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We discuss a mapping procedure from a space of colorless three-quark clusters into a space of elementary
baryons and illustrate it in the context of a three-color extension of the Lipkin model recently developed.
Special attention is addressed to the problem of the formation of unphysical states in the mapped space. A
correspondence is established between quark and baryon spaces and the baryon image of a generic quark
operator is defined both in its Hermitian and non-Hermitian forms. Its spectrum (identical in the two cases) is
found to consist of a physical part containing the same eigenvalues of the quark operator in the cluster space
and an unphysical part consisting only of zero eigenvalues. A physical subspace of the baryon space is also
defined where the latter eigenvalues are suppressed. The procedure discussed is quite general and applications
of it can be thought also in the correspondence between systems of 2n fermions and n bosons.

PACS number(s): 24.85.+p, 12.39.—x, 13.75.Cs, 21.45.+v

I. INTRODUCTION

Among the QCD-inspired quark models of baryons, non-
relativistic constituent models have attracted considerable at-
tention in recent years [1].Here, baryons are assumed to be
clusters of three quarks, each of them carrying color, spin,
and isospin and interacting via a potential whose main terms
are a confining and a hyperfine term. These models have
provided interesting results in the description of single
baryon properties and, based on that, attempts have been
made to extend their application to the study of the baryon-
baryon interaction [2] as well as of few-baryon bound sys-
tems [3].

It is in this framework that mapping techniques tradition-
ally developed in nuclear physics for the description of col-
lective excitations and establishing a correspondence be-
tween systems of 2n fermions and n bosons [4] have been
recently extended to the correspondence between systems of
3n fermions and n fermions. More precisely, it is the map-
ping of three-quark clusters onto "elementary baryons, "
namely, fermions carrying the same quantum numbers as the
clusters, which has become the object of investigation.

Recent works on this subject have been those of Nadjakov
in 1990 [5], Pittel, Engel, Dukelsky and Ring in 1990 [7],
and Meyer in 1991 [8]. Although different among them-
selves, these procedures all have a common point: they fol-
low the Belyaev-Zelevinsky method which is that based on
the mapping of the operators in such a way that their com-
mutation relations are preserved [9].More particularly, it is
the Dyson mapping [11]or generalizations of it which they
employ. Applications of these procedures can be found
within the so-called quark nuclear-plasma model of Nadja-
kov [5] as well as within the so-called Bonn quark shell
model of Petry et al. [12], in Ref. [7].

A quite interesting scenario appeared in the more recent
paper (1994) of Pittel, Arias, Dukelsky, and Frank [6] (here-
after referred to as PADF). Here, the authors have developed
a three-color extension of the so-called Lipkin-Meshkov-
Glick model [13]which has been widely used in the past as
a testing bench for nuclear many-body approximations. The
quark Hamiltonian of the model includes one-body, two-

body, and three-body interactions and, as for the model in its
original form, group theoretical techniques have been devel-
oped for an exact solution of its eigenvalue problem.

By following also in this case the Belyaev-Zelevinsky
method, PADF have developed a new mapping procedure
which has been found able to overcome some limitations
evidenced in the previous approaches [6].Among these limi-
tations, for instance, is the "preference" of these approaches
toward special forms of Hamiltonians. The image of the Lip-
kin Hamiltonian has been constructed by PADF in both a
Hermitian and a non-Hermitian form and, in both cases, all
the original quark eigenvalues have been exactly reproduced
in the baryon space. However, besides these eigenstates, all
with a corresponding one in the quark cluster space, several
other states have appeared which are a pure artifact of the
mapping procedure. It is the mixing in the spectrum of these
"physical" and "unphysical" states which has been analyzed
by PADF.

In 1991, Catara and Sambataro [14] (hereafter referred to
as CS) have proposed a mapping procedure which is differ-
ent from those discussed so far in that it does not follow the
Belyaev-Zelevinsky method. The starting point of the proce-
dure has been a "simple" (as will also be discussed later)
correspondence between a space of quark clusters and a
space of elementary baryons. Therefore the baryon image of
a generic quark operator has been constructed such that all
the eigenvalues of the quark operator in the cluster space
were also eigenvalues of its image. This does not imply that
corresponding matrix elements of the quark operator in the
cluster space and of its image must be equal. However, a
further correspondence has also been established between
quark and baryon spaces such that matrix elements were in-
deed preserved as within the so-called Marumori approach
[10].

