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mNX form factor from QCD sum rules
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QCD sum rules are used to calculate the q dependence of the 7tNN coupling g tt&(q ) in the spacelike
region 0.5 GeV (q (1.5 GeV . We study the Borel sum rule for the three point function of one pseudo-
scalar and two nucleon currents up to order 4 in the operator product expansion. The Borel transform is
performed with respect to the nucleon momenta, whereas the momentum q of the pseudoscalar vertex is kept
fixed at spacelike values. The results can be well fitted using a monopole form with a cutoff mass of about
A =800 MeV.

PACS number(s): 24.85.+p, 12.38.Lg, 13.75.Cs, 13.75.Gx

I. INTRODUCTION

The pion nucleon form factor g /vt/(q ) plays a very im-
portant but not less controversial role in the framework of
mN and NN dynamics.

In general, meson baryon form factors are used in one
boson exchange potentials (OBEP's) for the NN force in
order to account for the microscopic, i.e., quark and gluon,
structure of the mesons and baryons at a given vertex, and
therefore provide a natural cutoff description for the interac-
tion potential at short distances. Most of the realistic OBEP's
fit the data with a monopole form for the mNN form factor,

g.N~(q') A' —m'.f.w~(q') =
g mNN( m m) A gr

with a large monopole mass A )1.3 GeV [1].On the other
hand almost all other hadronic theories advocate a much
softer form factor with A =500—950 MeV: chiral soliton
and quark models for the nucleon [2—7], the Goldberger-
Treiman discrepancy between q =0 and q =m [8], gen-
eral considerations on the structure of the 7rNN vertex [9],
charge exchange reactions [10], threshold vr production [11],
and deep inelastic lepton nucleon scattering (Sullivan pro-
cess) [12—14]. More recent studies within the OBEP's,
which include the 7r' resonance [15],use a different form of
the scalar exchange potential [16], or consider a correlated

p m exchange [17], also indicate a softer cutoff mass
(A ~=700—800 MeV).

For these reasons it seems highly desirable to perform a
calculation of g ~t/(q ) which does not suffer from the am-
biguities of the model and parametrization schemes men-
tioned above and is connected to QCD as closely as possible.
In this context a quenched lattice QCD calculation has re-
cently been carried out rendering a monopole cutoff mass of
A =750 MeV [18].

It is the aim of our work to study this phenomenon within
the framework of QCD sum rules [19], which have turned
out to be a very successful method for calculating hadronic
properties at intermediate energies (for reviews see [20,21])
without employing the computer time consuming lattice
gauge calculations.

In order to calculate the pion nucleon coupling constant

g t/t/=g z&(m ) itself, i.e., for on shell 7r, one can con-2

sider either (i) the vacuum three point correlator of two
nucleon and one pseudoscalar meson interpolating fields,
which are saturated with resonances in the nucleon N and
pion 7r channels on the phenomenological side [20,22 —24]
or (ii) the two point function of two nucleon interpolating
fields sandwiched between the vacuum and one m state and
saturating only with N resonances [20,23,25]. With both
methods it was possible to obtain rather reasonable results
for g z~, although it should be stated that the uncertainties
in the Borel analysis are relatively high, especially in method
(ii), even if higher order power and ct, corrections are taken
into account [25].

If one is interested in the momentum dependence of
g t/t/(q ) at intermediate q and therefore with off shell
7r, only method (i), which has been successfully used for the
calculation of meson form factors [26—28], can be applied.

Our paper is organized as follows. In Sec. II we introduce
the three point function for the NNvr vertex and saturate it
with nucleon intermediate states. In Sec. III the operator
product expansion (OPE) is carried out. In Sec. IV we per-
form the Borel analysis. The results are discussed and sum-
marized in Sec. V.

II. THE THREE POINT FUNCTION FOR THE AN
VERTEX

Our starting point is the three point function (Fig. 1)

A(p it.tp2. q)

d x,d x2e' &'&e '"2'&(Oim~r/(x, )Js(0) r/(x2)i0)

(2 1)
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FIG. 1. The three point function A(p, ,p2, q).

