic MEC operators applicable to neutrino-nucleus scattering
was presented taking into account the possible finite strange
quark form factors of nucleons. This method treats all the
SU(3) currents on the same footing and thus is able to esti-
mate MEC corrections to electromagnetic as well as neutral
and charged current processes simultaneously. It is also
model independent in the sense that no underlying nucleon-
nucleon interaction needs to be specified in order to construct
the MEC operators. In this paper details of the method are
presented together with examples of the use of the resulting
MEC operators in electron and neutrino scatterings assuming
nuclear matter and using the kinematics of the on-going
LSND experiment. The focus of this paper is to investigate
only the effects of exchange currents, and therefore a simple
RFG model is used to model the target nucleus. In order to
make a more realistic comparison with experiment additional
nuclear effects must be incorporated in the description of the

neutrino-nucleus scattering process. These effects will be
considered in a forthcoming paper [37].

In the following section the problem is defined and em-
pirical and theoretical motivations are presented for the use
of the method originally developed by Chemtob and Rho to
construct MEC operators [39].Their formalism is then gen-
eralized to take into account finite strange quark form factors
and advantages of using the generalized method and assump-
tions made in constructing the MEC operators are discussed.
Section III illustrates the usefulness of the generalized opera-
tors by evaluating two-body MEC corrections to quasielastic
electron scattering as well as Tz neutral and charged current
neutrino scattering reactions. Finally, the results are summa-
rized in the concluding section accompanied by Appendices
which present all the necessary formalism needed to evaluate
the nuclear response functions in neutrino-nucleus scattering
together with some new technical details.

8

J„(k)=g (n' V( )k+P'A'(k)), (2.1)

where V' and A' are the SU(3) vector and axial vector cur-
rents of the nucleon, respectively, and k—=k is the four-
momentum of the incoming probe. The SU(3) singlet
(a = 0) and octet (a = 1~8) currents are defined using the
usual Pauli, F', (Q ), Dirac, F2(Q ), axial, G„'(Q ), and in-

duced axial H„'(Q ) on shell nuc-leon form factors where
Q2 —

/
2

V (k)= [F'(Q') 7 +F'(Q')~„]& (2 2)

V,'(k) —= [F',(Q') 7,+F,'(Q') ~.]) ', (2.3)

A„(k) —= [Gg(Q') r„rs+ Hg(Q')k~Vs]» (2.4)

A
' (k) = [G„'(Q ) y„y5+ H„'(Q )k y5]X '. (2.5)

Here i =1—8, X' are the usual Gell-Mann matrices normal-
ized to Tr(X'X ) =28,b, I is the identity matrix and the
magnetic operator g~ is defined as

l

2M (2.6)

with M being the free nucleon mass. Thus, the problem ad-
dressed in this paper is to estimate two-body MEC correc-
tions to the general one-body SU(3) nucleon current shown

II. EXCHANGE CURRENT OPERATORS
FOR ALL CURRENTS

A. Currents and form factors

This section presents the construction of MEC operators
applicable to both electron and neutrino-nucleus scattering
by generalizing the method developed by Chemtob and Rho
[39].As will be shown below, this generalized method is able
to estimate exchange current corrections to any linear com-
bination of SU(3) vector and axial currents given by
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in Eq. (2.1) when the nucleon is immersed in nuclear me-
dium. Once this is accomplished, MEC operators corre-
sponding to electromagnetic, weak axial, neutral, and
charged currents may be trivially constructed by taking the
appropriate linear combinations.

For example, the one-body nucleon electromagnetic cur-
rent is recovered when n =1 and n = I/Q3 and by letting
the remaining coefficients vanish, multiplied by the appropri-
ate isoscalar and isovector electric charges, i.e.,

where

F0,8(Q2)
F0,8(0)

Q2 i ( Q2i2
1+ q

'I 1+4M' j

2
Gg(Q') =Gg(Q') — Gg(Q').

3
(2.13)

(2.14)

(2.7)

Similarly, one-body neutral, J„and charged, J, currents
zo W

are given by the following linear combinations of vector and
axial currents [19]:

3 ')

(2.8)

1 ~[(V ~iV ) —(A„~iA )]cosmic

+[(V ~iV„)—(A ~iA )]sinoc. (2.9)

In these definitions of neutral and charged currents, 0~ and
0& are the Weinberg and Cabbibo angles, respectively, and

zo
small QED, QCD, and heavy quark corrections to J„[19]as

+'

well as contributions from the charmed quarks to J are
ignored. Note that the third term in Eq. (2.8) is proportional
to the electromagnetic current, Eq. (2.7), while the last two
terms are referred to as the strange vector, V'„, and axial,
A', currents of the nucleon.

2
p (2.10)

2
A'=—A — A p (2.11)

2
F2(Q') =F2(Q') — F2(Q'), (2.12)

For neutral current processes where only massless leptons
are involved, the induced axial form factor does not contrib-
ute to the total cross section and therefore is not determined.
At Q = 0, the strange quark Pauli form factor
F', =F, 2/+3F, van—ishes—by definition and only F2 and

G„are unknown among the form factors in Eqs. (2.2)—(2.5).
According to the standard model, these two form factors de-
termine the strange quark magnetic, F2 ——F2(0), and axial,

Gz —=G„'(0), form factors of the nucleon. In this work all
form factor parametrizations are taken from [38] which are
the same ones used in [22]. Specifically, the Q dependence
of F2(Q ) and G„'(Q ) are

0S 2
GA (Q )

/ Q2)2'
~ 1+
I, M~]

(2.15)

B. Soft-pion exchange dominance and the chiral
filter hypothesis

Although empirical evidences abound suggesting that
both one-body electromagnetic and weak axial currents are
renormalized in nuclear medium by MEC, there still lacks a
rigorous theoretical understanding of the roles that different
types of MEC might play in nuclei. For example, in electro-
magnetic processes any conserved transverse MEC consis-
tent with a given N —N interaction is acceptable since it is
not constrained&by the Ward-Takahashi identity. A typical
"brute force" approach of estimating MEC effects in elec-
tronuclear phenomena is to choose a model dependent
N —N interaction in the one-boson exchange approximation
and from this interaction construct the MEC operators with a
longitudinal component satisfying the Ward-Takahashi iden-
tity and a corresponding conserved transverse component. In
addition, in applications to many-body systems it is neces-
sary to construct nuclear wave functions from the same
N —N interaction including the Fock term to maintain self-
consistency. This latter requirement is often neglected with-
out any justifications especially in relativistic calculations.
The situation in the weak axial case is more ambiguous since
there are no conservation laws to constrain the form of MEC
operators except in the chiral limit. Thus, it is desirable to
identify the important contributions from a multitude of two-
body currents involving exchanges of different types of me-
sons by exploiting some underlying physical principles. For-
tunately, there has been some promising experimental and
theoretical progress over the past 20 years towards accom-
plishing this goal.

In 1978, Kubodera, Delorme, and Rho [13], using the
method developed by Chemtob and Rho to be described be-
low, have argued that, in the absence of kinematical suppres
sions, MEC processes in low and intermediate energy
nuclear phenomena are dominated by one-pion exchange
whose production amplitude is evaluated in the soft-pion
limit. En other words, they stressed that dominant contribu-
tion to the two-body correction arises from MEC which are
consistent with nuclear force implied by chiral symmetry,
other short-ranged meson exchanges being "filtered out" by
the nuclear medium. Thus, the crucial element in their argu-

In these definitions the vector and axial masses are set to
Mz = 840 MeV and Mz = 1030 MeV, respectively, and the
octet form factors at Q =0 are F2(0)—= Q3/2(sc„+ ~„) and

G„(0)—= Q3/6(3F —D) .
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ment is the important role played by chiral symmetry in nu-

clei, a key symmetry manifest in QCD. Using this so-called
chiral filter hypothesis, they arrived at the prediction of axial
charge renormalization which subsequently was confirmed
through the analysis of first forbidden P-decay rates as men-
tioned in the introductory section. In general, Kubodera, De-
lorme, and Rho found that MEC derived assuming soft-pion
dominance approximation, hereafter referred to as soft-pion
MEC, strongly renormalizes the time component of axial
currents and the space component of electromagnetic cur-
rents, respectively.