This procedure has been first applied to a realistic Hamil-
tonian of Oka and Yazaki [15] and the derived nucleon-
nucleon Hamiltonian analyzed [14].As a second application
[16], the authors have derived the nucleon image of the one-
body quark density operator and expectation values of this
operator have been calculated in the ground state of doubly
magic nuclei like He, ' 0, and Ca described within the
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nuclear shell model. This has allowed an analysis of quark
exchange effects on the quark densities of these nuclei.

As also evidenced by CS, the realizations just discussed
have referred to cases in which corresponding states were
forming a set of linearly independent states on one side, the
composite space, and a set of orthonormal states on the other
side, the elementary space. This has created the conditions
for the nonappearance of unphysical states in the mapped
space. In circumstances different from these, the appearance
of these states would have made the mapping considerably
more complicated and a study of this problem was left to
future developments of the theory.

The three-color extension of the Lipkin model proposed
by PADF has offered the opportunity of investigating this
problem thoroughly. The mapping procedure of CS has now
been reviewed with reference to the new model. After estab-
lishing a "simple" correspondence (as in CS) between the
spaces of three-quark clusters and of elementary baryons, the
baryon image of a quark operator has been defined, in both
its Hermitian and non-Hermitian forms, and its spectrum
analyzed. As a general result, this spectrum (identical in the
two cases) has been found to consist of (a) a physical part
whose eigenvalues are identical to those of the quark opera-
tor in the cluster space and (b) an unphysical part whose
eigenvalues are all zero. Moreover, a further correspondence
between quark and baryon spaces has been established such
as to guarantee the equality of corresponding matrix ele-
ments and so a physical baryon subspace has been defined.

As an important point, we remark that the procedure
which is discussed in this paper has been developed in a
quite general form so that applications of it can be consid-
ered for very different cases like, for instance, the correspon-
dence between systems of 2n fermions and n bosons.

The paper is organized as follows. In Sec. II, we briefly
review the three-color extension of the Lipkin model devel-
oped by PADF. In Sec. III, we discuss the mapping proce-
dure, and, precisely, in Sec. III A, we establish the corre-
spondence between the quark and baryon spaces; in Sec.
III 8, we derive the baryon image of a quark operator in its
non-Hermitian form; in Sec. III C, we derive the image in its
Heimitian form. In Sec. IV, we discuss the n-body structure
of the image operator and consider, as an example, the
Hamiltonian of the Lipkin model. Finally, in Sec. V, we sum-
marize the results and give some closing remarks.

II. THE THREE-COLOR LIPKIN MODEL

As anticipated in the Introduction, the three-color Lipkin
model has been presented and discussed thoroughly by
PADF. Here, we will briefly review its main points.

The model is a natural extension of the standard Lipkin
model [13]to fermions characterized by three colors. There-
fore, there are two levels, each one 3A-fold degenerate,
separated by an energy A. Each single-particle state in these
levels is characterized by three quantum numbers: c, the
co1or, 0., which individuates whether the state belongs to the
level "up" (a =+) or "down" (o.= —), and, finally, p,
which runs from 1 up to A. In the unperturbed ground state,
it is assumed that N=30, particles occupy all the single-
particle states in the lower level.

The model is discussed in second quantized form and so

creation and annihilation operators q, and q, „are intro-
duced. These satisfy the fermion commutation relations

iq,.„q, .„}=(q.„,q, .„}=,r r =0

e =0"'+0"'+II(3&,C C C C (3)

with

Hc' =2 (q, „q. ,—q, „q,-„),
cp

(4)

- (2) X2
~c c c ~c c c

1 2 3 I 4 5clc2c3c4c5PlP2

x( ~~q~ + q~ + q q

+ 'q, —„,q, —„q,+„q +„,)

and

(3) X3
Hc =—

C
1 C2C3 C4C5C6

c 1 c2c3c4c5c6P 1P2P3

x( '(qi +, qt +, qt +, q, , „qc5 .q

+ ' 6iqc — qc +p qc +p q, +, ,

where e. .. is the totally antisymmetric tensor of rank 3.
1 2 3

III. BARYON MAPPING OF QUARK OPERATORS

A. Quark and baryon spaces: The correspondence

Let us define

1

p ] p2p3 6 X c]c2c3qc]p]qc2p2qc3&]]3
C1C2C3

(where qt =qt „) the operator which creates a colorless
cluster of three particles (the "quarks'*) characterized by the
quantum numbers 0171 02P2 03P3. This operator is sym-
metric with respect to the indices 1,2,3. We define C( ~ the
vector space spanned by the states which are obtained by
acting with 0 cluster creation operators on a vacuum state