0556-28 13/95/52(6)/3386(7)/$06. 00 52 1995 The American Physical Society



52 7rNN FORM FACTOR FROM QCD SUM RULES 3387

of a pseudoscalar, charge neutral current

Js(x)=q(x)iysr q(x)

and two Ioffe nucleon interpolating fields [29]

2/(x) = e,b,([u'(x) 8 y u (x)]ysy"d'(x))

(2 2)

(2 3)

Therefore saturating Eq. (2.1) with nucleon states

~N(p)) renders, after continuing to Euclidean momenta

(q q Pl Pl P2 P2)

. , mf g NN(q)&m' 2

Pl ~P2~q N 1 N 2+ 2
mo i q +m

Here [(P 1 ™N)ys(P2™N)]
(p 1+MN)(p2+ MN)

(2.1 1)

denote the spinors for the quarks with mass mo=m„=md,
a, b, and c the color indices, and 8 =i y2yo the charge con-
jugation matrix. The three momenta at the vertex are related
by q=p& —p

Due to restrictions from Lorentz, parity, and charge con-
jugation invariance the three point function A(p, ,p2, q) has
the general form

where )1.N is the overlap between the Ioffe current r/(x) and
a nucleon state

(01 V(x) IN(p)) =) Ne ~N(p). (2.12)

(Pl ™N)ys(I2™N) ( Pl P2™N)ys+~pppl P2ys

Using p, =p2=MN the [ ] term in Eq. (2.11) can be cast
into the form

~(pl P2.q) = F1(pl P2.q') ys+ F2(pl .P2.q')4ys + MN4 ys . (2.13)

+F2(pl p2 q )+ys
2 2 2 p pFc(pl P2 q )lr ysP1P2 (2.4)

The contribution of the first higher resonance N* with mass

MN to Eq. (2.1) has the form

where q=p, —p2 and P=(pl+p2)/2. The functions Fl,
F2, and F4 are symmetric and F3 is antisymmetric under the
interchange p&~p2.

The matrix element of the pseudoscalar current 15 be-
tween on shell nucleon states defines the pseudoscalar
nucleon form factor

'f ~ g *(q')
(Pl ~P2 ~q)]N+ )1 N)l N+

mo ) q+m

[9'1™N)ys(g 2™N)]
2 2 2 ~2 +N~N*.

(pl+MN)(p2+MN )

(N(P1) l
Js(0) IN(p2) ) = g P(q') &N(P2) 1 ysll N(pl ) (2.5)

(2.14)

where uN(p) denotes a free nucleon spinor in momentum
space.

The pion nucleon coupling constant g zz is defined by
the ~N interaction

K ~=ig ~~Ni y5v'mN (2.6)

g mNN
8 n(Ny"ysvN)

N
(2.7)

By means of the chiral Ward identity

8~A~ = moq(x)i ys vq(x) (2.8)

for the axial current A~(x) =q(x) y~ys(1/2) vq(x) as well as
the partially conserved axial vector current (PCAC) relation

with the form factor g NN(q ) For on shell nucleons it is
equivalent to use the coupling of Eq. (2.6) or the chirally
invariant vector coupling

III. OPERATOR PRODUCT EXPANSION

As already stated in Eq. (2.4) there are essentially four
Lorentz structures contained in A(p, ,p2, q). In the follow-
ing we work with massless quarks, i.e., 10=0. From a
simple dimensional analysis of both sides of the sum rule it
is easy to see [20,22,23] that in the sum rule for the functions

F& and F4, which both contain an even number of external
momenta, only operators of even dimension (I, (G ),
(qI qqI'q), etc.) contribute, whereas the odd dimension op-
erators enter with a mass factor mo and therefore vanish for
ID~0. On the other hand, for the functions F2 and F3 con-
taining an odd number of external momenta, only operators
of odd dimension ((qq), (q G o q)) contribute. By multiply-

ing both sides of the sum rule with g and taking the trace
over the Dirac matrices, we can single out the odd dimen-
sional structure, i.e., the sum rule for F2 and F3. Up to order
4 we only have to account for the diagrams in Fig. 2 con-
taining the quark condensate (qq) =(uu) = (dd).