The idea of soft-pion dominance has been applied in the
past to various low and intermediate energy phenomena and
proved to be a viable technique in estimating exchange cur-
rent corrections. For example, in their analysis of first for-
bidden P-decay rates Warburton et al. compared the use of
the soft-pion exchange dominance approximation to other
MEC operators and found that both methods can reproduce
the observed enhancement of the axial charge [16,17]. The
successful application of soft-pion MEC operators here is not
surprising since P decays typically involve small momentum
transfers where the soft-pion dominance approximation is
expected to apply. The real surprise came when the success
of this approximation manifested itself in the electromag-
netic sector. Initially, Riska and Brown [5] used the soft-pion
MEC operators as prescribed by Chemtob and Rho to ex-
plain the difference between the impulse approximation pre-
diction and the measured threshold radiative np capture
rates. The same method was employed by Hockert et al. [6]
to calculate the cross section for the electrodisintegration of
the deuteron which involved small energy (F.„„=3MeV)
but large momentum transfers. They were able to reproduce
the measured cross section up to momentum transfer of
k = 10 fm using only the soft-pion MEC operators. Addi-
tion of the 5 resonance contribution had little effect on their
original correction to the impulse approximation. The same
cross section was later measured at Saclay [40] extending the
momentum transfer up to k =18 fm . The surprise came
when the original prediction by Hockert et al. managed to
reproduce the Saclay data up to k = 15 fm [41]. In this
case different corrections to the soft-pion MEC cancelled
each other leaving the original two-body contribution to be
the dominant correction to the impulse approximation. Thus,
there are concrete empirical evidences to support the use of
the soft-pion dominance approximation in low and interme-
diate energy electromagnetic and weak axial interactions in
nuclei.

Recently, Rho [42] has proposed an explanation for the
success of the soft-pion MEC dominance based on Wein-
berg's derivation of nuclear forces from chiral Lagrangians
[43,44]. Using chiral power counting arguments Rho has
shown that to the leading order, i.e., at the tree level, the
short-range part of two-body MEC corresponding to a
nuclear force predicted by a given chiral Lagrangian is con-
siderably suppressed. Thus, the dominant contribution to the
two-body correction to the impulse approximation comes
from the long-ranged part of the exchange current repre-
sented by the soft-pion exchange. Subsequently, Park,
Towner, and Kubodera [45] have calculated next-to-leading
order corrections to the axial charge MEC operators beyond
the soft-pion dominance approximation using heavy fermion

chiral perturbation theory. They found that loop corrections
to the soft-pion MEC operators are of the order of 10%, and
argued that their results are consistent with the claims of
Warburton et al. and support the chiral filtering conjecture.
Thus, not only are there empirical evidences suggesting the
renormalization of electromagnetic and weak axial currents

by MEC in nuclei, but there also exists theoretical motiva-
tions to believe that this renormalization is dominated by
soft-pion exchange interaction, at least up to momentum
transfers of about one GeV [41,42].

C. Soft-pion MEC operators

The method of Chemtob and Rho to construct soft-pion
MEC operators [39] is based on soft-pion theorems and cur-
rent algebra techniques pioneered by Adler [46]. Here, this
method is generalized to accommodate all the SU(3) currents
appearing in Eq. (2.1) and the main advantage of using this
technique to estimate MEC corrections to neutrino-nucleus
scattering is pointed out. Since the derivation of soft-pion
MEC operators may be found in the original works of Adler
[46] and Chemtob and Rho [39], and the generalization to
SU(3) being straightforward, most of the technical details are
relegated to Appendix B.

In the soft-pion dominance approximation, the operator
representing an exchange of a pion between two nucleons is
written as products of the pion production amplitude by an
external current off the first nucleon, the pion propagator and
the matrix element for pion absorption by the second nucleon

Jy, (k Pl, l PI,2 PF, 1 PF,2) Ex

1

4 ~(Pl, l+ P1,2+ k PF, 1 PF,2)

x (N(PF, 1) 7r (q) I 1;(k)IN(PI, 1))

X 2 2 (N(PF2) I"(q)IN(PI2))+(1~2).
q

—m

(2.16)

Here the matrix element (N(PF 1)vr"(q) 1'(k) IN(PI, )) is
the amplitude for pion production off a nucleon by an
external vector or axial SU(3) current 1'„(k), J' (k)
+N(PI 1)~ 2r"(q) + N(PF 1), where q —=q~ is the four-
momenta of the produced pion. a and b are SU(3) indices
with a=0—8 to accommodate all the SU(3) currents and
b = 1, 2, or 3 for pion production. Similarly,

(N(PF2)IJ (q)IN(PI2)) is the matrix element for pion ab-

sorption by a nucleon using the pseudoscalar ~NN coupling

(N(PF 2) I

I' (q) IN(PI 2)) g NN(N(PF 2) I
ysl1. "IN(PI 2)).

(2.17)

Note the absence of mNN form factor in Fq. (2.17). It is
quite remarkable that the present method can describe the
electrodisintegration data involving momentum transfers of
up to about k =15 fm without the use of any ~NN form
factors in the mNN absorption vertex.

To construct soft-pion MEC operators it is necessary to
know the pion production amplitude in Eq. (2.16) in the
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soft-pion limit of q~O. In this limiting procedure it is nec-
essary to first take the spatial part of the four-vector to zero
in order to select the long range, i e., the S-wave, part of the
N —N interaction and then take the chiral limit of qp~O.
The resulting amplitude, originally derived by Adler [46] us-
ing the partially conserved axial vector current (PCAC) hy-
pothesis

&~A' =I F (2.18)

and used by Chemtob and Rho in [39] has the following
form when generalized to the SU(3) formalism:

lim(N(PF) vr (q) ~

J'(k) N(PI))
q~p

i
d x lim( —iq~)(N(PF)

~

T(A (x)J'(0))~N(PI))

(N(PF) l[Qb5(x), J,(0)], =olN(PI)) (2.19)

Here Qs(x) =—fd xAo(x) is the axial charge. As shown in

[47], the only contributions to the first term in the soft-pion
limit come from pole diagrams where the axial current A„ is
inserted in the external lines in the amplitude

(N(PF)
~

J'„(k)~N(PI)) and thus behaving as 1/q„. The sec-
ond term may be simplified by using the SU(3)S SU(3) cur-
rent algebra

[Q5(x), V~(0)] =o=ifab, A~(0),

[Qs(x),A (0)] o
= if,b, V' (0),

(2.20)

(2.21)

and has no contributions from singlet currents unlike in the
first term where both SU(3) singlet and octet can contribute.
Therefore, the amplitude for soft-pion emission in the reac-
tion N(PI)~N(PF), in the presence of perturbation J'„(k),
may be expressed in terms of two matrix elements

(N(P, ) ~

J (k) ~N(P, ))

and

(N(PF)
l I. Q5(x).J;(o)].,= o 1N(PI) ).

Since J'„may be any one of vector or axial SU(3) currents,
Eq. (2.16) may simultaneously be applied to all the compo-
nents of the general one-body SU(3) current in Eq. (2.1), and
specifically to the electromagnetic current of Eq. (2.7) as
well as to neutral and charged currents of Eqs. (2.8) and

(2.9), respectively. Thus, it is the use of SU(3)SSU(3) cur-
rent algebra in Eq. (2.20), which rotates around the vector
and axial currents, that makes the generalized method of
Chemtob and Rho particularly suitable to approximate MEC
corrections in neutrino-nucleus scattering at low and inter-
mediate energies. In addition, because the soft-pion limit is
taken no N —N interaction needs to be specified and the
present method of constructing MEC operators only requires
the currents in the impulse approximation as inputs. In this
sense the present approach to constructing MEC operators is
model independent. Note also that the present method is

valid to all orders in g z~ in one of the ~NN verticies since
the pion production amplitude Eq. (2.20) is evaluated non-
perturbatively [46].'