~(])~(])~(]) ~(2)~(2)p(2) ' ' ~((])~(]])~(]))l )&
1 2 3 1 2 3 1 2 3

the vacuum being defined by the condition

q, l0) =0.

qc]r'p & q c & ]T& p & } ~cc' ~, ]T,a' ~p, p '

where J(A, B}=AB+BA The m. odel Hamiltonian includes
one-body, two-body, and three-body interactions and scatters
particles among the levels without changing the p values and
maintaining all states "colorless" (as will be pointed out in
the next section). Its form is
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IP1P'2P'3)= p, p p, 10)

and their overlap is

(P1P'2P3IP1'P'2P'3) 6 ~(P'1P'2P31P'1P2P3)

where

3

~(P)P2P3 P)P2P3) = 2 I &ijkl ~p, , p.'~p2, p'. ~p, p'.

(12)

States of C are

li)=F () () ()F () () ()I0)
+2 +3 P)iP2iP

(13)

In the following, we will discuss in some detail the cases
A = 1 and 2. The second one is particularly interesting since
the associated mapping is representative of all cases with
larger 0, .

States of C ' are

An important feature of these states is their orthogonality.
This orthogonality, on one side, and the linear dependence of
the corresponding states of C ) (at least for 0)1), on the
other side, clearly reAect the "elementary" or "composite"
nature of the baryons entering in the definitions of the spaces
E~ ~ and C~ ~, respectively, and are associated with the dif-
ferent commutator algebras of the operators f „andP]P2P3
FT

P)P2P3 '

Results similar to those just discussed in the correspon-
dence between spaces C and E for 0=2 also hold for
larger spaces (&=3,4, . . . ). Also in these cases, in fact,
corresponding states while forming an orthogonal set in
E are a set of linearly dependent states in C

In the next section, we will describe a procedure aiming
to derive the image in E of a generic operator acting
within C . For simplicity, we will refer to the case 0=2
and, therefore, to the correspondence between the states (13)
and (18).However, the value of 0 having no relevance (only0)1), if not for the difficulty in actual calculations, in the
following we will suppress the indication of A.

and, differently from the previous case, they are neither or-
thogonal nor linearly independent. By constructing the over-

lap matrix and diagonalizing it, one finds indeed N= 20 or-
thonormal states to be compared with the total number of
N= 52 states.

In correspondence with the quark cluster operator
Ft (7), let us define the "baryon" operator fP ~P2P3
symmetric with respect to the three indices and satisfying the
commutation relations

B.The image operator and its physical and unphysical
eigenstates: Its non-Hermitian form

On the basis of what has been said at the end of the last
subsection, let C be the vector space spanned by the N states

(II),I2), . . . , IN)J defined by Eq. (13). Similarly, let F. be
the vector space spanned by the N states (I 1), I 2), . . . , I

N) J
defined by Eq. (18).With respect to this last equation, we are
only supposing that these states have been normalized so that
they now satisfy the condition

(14) (ilj)=8';, , Vi,j =1,2, . . . ,N (19)

Vp(p2p3'fp'p'p') 6 (Pip'2P3 ~piP'2P'3).
1 2 3

where the function S(p, ) p, 2p, 3, p, ', p, 2p, 3) is defined in Eq.
(12). We call E( ) the vector space spanned by the states
which are generated by the action of 0 of these operators on
a vacuum IO)

f ()) (1) (()f (2) (2) (2) f (n)p(~)p(~)l )
2 3

(16)

I p i p 2p 3)=fp, p2p, I
0)

A "simple" (see also I14]) correspondence can be estab-
lished between the states of C and F. States (16) c.an
be, in fact, formally obtained from states (8) by simply re-

placing cluster creation operators F (;) (;) (;) with baryon
P) P2 P3

creation operators f (;) (;) (;) and the quark vacuum IO) with
Pl P2 P3

the baryon vacuum IO). In correspondence with the state
(10) of C ', for instance, we have for F. '

In this section, in correspondence with a Hermitian operator
n

Oc acting within C, we will search for an operator Oz acting
within E such that all the eigenvalues of Oc in C be also
eigenvalues of Oz in E. We will refer to Oz as the image
operator of O~ in E. This operator will be first derived in its
non-Hermitian form Oz" . The study of the Hermitian im-

age Oz will then be reserved to the next subsection.
Let N be the number of orthonormal states which can be

constructed in terms of the N states
I
i): therefore the space C

is N-dimensional. In Sec. III A we have already seen that it is
N= 52 and N= 20 in the case 0=2. In all coming equations
of this subsection as well as of the next one, indices written
in terms of the latin letters k, i,j, . . . will be meant to vary in
the interval (1,N) while those written in terms of the greek
letters u, P, y, . . . will be meant to vary in the interval