The contribution from the diagrams in Fig. 2(a) renders
8 A~(x) =m f„n(x) (2.9)

one can relate the pseudoscalar nucleon form factor gp(q )
[Eq. (2.5)] to the pion nucleon form factor g NN(q ):

1
[&(pl,p2, q)]2.=16 ys (qq) 2 2 [Pll(pl)+P21(P2)]2

(3 1)

2 mf g NN(q)
mo /

—q +m (2.10) whereas for the diagrams of Fig. 2(b) one obtains after a
rather lengthy calculation
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l ~(p p2 q)]2b ( 16) y5 (qq) 4 I (p 1 +p2) J(pl p2 q ) + (pl p )++(pl p2 "q )]

+(—16) ys (qq) 2 I:(p2 —pl) J(pl.p2. q')+(pl —p2)&-(pl. p2. q')]

+( —16) ys (qq) — —I(pl)+ —I(p2)+2I(q ) +(—16) y& (qq) ——I(pl) ——I(p2)

(3.2)

The expressions I, J, K+, and K arise from loop integrations and can be most conveniently represented as double parameter
integrals:

d'k 1 ( i ~ ( p'~

(27r) (p —k) k ( 167r ( ( p, )'

d4I 1
1( 2 2 2)P 1 P2 'q

J (2~)2 k2(k p )2(k p )2

(

2 ( ) dP d~ 2 216' ( J p J p pl(1 —k)(1 —p)+p2(1 —k) p+ q kp(1 —p)
'

(3.3)

(3.4)

and

with

d41 k

)2 k2(k )2(k )2
=

16 2 2 +(Pl P2 q ) + —(Pl P2 q ) (3.5)

E (~P, , P,2q)=
30

)1 X p~(X —1)
J p pill. p(1 —X.)+P2(1 —X)(1 —p)+q (1 —X)p

(3.6)

In the UV divergent integral of Eq. (3.3) we have applied the
standard dimensional renormalization at the renormalization
point p, .

IV. SUM RULE AND SOREL ANALYSIS

For the OPE to be valid q has to be large, i.e.,
q &) A QCD In this case we can neglect the pion mass in the
pole term in Eq. (3.1), which is consistent with putting
IO=O.

In Refs. [20,22,23] a sum rule for the pion nucleon cou-
pling g NN= g~NN(q = 0) has been obtained and analyzed
by identifying the residua of the I/q pole in Eq. (2.11) and
in the OPE contribution from Fig. 2(a) (3.1). By introducing

~gvrNN(q ) g mNN(q ) gmNN( ) (4.1)

and analogous expressions for the higher resonance contri-
butions, we therefore can write down the sum rule:

m f( 2
M~

1
2Tryf4&(P1 P2 q)]2b.4q

(4 2)

FIG. 2. Diagrams in the OPE.
Following Refs. [26—28] we apply the double Borel trans-

form with respect to the nucleon momenta p, and p2
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p xed at a spacelike value &A
e pion is

q & &cD, so thatboth sides
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2)k —ap } ( )k gk) (4 5)
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'
y account in addition to the ground

state N we obtain the Borel sum rule
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FIG. 5. As in Fig. 3 for q = 1.5MN.
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In order to eliminate the parameters of the higher reso-
nance contribution as far as possible we can take the deriva-
tive 8/8(1/ M) on both sides of Eq. (4.7) and substitute the
so obtained sum rule back into Eq. (4.7).After employing the
Gell-Mann —Oakes —Renner relation

/ q'i &qq)
I ~gvrNN*(q )] g iM ~2

where the function g is defined as

(4.6)

we obtain finally

m'f = —2mo(qq) (4.8)

x 1+p —4p
(1+p)s (1+p)