It is useful to discuss the approximations made in calcu-
lating the soft-pion production amplitudes. Since the original
application of soft-pion theorems has been on pion photo-
production processes, these amplitudes have been evaluated
by assuming that the initial and final nucleons are on their
mass shell. However, in order to construct MEC operators in
nuclei consistently it is necessary to take both the initial and
the final nucleons off their mass shell. This involves density
dependent off-shell parametrizations of nucleon currents
which are not known. In fact, a fully consistent many-body
description of in-medium nucleon electromagnetic or weak
form factors has never been presented. Considering this lack
of understanding of off-shell modification of nucleon form
factors and currents in nuclear medium, the most reasonable
approximation to make is the use of on-shell kinematics and
parametrizations of nucleon form factors as has been done in
all previous works involving MEC in nuclei. This implies
that the nucleons are assumed to obey the free Dirac equa-
tion, and therefore in the derivation of the pion production

amplitude Pu(p) has been replaced with Mu(p), where

u(p) is the nucleon spinor with three-momentum p and mass
M. This on-shell approximation is used from the very begin-
ning, even before considering the soft-pion limit, and is con-
sistent with using the free RFG model of the nucleus to cal-
culate the cross sections where the constituent nucleons are
assumed to be on shell.

Related to the derivation of soft-pion production ampli-
tudes, Eq. (2.20), is the use of PCAC and pion off-shell
extrapolation. When using the PCAC relation, it is assumed
that the matrix element of the divergence of the axial current
varies smoothly and slowly with the pion mass q . In addi-
tion it is also assumed that this matrix element is approxi-
mately proportional to the pion field and that any dependence
on higher order nonlinear pion field terms are negligible.
This assumption allows one to make a connection between
the results obtained with q=0 with a more realistic value of
q . Since a zero four-momentum pion is not a physical ob-
ject, this slow q variation assumption is always needed to
compare the soft-pion predictions with experiment. Finally,
the soft-pion production amplitudes are valid only to zeroth
order in q. This means that if there are any processes con-
tributing to the pion production which, for kinematical rea-
sons, are of first order in q, the applications of current alge-
bra and soft-pion techniques used here give no information
about them. In order to describe these processes, it is neces-
sary to make a model dependent analysis of specific reac-
tions which requires the introduction of a N —N interaction.

Relativistic SU(3) soft-pion MEC operators are con-
structed in analogy with the method outlined in [39] and are
listed in Appendix B. The conservation of the vector current

'The expressions for the soft-pion production amplitudes pre-
sented in Appendix B are proportional to g &z. However, this does

not mean that the amplitudes are evaluated to first order in g zz.
The ~NN coupling constant was introduced through the use of the

Goldberger-Trieman relation [46].
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has been checked analytically using the prescription dis-
cussed in the original paper by Adler [46] and verified nu-

merically. To illustrate the usefulness of the present tech-
nique, soft-pion MEC corrections are applied to quasielastic
electromagnetic, neutral and charged current interactions si-
multaneously in the following section. In this paper a simple
RFG model formalism [48,49] is used for all calculations
without binding energy corrections (B=O). Finite nucleus
effects, final state interactions and other density dependent
nuclear medium effects are not considered on purpose in
order to clearly isolate the effects of soft-pion MEC in many-
body systems.

III. RESULTS

A. Quasielastic electron scattering

As mentioned in Sec. II A, the third term in the expres-
sion for the one-body neutral current of the nucleon, Eq.
(2.8), is proportional to the electromagnetic current, 1„
~V„+(I/Q3) V . Thus, estimates of MEC effects in elec-
tron scattering can automatically be extracted when calculat-
ing two-body corrections to neutral current processes using
the formalism under consideration. The successful applica-
tion of the soft-pion MEC approximation to the electrodisin-
tegration of the deuteron has been described in the previous
section. Here, the same method is applied to quasielastic
electron scattering off heavier nuclei where many-body ef-
fects, not present in the reaction involving the deuteron, are
expected to play important roles.

In Figs. 1(a) and 1(b), separated longitudinal,

Rz(co, ~k~), and transverse, Rz(co, ~k~), response functions
for a typical quasielastic inclusive ' C(e, e') reaction are
shown as a function of energy transfer co both in the impulse
approximation and with soft-MEC corrections. A Fermi mo-
mentum of kF = 225 MeV and a fixed three-momentum

transfer of
~
k~ = 400 MeV are used in the RFG model of the

nucleus without any binding energy corrections (B=0) so
that the nucleons in the target nucleus are on shell. Since the
momentum transfer is almost twice the Fermi momentum,
the infIuence of Pauli blocking should be small in this kine-
matical range and indeed, as shown in the figures, the small
effect of Pauli blocking is manifested in the linear depen-
dence of the response functions for small co [48]. Thus, the
RFG model of the nucleus is adequate as a first approxima-
tion to test the soft-pion dominance approximation. Only
one-particle —one-hole (1p1h) final states are considered
when evaluating the MEC matrix elements since they are the
dominant two-body contributions to the response functions
in the quasielastic region. A more quantitative two-body
MEC corrections to electron scattering at these energies, and
especially in the dip region, would require model dependent
6 propagation and pion production processes as pointed out
in [9,10]. Also shown in the figures for reference are the
experimental data for the same inclusive electron scattering
reaction measured at Saclay [50]. However, no attempt has
been made to fit the data by varying kF and B, since the
vector currents will no longer be conserved with a finite
binding energy correction and the target nucleons wi11 be off
their mass shell.
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FIG. l. (a) Longitudinal, Rz, and (b) transverse, Rz, response
functions for the ' C(e, e') reaction plotted against the energy
transfer co. The three momentum transfer involved in the inclusive

reaction is ~k~
= 400 MeV. A RFG model without any binding

energy corrections (B=O) and with a Fermi momentum of kF =
225 MeV was used to calculate the response functions. Experimen-
tal data, taken from [50], are shown for reference but no attempt to
fit the data by varying 8 and kF has been made. The dashed line
represents the impulse approximation results while response func-
tions obtained with soft-pion MEC corrections are shown with solid
lines. Also shown in the figures using the dash-dotted lines are the
individual contributions from soft-pion two-body currents.

As shown in Fig. 1(a), the MEC correction to the impulse
approximation in the longitudinal response results in a small
reduction of the quasielastic peak with no appreciable
change in the peak position. However, this reduction of the
impulse approximation result is too small to describe the
magnitude of the quasielastic peak observed in the Saclay
data. This feature persists even if kF and 8 are varied in an
attempt for a better fit to the data. The failure of the free
Fermi gas model to describe the observed longitudinal re-
sponse in quasielastic inclusive electron scattering for a wide
range of nuclei is well known [51], and additional nuclear
effects must be incorporated in order to improve the present
model calculation. Also shown in the figure is the individual
soft-pion MEC contribution which is small and negative re-
sulting in the small reduction of the quasielastic peak.

For the transverse response shown in Fig. 1(b), the soft-
pion MEC correction can increase the magnitude of the
quasielastic peak by about 20% relative to the impulse ap-
proximation results and shift the peak position to a lower
value of energy transfer ~ by about 20 MeV. These effects of
the two-body current correction may be understood by ex-
amining the individual soft-pion MEC contribution which
causes both constructive and destructive interferences de-
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pending on the value of the energy transfer. This contribution
is positive between co = 0 and 125 MeV and negative there-
after and results in an increase of the magnitude of the quasi-
elastic peak and a shift of the peak position to a lower value
of co. The qualitative agreement with data is better than in
the longitudinal response although the observed peak posi-
tion cannot be reproduced with zero binding energy correc-
tion (B=0).A finite value of the binding energy will help to
shift the quasielastic peak towards the observed position but,
as mentioned above, the total electromagnetic current will no
longer be conserved in this case. Thus, two-body soft-pion
MEC corrections to inclusive electron scattering response
functions tend to slightly soften the longitudinal response
and leads to about 20% increase in the transverse response in
the free RFG model.