(4.7)
with

Ag»(q') =( ), ,—B(q', M', M~') (4.9)
N 7T

1.0

calculated

monopole (A„=0.85M )N

0.8

0.4

FIG. 6. The f~v~(q ) calculated from Eq.
(5.2) (interpolated to small q ) with M =M~
and M~ =6.0M~ (full line) compared with a
monopole form (1.1) with a cutoff mass of
A = 0.85M~= 800 MeV (dotted line).
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M ) M~ —MN

(4.10)

MN = 940 MeV. In order to avoid uncertainties from the sum
rule for g NN we will also use the experimental value

g„NN= 13.4 instead of the value from the sum rule of Refs.
[20,22,23]. The parameter X.~ is not experimentally known
but has been determined from various analyses using the
nucleon sum rule, the most recent and concerning uncertain-
ties obviously most reliable one coming from Ref. [31]:

Before performing the Borel analysis, let us comment
about the region of q where our method can be assumed to
work. If q is too low (q (A&cD) the OPE breaks down due

to higher order power corrections in 1/q . On the other hand
we have used the PCAC relation (2.9) in order to relate

g»(q ) to the pseudoscalar nucleon form factor gp(q )
[Eq. (2.10)].This is equivalent to assuming pion pole domi-

nance for g p(q ), i.e., saturating (N(pi)i Js(0)iN(p2)) with

a pion state and using the coupling g»(q ). This assump-
tion likely breaks down if q is of the same magnitude as the

first pionic resonance m'', i.e., q ~m„, =2.2MN, because
then m'' contributes in the dispersion relation to a similar
extent as does ~.

Keeping this in mind we use for the Borel analysis q
values in the interval 0.5MN~q ~1.5MN, where our ap-
proach can be assumed to be reliable. Here we follow the

spirit of Ref. [30] and treat the resonance mass M~ as an

effective mass, whose value is adjusted in order to obtain
maximal Borel stability.

From Figs. 3—5 we can deduce that for the whole q
interval mentioned above an effective resonance mass of
Mtt =6.0M~ (M~=2.3 MeV) gives the largest Borel pla-

teau of 0.8MN~M ~1.8MN.

V. RESULTS AND DISCUSSION

&N=5.5X10 " GeV =8.07X10 MN. (5.2)

As we have discussed in the last section formula (5.2) cannot
be applied for low q . This means that we have to interpolate
from q =0.5M~ to q =0, where f ~tv(0) = 1. It is interest-

ing to note that the values for f tttt(q ) which one obtains

by this procedure at low q are practically identical to the
ones one would get if one applied Eq. (5.2) literally to the
low q region. This might be purely accidental, but a pos-
sible reason could be that higher power corrections in 1/q
blowing up the OPE at q ~0 are canceled or suppressed
after applying the double Borel transform M, 2 (4.4). In order
to answer this question one has to examine higher order
power corrections to the OPE diagrams in Fig. 2, which is
rather cumbersome for a three point function consisting of
four quark lines and will be postponed to a separate analysis.

Anyhow, from Fig. 6 we can see that the interpolation of
f„tvtv(q ) from intermediate q, where we can apply Eq.
(5.2), to small q is very smooth. Furthermore, in the whole
interval 0(q (2.0MN the f tttv(q ) of our calculation can
be fitted very accurately by a monopole form (1.1) with a
cutoff mass of A =0.85MN= 800 MeV. This result is very
close to the one recently obtained from quenched lattice
QCD [18], which indicates that both methods give a similar
description of the ~NN vertex at intermediate q .

From Eqs. (4.9) and (4.10) we obtain the final expression
for the form factor f tttt(q ) defined in Eq. (1.1):

M
f tv'(q )=1—

2 2 B(q,M, M~ ).
N g~NN

(5.1)

Due to the discussion in the last section, we use M =MN
and MN =6.0MN. For MN we take the experimental value
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