It is interesting to compare the present results with numer-

ous model calculations of RL and RT in the literature. How-

ever, to make any quantitative comparisons with other works
is very difficult since many model dependent assumptions
have been made for each of the calculations which are hard
to disentangle. For example, Kohno and Ohtsuka [52] also
investigate the MEC corrections to the inclusive electron
scattering response functions in the quasielastic region con-
sidering only the 1plh final states. In contrast to the present
work, they work in the nonrelativistic approximation and ig-
nore contributions of order greater than g„». The method
adopted in this paper is fully relativistic and one of the

mNN verticies is valid to all orders in g„». Also, they
include the 6 excitation current which has a strong model
dependence as well as the "pion-in-Aight" MEC, referred to
as "pionic" MEC in their paper. As discussed in Appendix
B, the pion-in-fiight diagram does not contribute to the
(e,e') response functions since it is proportional to the four-
momentum transfer of the leptonic probe, k, in the soft-
pion limit. Nevertheless, there is qualitative agreement be-
tween the soft-pion MEC contribution shown in Figs. 1(a)
and 1(b) and their corresponding "pion pair" MEC results
presented in Fig. 2(b) of [52]. It is interesting to note that in
their calculation for the longitudinal response, there is a can-
cellation between the "pionic" and 5 excitation MEC cor-
rections leaving the "pair" current the dominant correction
to the impulse approximation as in Fig. 1(a) of the present
paper. This is not true for their transverse response where
Kohno and Ohtsuka find that the total effect of the two-body
corrections is to decrease the impulse approximation result
which is the opposite effect shown in Fig. 1(b). The reason
for this discrepancy is due to the large negative contribution
from their 5 excitation current which is not included in the
present work. It should be noted that another RFG model
calculation of RT that includes the same types of MEC cor-
rections as in Kohno and Ohtsuka [10], but considers only
the 2p2h final states, obtains an increase in the transverse
response since the 2p2h matrix elements are added incoher-
ently to the impulse approximation result. Thus, unlike the
case of the deuteron, it is difficult to make a definitive state-
ment on the success of the application of soft-pion MEC
dominance approximation in electron scattering off nuclei by
comparing with other works, except to say that the results
presented above are not inconsistent with other model calcu-
lations.
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FIG. 2. ' C(p„-,p )X total cross section obtained by folding
the LSND neutrino flux [30] vs the Fermi momentum kF. The
dashed curve is the impulse approximation result while the solid
curve is obtained with the soft-pion MEC corrections using the
RFG model of the nucleus with no binding energy correction
(B=O). For kF = 225 MeV, which is the usual value used for
' C, the total cross section is reduced from 24 to 22.7
(X 10 cm ) when corrected for two-body current effects.

B. Quasielastic charged current neutrino scattering

The one-body charged current, Eq. (2.9), is the next sim-

plest linear combination of SU(3) vector and axial currents
of physical interest after the electromagnetic current dis-
cussed above. Since the nucleon has no net strangeness
[F', (Q = 0) = 0], only the term proportional to

cosmic

in Eq.
(2.9) contributes to the charged current neutrino-nucleus
scattering cross sections. Although no direct information re-
garding the strange quark form factors of the nucleon may be
obtained in charged current processes, these reactions are
nevertheless important in extracting the value of the axial
mass parameter Mz which appears in the parametrization of
axial form factors. Recently, the LSND collaboration has re-
ported on their measurement of neutrino fiux-averaged inclu-
sive ' C(p —,p, )X cross section of (8.3 ~ 0.7 stat. ~ 1.6
syst. ) X 10 cm in the neutrino energy region of
123.7&E,~280 MeV with a Aux-weighted average of
(E„) = 180 MeV [30]. This value is substantially smaller
than an earlier measurement, which used a different neutrino

energy distribution, of (15.9 ~ 2.6 stat. ~ 3.7 syst. )
X 10 cm [53] as well as predictions from model calcula-
tions [31]. Because these cross sections are measured just
above the muon threshold energy, it is expected that nuclear
effects will substantially modify the impulse approximation
predictions. MEC corrections is one such effect and its im-.

pact on the impulse approximation calculation is examined
in this subsection using the soft-pion dominance formalism.

In contrast to the charged current reaction involving the
muon-neutrino, it is interesting to note that there is good
agreement between model predictions and the measured
cross section for the exclusive charged current reaction
' C(v, , e )Ng, involving electron neutrinos [54].From th-e

computational point of view, the main difference between
electron- and muon-neutrino induced charged current reac-
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tions is that in the former case, the mass of the outgoing
electron is negligible while the muon mass has to be explic-
itly included for the latter case. This means that in the
charged current reaction ' C(v„—,p, )X, the term propor-
tional to the induced axial form factor, H„(k ), will contrib-
ute to the total cross section. In the present formalism, the
induced axial form factor is given by PCAC in the pion pole
dominance
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where G„(0)=g&I2=1(2(F+D) is the axial coupling con-
stant. However, because of the presence of the H„(k ) term
there is an ambiguity when applying current conservation to
the vector currents. The prescription given by Adler in [46]
has been used here to ensure vector current conservation and
details are given in Appendix B.

Figure 2 shows the total cross section for the inclusive
charged current process ' C(v —,p, )X for several nuclear
densities obtained by folding the LSND neutrino energy dis-
tribution [30,55]. As in the electron scattering case, the RFG
model without binding energy corrections is used to model
the nucleus and only 1plh final states are considered when
taking matrix elements of two-body operators since the
phase space for 2p2h final states should be suppressed due to
the rather low energy neutrino beam [55].However, because
the Aux-weighted average of the neutrino beam energy is

(E,) = 180 MeV, the three-momentum transfers are twice
smaller than in the electron scattering reaction discussed
above and consequently, the effect of Pauli blocking be-
comes more important in this charged current reaction. In the
RFG model of the nucleus an increase in nuclear density is
equivalent to an increase in the Fermi momentum. Thus,
with a constant neutrino beam energy the net effect of Pauli
blocking is the decrease of the total cross section per nucleon
with increasing nuclear density as shown in Fig. 2. In the
impulse approximation, the total cross section decreases
from 24 to 13 (X 10 cm ) as the Fermi momentum is
varied from kF = 220 to 300 MeV. As shown in the figure,
the inclusion of soft-pion MEC corrections reduces the im-
pulse approximation results by 5 to 10% as the Fermi mo-
mentum is increased from 220 to 300 MeV. For kF = 225
MeV, which is the usual value used for ' C, the total cross
section is reduced from 24. 1 to 22.7 (X 10 cm ). This
reduction is not enough to explain the recently measured
value reported by the LSND collaboration.

In Fig. 3(a), the ' C( p —,p, )X cross section is shown as
a function of neutrino energy for kF = 225 MeV including
Coulomb corrections for the outgoing muon. Corrections
from two-body currents to the impulse approximation are
very small and difficult to observe. Note that the muon pro-
duction threshold is found to be around 107 MeV compared
to the experimental threshold of 124 MeV. This is because
the present RFG calculation does not include any binding
energy corrections which will ruin the vector current conser-
vation. Corresponding calculation using nonrelativistic con-
tinuum RPA formalism [31]obtained a smaller cross section
which increases more slowly with the neutrino energy. The
effect of soft-pion MEC is more evident when the differential
' C(v~-, p, )X cross section folded with the experimental
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C. Quasielastic neutral current neutrino scattering

The final application of the soft-pion MEC correction is in
the quasielastic neutral current neutrino-nucleus scattering

FIG. 3. (a) ' C(v —,p, )X total cross section as a function of
incoming neutrino energy F, taking into account the Coulomb cor-
rection for the outgoing muon. As in Fig. 2, the RFG model is used
to model the nucleus with kF = 225 MeV and B=o. The dashed
line is the impulse approximation result while the solid line includes
two-body soft-pion MEC effects. Note that in this particular case
there is very little difference between the two results. (b) Differen-
tial cross section doldF~ for the same process obtained with and
without the soft-pion MEC correction plotted against the outgoing
muon kinetic energy F„.The results for this figure are obtained by
folding the LSND neutrino energy distribution obtained from [30].

neutrino energy distribution is plotted against the muon ki-
netic energy, F, as shown in Fig. 3(b). Corrections from
two-body currents are largest near the cross section peak
around E = 23 MeV where the impulse approximation
result of 43.7 & 10 cm / MeV is reduced to 40.1

X 10 cm /MeV. However, these corrections become less
important with increasing muon kinetic energy and for
F~) 60 MeV there is hardly any change from the impulse
approximation result. The results shown in Fig. 3(b) are
qualitatively consistent with nonrelativistic Fermi gas and
continuum RPA results shown in [31] although various
model dependent assumptions, such as a different neutrino
energy distribution, prevents from a direct quantitative com-
parison between these results. Thus, although the two-body
soft-pion MEC corrections help to reduce the impulse ap-
proximation prediction of the exclusive charged current re-
action ' C(v —,p, )X towards the observed value, this re-
duction is not enough and additional nuclear structure effects
are required to further lower the total cross section for this
exclusive process [56,57]. These additional effects will be
incorporated in a future work [37].
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FIG. 4. ' C(v, v'p) differential cross section vs the kinetic en-

ergy of the ejected nucleon, T„, for (a) kF = 200 MeV, (b) kF =
300 MeV, and (c) k„= 350 MeV. The incident neutrino energy is
assumed to be 200 MeV while the values for the strange quark form
factors used are F2= —0.21 and G„'= —0.19. The long dashed
curve is the impulse approximation result while the solid curves
have been obtained with soft-pion MEC corrections.

where the one-body neutral current of the constituent
nucleon is given by Eq. (2.8). This particular linear combi-
nation of the general SU(3) current of Eq. (2.1) is interesting
since, unlike the electromagnetic and charged currents, it in-
cludes the SU(3) vector and axial singlet currents leading to
a possible strange quark contribution to the neutrino-nucleus
scattering reaction. Also, in contrast to the charged current
reactions, the term proportional to the induced axial form
factor Hz does not contribute to the neutral current neutrino-
nucleus cross section since the leptons involved in the scat-
tering process are massless. In Eq. (2.8), the strange quark
electric form factor Fi is assumed to be vanishingly small
for small values of virtuality that are of interest here, and
therefore only magnetic, F2 and axial G~ strange quark form
factors of the nucleon are used to describe the contributions
from the strange sea quarks in neutral current neutrino-
nucleus scattering. In the following discussion these two
strange quark form factors are treated as input parameters
and no attempt has been made to determine their values from
model calculations. As in the preceeding discussions on elec-
tromagnetic and charged current reactions, all the calcula-
tions are performed using the RFG model without binding
energy corrections.

In Fig. 4, differential cross sections for the ' C(v, v'p)
reaction, do.ldEF, where EF is the total energy of the ejec-

tile, are shown in the quasielastic region as functions of the
ejected proton's kinetic energy, TF, for several values of
Fermi momenta. The incident neutrino energy is assumed to
be 200 MeV and the values used for the strange magnetic
and axial quark form factors are F2 = —0.21 and
G„'= —0.19, respectively. The long-dashed curves are the
impulse approximation results while the solid curves have
been obtained with the soft-pion MEC corrections, and as in
the charged current case, only 1plh final states have been
taken into account. In the impulse approximation, the mag-
nitude of the peak decreases from about 70 to 53
(X 10 cm / MeV) as kF is varied from 200 to 350 MeV.
However, this decrease is accompanied by a redistribution of
the strength to higher values of TF in such a way that the
area under the differential cross section remains approxi-
mately a constant since it is roughly proportional to the num-

ber of nucleons which is fixed. Note that because the incident
neutrino energy is constant and small, the position of the
maximum of the differential cross section is approximately
the same at around TF=30 MeV despite the decrease in the
peak magnitude. This means that the effect of Pauli blocking
becomes very important when computing the total cross sec-
tion obtained by integrating the differential cross section
do/dEF for EF)EF,~;, thereby cutting off the contribu-
tions around the peak magnitude. This total cross section
decreases noticeably with increasing kF, as it was the case
for the total charged current cross section shown in Fig. 2.

It is evident from the figures that the soft-pion MEC ef-
fects are sensitive to the nuclear density in this model calcu-
lation. For kF around 200 MeV, there is very little difference
between the impulse approximation and the MEC corrected
results due to an important cancellation to be discussed be-
low. This cancellation becomes less complete with increasing
kF and the two-body current effects become stronger and
decreases the impulse approximation results with increasing
nuclear density as shown in the figures. This effect of the
soft-pion MEC on the impulse approximation persists when

the strange quark form factors are assumed to vanish (F2 =
G„' = 0) in the model calculation. However, without any
strange quark form factors there is a large reduction in the
differential cross section for protons as shown in Fig. 5. In
this figure kF is set to 225 MeV and there is little correction
coming from the exchange currents in the soft-pion approxi-
mation for this value of Fermi momentum. Note that the
magnitude of the quasielastic peak is reduced from about 70
to 50 X 10 cm /MeV when the strange quark magnetic
and axial form factors are varied from F2= —0.21 to F2 = 0
and G~= —0.19 to G„' = 0, respectively. For the neutral
current induced neutron knockout reaction, ' C(v, v'n), a
finite strange quark form factor decreases the differentia1
cross section relative to that obtained without any strange
quark distribution for nucleons [22,25].

It is instructive to understand why the soft-pion exchange
current corrections are small for neutral current scattering for
nuclear densities corresponding to kF= 200 MeV. As shown
in Appendix A, Eq. (1.38), the differential cross section per
nucleon for neutral current scattering in the RFG model is
given by a linear combination of three structure functions
WL, WT and W» as
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FIG. 5. ' C(v, v'p) differential cross section vs the kinetic en-

ergy of the ejected nucleon, TF, with (F2 ———0.21 and
G„'= —0.19) and without finite strange quark form factors. The
incident neutrino energy is assumed to be 200 MeV and the long-
dashed curve is the impulse approximation result while the solid
curves have been obtained with soft-pion MEC corrections.
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X [tul WI + tuTWT+ tuTT WTT ]. (3.2)

Here cuL, coT, and ~z.T are the kinematical coefficients cor-
responding to the longitudinal WI, transverse WT and
transverse-transverse Wz T structure functions, respectively.
In Fig. 6 the individual contributions from these three struc-
ture functions to the differential cross section are shown us-
ing the same parameters as in Fig. 5. Note that all three
contributions to do./dEF are positive, the dominant one com-
ing from the transverse term co TWT followed by the
transverse-transverse ~TT WTz and the longitudinal ~LWL
terms, the latter contributing negligiblely to the differential
cross section. The soft-pion MEC correction increases the

~zT WTT term and decreases the ~TWT term relative to
their impulse approximation results leading to a cancellation
of MEC effects for this particular value of Fermi momentum.
This cancellation between the transverse and transverse-
transverse contributions becomes less and less complete as
the nuclear density is increased and the effect of two-body
correction becomes bigger for higher densities as shown in
Fig. 4. Equation (3.2) can also be used to understand the
behavior of the differential cross section for antineutrino
scattering relative to the neutrino induced nucleon knockout
rates as follows.

Figure 7 shows the do./dFF for the neutral current anti-
neutrino scattering reaction ' C( v, v'p) and the correspond-
ing neutrino reaction both of which are obtained again by
using the same input parameters as in Fig. 5. In the impulse
approximation, the magnitude of the quasielastic peak for
antineutrino scattering is approximately half that of the neu-
trino scattering, the former value being 3 8 X 10
cm /MeV compared to 70 X 10 cm /MeV for the latter.
Also, the position of the peak is shifted towards a lower
value of TF by about 10 MeV relative to the neutrino scat-

FIG. 6. Various structure function contributions to the
' C(v, v'p) differential cross section shown in Fig. 5. Both the
impulse approximation and MEC corrected results for the trans-
verse, co&.WT, longitudinal, coL WL, and transverse-transverse,

coTz WTT, contributions are shown explicitly using the dashed and
solid lines, respectively. Note that the two-body corrected contribu-
tions from the transverse and transverse-transverse contributions
cancel leading to a small overall MEC correction to the impulse
approximation. For antineutrino scattering the transverse-transverse
contribution changes sign resulting in a smaller differential cross
section but in a larger MEC effect compared to neutrino scattering.

tering case. The effect of soft-pion MEC corrections to the
impulse approximation result for antineutrino scattering is
noticeably larger than the corresponding correction for neu-
trino scattering for nuclear densities corresponding to kF =
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FIG. 7. ' C(v, v'p) and ' C(v, v'p) differential cross sections
vs the kinetic energy of the ejected nucleon, TF . The incident neu-
trino energy is 200 MeV and the nucleon is assumed to have strange
quark form factors of Fz= —0.21 and G„'= —0.19. The long-
dashed curve is the impulse approximation result while the solid
curves have been obtained with soft-pion MEC corrections.
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225 MeV as shown in the figure. For the ' C( v, v'p) reac-
tion, the impulse approximation result for the magnitude of
the quasielastic peak is reduced from 38 to 30
X 10 cm /MeV, while there is no such noticeable reduc-
tion for the neutrino scattering. Thus, not only the an-
tineutrino scattering differential cross section greatly reduced
relative to neutrino scattering, but the effect of soft-pion
MEC on the impulse approximation result is much bigger
reducing further the do/dEF by about 15%.

This difference in the neutrino and antineutrino differen-
tial cross sections may be understood by once again exam-
ining Fig. 6 and noting the definitions of the structure func-
tions W; and their corresponding kinematical coefficients
cu; given in Eqs. (1.15)—(1.29) of Appendix A. The only
difference between the longitudinal, transverse and
transverse-transverse structure functions and kinematical co-
efficients entering in Eq. (3.2) for the neutrino and an-

tineutrino scattering is in the sign of ~TT given by Eq.
(A.28). Therefore, the graph corresponding to Fig. 6 for an-
tineutrino scattering will have a negative transverse-
transverse contribution which partially cancels the dominant
transverse contribution yielding the small differential cross
section as shown in Fig. 7. In addition, because the

coTT WTT term is now negative, the MEC correction to this
term will further decrease the correction to the transverse
term resolting in a non-negligible two-body correction to the
differential cross section not observed in the neutrino scat-
tering case. Hence although the differential cross section for
the antineutrino reaction ' C(v, v'p) is about half that of the
corresponding neutrino scattering reaction, its impulse ap-
proximation result is subject to non-negligible soft-pion
MEC corrections.

In the Introduction it was mentioned that the ratio of
proton-to-neutron yields in quasielastic neutral current scat-
tering, R(p/n), is currently being measured in the LSND
experiment to extract the value of the strange quark axial
form factor, G„'. In this experiment the probing neutrinos
and antineutrinos are incident on a tank of mineral water
composed of hydrogen and carbon molecules [22]. The
amount of kinetic energy carried by the struck nucleon is
measured by the detectors surrounding the tank of mineral
water and R(p/n) is determined as a function of the detected
ejectile s kinetic energy, TF. The proton-to-neutron ratio is
then integrated over TF and compared with model predic-
tions which gives the integrated R(p/n) as a function of
G~ for several values of the strange quark magnetic form
factor as shown in Fig. 8. However, in practice there is an
experimental cutoff in the range of TF, given by 50 MeV
(TF(120 MeV, in order to make sure that the detected
protons are knocked out from the carbon nucleus. The RFG
model calculation of the ratio of integrated proton-to-neutron
yields of Fig. 8 is qualitatively similar to the ratios predicted
by a nonrelativistic RPA calculation [22] and shows only
about a few percent change from the impulse approximation
results in the ratio for the neutrino scattering while this
change is about 10% for antineutrinos. The latter change
originates in the nonnegligible two-body correction to the
impulse approximation in the antineutrino scattering reaction
explained in the preceeding paragraph. In both cases, the
two-body corrections tend to decrease the integrated ratio
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FIG. 8. (a) Ratios of integrated proton-to-neutron quasielastic
yield for the ' C( v, v'N) reaction as functions of G„' for two values
of strange magnetic form factor F2 . In each case, the dashed line is
the impulse approximation result while the solid line has been cor-
rected for meson exchange currents. The incident neutrino energy is
assumed to be 200 MeV for both cases and the range of integration
was chosen to be 50~ TF~ 120 MeV to simulate the LSND experi-
ment [22]. (b) Same as in (a) but for antineutrino scattering.

IV. DISCUSSION

In this work relativistic two-body MEC corrections have
been applied simultaneously to quasielastic electromagnetic
and neutrino scattering reactions using a single unified for-
malism obtained by generalizing the method developed by
Chemtob and Rho [39].The basic strategy employed here is
to use the chiral filtering hypothesis [13,41] which assumes
that the two-body MEC correction in nuclei is dominated by
the exchange of a single pion whose production amplitude is
evaluated in the soft-pion limit. By assuming PCAC and us-

ing the SU(3)II SU(3) current algebra this soft-pion domi-
nance approximation allows one to express the pion produc-
tion amplitudes in terms of SU(3) vector and axial currents
interacting with the nucleon. Thus the resulting MEC opera-
tors are expressed in terms of currents used in the impulse

and this effect increases as G„' becomes less and less nega-
tive for a given value of F2. For example, if G„'= —0.1, the
soft-pion MEC corrections are negligible for the neutrino
scattering R(p/n) for all physically relevant values of F'2 but
must be taken into account in analyzing the antineutrino scat-
tering ratio. Finally, final state interaction effects should be
examined within a relativistic framework, although it is
known from a nonrelativistic calculation [24] that the effects
on the integrated ratios are almost negligible.
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approximation without any references to model dependent
N —W interaction. These soft-pion MEC operators arise from
the longest range (i.e., the 5-wave) part of the N N—inter-
action and PCAC is used to relate the soft-pion predictions to
experiment. This is the reason why it is necessary to take the
spatial part of the pion four momentum to zero first when
taking the q ~0 limit. The generalized version of the
method of Chemtob and Rho used in this work is so far the
most economical way to estimate exchange current correc-
tions to low and intermediate energy neutrino-nucleus scat-
tering since it treats all the SU(3) vector and axial currents in
Eq. (2.1) on the same footing, and is a natural way to accom-
modate the strange quark vector and axial currents of the
nucleon allowed by the standard model.

Previously, the nonrelativistic and SU(2) version of the
soft-pion MEC operators have been successfully applied to
first forbidden p decays [13,15—17] and to electromagnetic
and neutrino scattering off few nucleon systems [5,34,35,39]
including processes involving large momentum transfers [6].
This last phenomenological success came as a real surprise
since the soft-pion MEC operators were expected to be ap-
plicable only to those processes involving small momentum
transfers such as in p decays. It led to speculations [41] that
the physics in nuclei is dominated by processes dictated by
chiral symmetry and a theoretical justification was proposed
[42] to explain the phenomenological success by extending
the work of Weinberg [44] on nuclear forces derived from
chiral Lagrangians [42]. Motivated by these developments,
fully relativistic SU(3) soft-pion MEC operators have been
used to estimate two-body corrections to the impulse ap-
proximation in quasielastic electromagnetic and neutrino
scattering reactions assuming a finite magnetic and axial
strange quark form factors of the nucleon. In order to clearly
isolate the effect of two-body corrections in many-body sys-
tems, a simple free RFG model of the target nucleus was
used without any other medium dependent corrections.

The inclusive (e,e') longitudinal and transverse response
functions in the quasielastic region obtained using MEC cor-
rections show a small reduction of the impulse approxima-
tion result for the longitudinal channel while a substantial
increase was observed for the transverse response. The
former result is in qualitative agreement with a previous
work using nonrelativistic kinematics [52], while the relativ-
istic MEC corrections tend to increase the response function
in the transverse channel in contradiction to the results of
[52] but in agreement with another relativistic calculation
[10,11].It should be stressed that in almost all calculations of
MEC corrections in electron scattering reactions, such as in

[10,52], the one-pion exchange operators are of order g ~~
whereas the MEC operators used in this work is valid to all
orders in g zz at one of the ~NN verticies since the soft-
pion production amplitude is evaluated nonperturbatively
[46].Thus it is difficult, if not impossible, to make any quan-
titative comparisons with other works dealing with MEC cor-
rections in electron scattering especially if additional me-
dium corrections are present in a given calculation. However,
in order to make a more quantitative prediction it is neces-
sary to introduce these nuclear medium effects, such as den-
sity dependent nucleon mass and form factors, as well as
MEC involving the excitation of the 5 resonance. For these
reasons, the most successful application of soft-pion MEC

correction in electromagnetic interactions is still in the elec-
trodisintegration of the deuteron investigated over 20 years
ago.

The charged current neutrino-nucleus reaction investi-
gated in the present work is the inclusive ' C(v —,p, )X
reaction where the total cross section has recently been mea-
sured by the LSND experiment [30]. In the RFG model cal-
culation, the two-body soft-pion exchange correction reduces
the impulse approximation result for the cross section by 5 to
10% as the Fermi momentum is increased from 200 to 300
MeV. For kF = 225 MeV, a typical Fermi momentum used
for ' C, the total cross section is reduced from 24. 1 to 22.7
(X 10 o cm ) which is not enough to explain the recently
measured value reported by the LSND collaboration of (8.3

0.7 stat. ~ 1.6 syst. )X 10 cm [30]. Recall that the
previously reported measurement is (15.9 ~ 2.6 stat. ~ 3.7
syst. )X10 cm [53] which was measured using a differ-
ent neutrino energy distribution than in the LSND experi-
ment. If the LSND measurement is correct, then some im-
portant density dependent physics is responsible for the large
reduction of the impulse approximation result, a situation
reminiscent of the "missing strength" problem in the longi-
tudinal (e,e') response functions of the last decade [51].

The quasielastic neutral current induced nucleon knockout
reaction ' C( p, v'N) is currently being investigated by the
LSND collaboration in an effort to extract G„' by measuring
the ratio of proton-to-neutron yields. For the proton knockout
reaction, the impulse approximation result for the differential
cross section is found to be sensitive to the values of strange
quark form factors of the nucleon, while the two-body soft-
pion correction becomes more important as the nuclear den-
sity is increased. However, for densities appropriate for ' C
the MEC corrections to the structure functions cancel each
other resulting in small changes from the impulse approxi-
mation results. Because of this cancellation the ratio of
proton-to-neutron yield for neutrino scattering does not suf-
fer from two-body corrections and, at the present level of
sophistication, the impulse approximation result is sufficient
to describe the ratio R(pin). The corresponding knockout
reaction involving antineutrinos exhibits a much smaller dif-
ferential cross section than in the neutrino scattering case and
a non-negligible MEC correction to the impulse approxima-
tion result. These differences may be understood by once
again examining the contributions from different structure
functions to the differential cross section. In this case, one of
the kinematical coefficients corresponding to a structure
function changes sign relative to the neutrino scattering case.
As a result, there is a cancellation in the impulse approxima-
tion results leading to a reduced differential cross section but
also an enhancement in the magnitude of the MEC correction
which amounts to about 10—15 % of the impulse approxima-
tion result depending on the value of G„' . However, in order
to make a concrete statement about the extraction of the
strange quark axial form factor from the measured R(pin),
additional nuclear effects, such as final state interactions,
need to be considered in addition to MEC corrections.

In this paper, motivated by the LSND neutrino scattering
experiment, the quasielastic region in electron and neutrino
scattering was chosen to apply the soft-pion MEC correc-
tions. This kinematic regime probably represents the limit of
the applicability of the soft-pion dominance approximation
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as presented in this work. Description of processes involving
larger momentum transfers would involve the introduction of
the 5 excitation current, pion production processes as well as
short-ranged meson exchanges. There exists prescriptions to
extend the present technique to incorporate these processes
as shown in [34,35] albeit in the nonrelativistic SU(2) for-
malism. It would be interesting to extend these prescriptions
to the present relativistic SU(3) formalism since it can trivi-
ally be used to estimate MEC corrections to any linear com-
bination of SU(3) axial and vector currents shown in Eq.
(2.1). For example, the extended formalism may be used to
investigate parity violating electron scattering processes
which involves the interference of electromagnetic and weak
neutral currents. Other phenomena of interest to examine are
neutral current scattering of solar and supernova neutrinos
off deuterons [34] assuming finite strange quark form factors
for the nucleons and inelastic nuclear transitions which can
only take place in the presence of finite strange quark form
factors [20]. The latter investigation would involve a relativ-
istic finite nucleus neutrino scattering calculation which is
the subject of the upcoming paper.
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APPENDIX A: CONVENTIONS AND FORMULAS

In this appendix conventions and formulas used to com-
pute semi-inclusive differential cross sections for neutral and
charged current neutrino-nucleus reactions in the RFG model
are summarized for completeness. Because the technical de-
tails for including the 1plh and 2p2h MEC contributions to
the hadronic tensor in the Fermi gas models are given in
detail in [9,11], only the impulse approximation results are
presented here. Although these references deal only with
electron scattering, generalization to both charged and neu-
tral current neutrino scattering is straightforward. Conven-
tions of Halzen and Martin [58] are used throughout.

As usual, it is assumed that the target nucleus consists of
A nucleons with mass Mz and that a single nucleon is
ejected from the target due to the interaction with the probe.
In what follows M is the mass of the free nucleon and the

initial and final four-momenta of the ejectile, P~~= (E/, P/)—
and PF= (EF,PF), are related to —the four-momentum trans-

fer to the target k~ by P~~=k" —P~~. Incoming and outgoing

lepton four-momenta are denoted by k~ —= ( e;,k, ) and

k&
—=(e& kf), respectively. A positive energy nucleon with

energy E in a plane wave state is given by

i(k, —ky) x

J~(x)= »/2 u(kf of)y~(1~ ys)u(k;, o;), .
2V e, e/)

(A5)

i(PI—PI;) y

(E E 1/2 u(PF ~F)J'(k)u(P/ ~/).
I F)

(A6)

The minus and plus signs in Eq. (A5) correspond to neutrino
and antineutrino scattering, respectively. In the impulse ap-
proximation, the hadronic current operator J"(k) is given by
either Eq. (2.8) for the neutral current or by Eq. (2.9) for the
charged current, while the corresponding two-body MEC op-
erators are discussed in Appendix B.The resulting cross sec-
tion for free nucleons is given by

(do. ' ) = 8 l(k —k +P P)—
o w 1

Xo-z /w co W~dP dk
4 'ZZ F

jV fy

(A7)

zO 4

where o. and o. assume the following form for neutral
and charged current processes:

2 2
zOo. =16 e cos (9/2) 4 (A8)

where j/'(x) and J (y) are the leptonic and hadronic cur-
rents, respectively, and the coupling constant g is defined as

g —= GF/Q2. The spatial parts of the leptonic and hadronic
currents in the above transition matrix are

iP r

i//pw( P, r ) = u (P, o ),
2EV

(A1)
2 2

o = 16kf 4 (A9)
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with 0 being the lepton polar scattering angle. The quantity
co~,W~" appearing in Eq. (A7) may be expressed as a linear
combination of various nuclear structure functions W; as

k
CATT= (A26)

~p, vW ~LWL+ ~TWT+ ~TTWTT+ ~LTWLT

+ ~LT' WLT' + ~TT' TT' ' (A10)
COLT = —2

k
tan( 8/2)— (A27)

These structure functions are most conveniently expressed
in a coordinate system defined by the following orthogonal
unit vectors:

coTT = ~2 tan(H/2)
k

tan( e/2)—
lkl'

(A28)

(Al 1) (ALT = ~2 tan(0/2). (A29)

kX PF

lkxp, l'

ni Xk

l&ixkl

(A12)

(A13)

In the expressions for the coefficients coTT and coLT, the
upper and lower signs correspond to neutrino and an-
tineutrino scatterings, respectively. For the charged current
reaction of type (vI, lN) with lepton mass mi, each term in
the product cu„,W~', Eq. (A10), may be written as

In this coordinate system the spatial part of the hadronic

current J, where J~= (p, J), may be written as

J=J~inii+ Jinni+ Jkk (A14)

Then the structure functions for the semi-inclusive neutral
current (v, v'N) reaction are

2 /2)2
i f -~'+m,' IJ„I'

2(e;+ef)(e, —kf) —2colkl Re(p*J„)

~LwL ' [(el+ ef)' —Ikl' —mi]lpl'
4e;kf

2

W.= I p '+,
I J.l'- 2 «(p*J.),

coTWT= coi Wi+ coii Wii,

w, =lJ, I',

WTT= sin(2 @F)Re(JLJt)

(A15)

(A16)

(A17)

(A18)

(A19)

(A30)

o)TWT=
ekf sin 0 E';kf Sin 6

cos(2~, )(IJil'-IJ, I')+ '

1 ( —ef +cosa (IJiil + Jil )
(

(A31)

sin& ( e, k—
~LTWLT (e'+ ef)Re Jk —p*

. L. Ikl(e, + ef)
(

WLT= «p — - JL ( —»n@FJ' + cos@FJit)

(A20)
x(Jl cos@F JJ»ngF) (A32)

WTT = Im( J
i
Ji ),

( (oW„=&m p — Jk (»n@FJit+ cos4'FJi)
/

(A21)

(A22)

E';kf sin 0
coTTWTT = —

2
sin(2 pF) Re(Ji Jii ), (A33)

(
coLT WLT = —sinOIm p*—

where pF is the azimuthal angle of the ejected nucleon. The
kinematical coefficients ~; corresponding to these structure
functions are as follows:

X (Jii sincbF+ Ji cosPF), (A34)

COL= 1,

(/'i
coi = tan ( 0/2) —[1+cos(2$F)]

( k'
coi = tan (0/2) —[1—cos(2@F)]

(A23)

(A24)

(A25)

MTT' WTT' — + kf (e;+ ef) cos 8 Im( JiiJi ) .
)

(A35)

In both the charged and neutral current processes the four-
momentum of the scattered lepton is not observed and it is
thus necessary to integrate over the unobserved final lepton
three-momentum kf in addition to the angular variables of
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the ejected nucleon. This leads to the following differential
cross section for free nucleons:

/d~/W —
) Z/W

2 „(MLWL+ &TWT+ &TT'WTT').4'
(A36)

In the relativistic FGM, noninteracting nucleons are filled up
to the Fermi momentum kF and the initial momentum of the
struck nucleon have to be averaged over the Fermi sphere. In
addition, the initial energy of this nucleon Fl is often reduced
with respect to its free space value by the binding energy,
expressed by an input parameter B

MEC operators for electromagnetic, neutral and charged cur-
rent scattering reactions may be constructed by taking the
appropriate linear combinations of the operators given in this
appendix, multiplied by the pion propagator and the mNN
vertex function as shown in Eq. (2.16).

Using the notation introduced in the text and in Appendix
A, the amplitude for soft-pion production induced by the
vector singlet current V is found to be

lim(m'(q)N(PF)
~

V (k) ~N(P/))
q —+0

= ( —i )u (PF, o F)[V„ys yp y + V// ys y yp+ Vc ys ypX

&/= (l P/I'+ M') '"-B + Vays~ yp+ VFysX„]k'u(Pr, o/). (B1)

= (~k~ + ~PF~
—2 k. PF+M )" B. —(A37)

The resulting differential cross sections per nucleon for neu-
tral and charged current processes in the RFGM are

z'xw-a
V~=—+0

~
2EZ)' (B2)

In the above expression a= 1, 2, 3 for pion production and
the coefficients VJ multiplying the operators are defined as

l RFoM
3 defd(cos 0)

[~L L+ ~TWT+ ~TT'WTT']

(A38)

V~—= +0 F, (k ) (B3)

Integrations over ef and cos8 in Eq. (A38) are performed
numerically. For further technical details see t59].

APPENDIX B' TWO-BODY EXCHANGE
CURRENT OPERATORS

Vc—+0

V0
D

(
p( 2)

g rrNN

I 2E()'

(B4)

(B5)

This appendix presents the general form for the two-body
soft-pion MEC operator, 1'„(k;P/, t P/2'PF, &

'PF 2)Ex ~

given in Eq. (2.16) where the probing current, J' (k), may be
any one of vector or axial SU(3) currents. Since the matrix
element for the pion absorption is given by Eq. (2.17), the
quantity of interest here are the amplitudes for the soft-pion
production shown in Eq. (2.19).Therefore, only these ampli-
tudes are shown explicitly here and the relevant full soft-pion

V~—= +0 F (k ) M (B6)

with F.;= P~ P,
~

+ M . Th—e vector singlet amplitude, Eq.
(Bl) is divergenceless when the nucleons are assumed to
obey the free Dirac equation, leading to current conservation
for vector singlet MEC. The corresponding vector octet soft-
pion production amplitude is

1
lim(m'(q)N(PF)IV" (k)IN(P/)) =(+i)u(PF, oF) —[X',k"] (V„ysypy + Vaysy„yp+ VcysypX Voys~/ yp
q~0

1
+ V&y &,)+ -4t:Z, Z ]-(V~ysypy,

—Vey y„yp+ Vcy y X —Voy X yp, + VFy y + Vpysk ) u(P/ tT/)
b b b b (B7)

where the index b runs from 1 to 8. The coeNcients VJ are

~ grrNNV„—= + F, (k2) (B8)

~ grrNNV~=+F, (k ) (B9)
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Vc—= +F2(k )~ (810)
The matrix element of interest for the probing axial sin-

glet current may be written as

b( 2)
g NN1

D 2
i E

l2g ww
Vb—= +F2(k ) M

(811)

(812)

lim(m'(q)N(PF) lA'„(k) IN(PI))
q~O

(+ i)u(PF rrF) [AA roy~+ Asy„yp+ A ck~

+Ao ypk ]k'u(PI, o I),

where

(816)

) Gb(k2) i ) 2g
V —= + F(k)+ )i

H„"(k') ~

Vp 2 2 (2g~~~).
I k —m gA

(813)

(814)

A„—+0

A 0
B

G„(k )A
I, 2E, t'

G„(k )

(817)

(818)

The first term in the coefficient VO yields the "pion-in-flight"
MEC with the pion form factor F"(k ). However, this
"pion-in-flight" term is proportional to the four-momentum
transfer of the leptonic probe, k„, and thus does not contrib-
ute to the neutral current total cross section. It also does not
contribute to the electron scattering total cross section when
the usual approximation of neglecting the electron mass is
made. Terms proportional to k~ also do not contribute to the

(e,e') longitudinal and transverse response functions RL and

RT, when they are evaluated by using all the components of
the electromagnetic four-current as done in this paper. The
coefficient VO can be made to vanish by assuming a pointlike
pion and using the pion pole dominance approximation from
PCAC, Eq. (3.1). For momentum transfers ranging from P
decay to the quasielastic kinematics where the soft-pion
MEC operators are applicable, this should be a good ap-
proximation.

However, even when VO is made to vanish the vector
octet soft-pion production amplitude, Eq. (87), is not diver-

genceless. The problem is the term with coefficient VF which
has the structure of an axial current. The prescription used by
Adler [46] to make Eq. (87) divergenceless and thus guar-
antee the conservation of vector currents involves adding ap-
propriate counter terms proportional to k„. In the present
case, this counter term is VGy5k~ where VG is given by

Ac=+0 p( p)
g AN

M
(819)

A 0
D

2 )g~~b, l ) 1 1 i

„(k ) —+ —.
2 ) ~E& E2)

(820)

Similarly, the corresponding amplitude for the axial octet
current is

with the following coefficients:

A„—= +G„"(k )«. )' (822)

Ab Gb(k2)
i Ei )' (823)

lim(7r'(q)N(PF) lA" (k) lN(PI))
q~O

(+ &)u(PF ~F)I 4 I:~, "]+( A yor~+AB r„yo

+Ac rok +ADk~) + 4 [X,X j (A& ro r A& r-„ro-
+Aeyok&+AF(p, +p2)~+AGy~))u(PI oi) (821)

'G~(k')' '4g w~'
VG —+

gA
(815)

(1 1 i
Ac=——H~(k )g~~~I E + E (824)

This prescription is applicable to neutral current and electro-
magnetic reactions since terms proportioinal to k do not
contribute to the total cross sections. However, it leads to
ambiguities for the charged current reactions where one of
the leptons is massive and terms proportional to k in the
hadronic current must explicitly be taken into account in the
derivation of the reaction cross section. Nevertheless, since
the generalized soft-pion dominance method of Chemtob and
Rho ought to be applicable for all types of currents, it is
desirable to insure the conservation of vector currents in this
manner. In the present application, the contribution from the
counter term Vzy5k to the charged current cross section
was found to be numerically very small (about 1% of the
total MEC contribution).

A =+H (k) I )' (825)

(1A"= —H (k )gE A vrNNI E E, (826)

AF=+F2(k )
I gAM j

(827)

(2g~N~i
AG—= —(Ft(k )+F2(k )+g„G„(k ))

i gAM)
(828)
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Note that it is straightforward to generalize these soft-pion
production amplitudes to pseudoscalar octet soft-meson
production amplitudes where the SU(3) index a now takes
on values from 1 to 8 and the mNN coupling constant is
replaced by the appropriate meson-nucleon coupling con-

stants. However, in deriving the above amplitudes the
Goldberger- Trieman relation was used to simplify the
expressions and this algebraic manipulation is not necessar-
ily justifiable for other pseudoscalar octet mesons under con-
sideration.
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