(1,N).
Each orthonormal state within C,

I n), is a linear combi-
nation of states

I i) which we write as

and, similarly, in correspondence with the state (13) ofC, we have for E (2o)

I &) =f «) ( ) «)f„( ) «) ( )Io). (18)
where f, and ~ are real quantities satisfying the equations
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g (ili)f„=mf, , (21) Iz= X li)(il. (32)

(22)
Let Oz" be an operator acting within this space. Its action
on a state of E is given by

and o,'""'ll) =2 li)(il o'""'ll) (33)

fijfi'j ~ii''
J

The identity operator within C is

(23) By comparing Eqs. (28) and (33), one sees that if, Oz" is
defined such that

le=2 l~) &~ I
(24)

(halo~"'ll)

=2 B(i.j)VIOcli). (34)

and, by making use of Eq. (20), it can be written as

Ic=X li)B(i j)(jl

with

B(i,j)= g fj' (25)

(26)

its action on states of E is formally identical to that of 0& on
the corresponding states of C. As a result of that, if the state

(
IW~)=g cd~la)=g ' g f, c ~ ~ Ii)=—g a;~Ii)

Cl l Q! l

(35)

is an eigenstate of Oc corresponding to the eigenvalue X

then also the state

(36)
Only in the special case of a set of linearly independent
states (I l), I2), . . . , IN)) (i.e., N=N), would this matrix co-
incide with the inverse of the overlap matrix (ilj).

We observe that, in general,

Ocli) 4C. (27)

By defining the operator 0&=—ICOC, we notice that

(i) Ocll)=X li) X B(i,j)OIocl&),
l J

(28)

(ii) (ilocli) =&ilocli) (29)

namely, (i) Oc still gives rise to a state of C when acting on
a state of this space and (ii) Oc is equivalent to Oc within C.

To understand the role played by the operator 0&, let us

notice that the eigenvalues X~ of an operator Oc, within the

space C, can be found by solving the system of N equations

OclP)cp =l c
P

(30)

o,l+,) = l~. ,l+,),

By multiplying this expression on both sides by lu) and
summing over all these states, one gets

is an eigenstate of Oz" with the same eigenvalue. Therefore
N of the N eigenvalues of OF in E are the same as the

eigenvalues of Oz in C and the associated eigenkets of
Oz" are states "simply" corresponding to the eigenkets of

n

Oc in C. Equation (34) defines the image operator, non-

Hermitian, of Oz in E.
Equation (34) recalls Eq. (23) of CS where, however, the

matrix B(i,j) is replaced by the inverse of the overlap ma-
trix. As we have already seen, this can happen only in the

case that N=N. In this case, characterized by the fact that

both Oc in C and Oz(" in E would have the same number of
eigenvalues, each eigenstate I%"~) of Ozt" ~ would be in a
one-to-one correspondence with an eigenstate I'Ii'~) of Oc.
Therefore, no ambiguities would exist about the "physical-
ity" of all the eigenstates of OE("H)

The case N~N, instead, namely, the case under investi-
gation, appears more complicated. In this case, in fact, only
N eigenstates of OE in E can be in a one-to-one correspon-
dence with eigenstates of Oz in C and so have a physical
meaning, while the remaining N —N are unphysical and only
a result of the mapping procedure. In the following, we want
to study these eigenstates on the basis of the definition (34)
of the image operator.

Let us first define, corresponding to each state (20), the
state

where I%'~)—= Z c ~In). Therefore the states I%'~) associ-
ated with the eigenvalues k~ are eigenstates of the operator

Oc
Let us now turn to the space E. Here, due to the ortho-

normality of the states Ii), the identity operator is simply

l~)=X f;.I )i (37)

and let us ca11 E the subspace of E spanned by these states.
By noticing that



3382 M. SAMBATARO 52

1
(nln') = 8'

g li)(ilo,'""'lI)= X li)~(i,i)Vlo, l». (39)

we conclude that this space is N dimensional. By multiplying
both sides of Eq. (34) by the state Ii) and summing over all
these states, one obtains

Equation (34) clearly shows that corresponding matrix el-
ements of 0& and of its image operator O~" are not equal.
In the following, however, we will show that a correspon-
dence can be established such that matrix elements in the
quark and baryon spaces can be preserved. Due to the non-

Hermiticity of Oz", eigenbras and eigenkets need not be
dual vectors of one another. In order to individuate the eigen-
bra corresponding to each eigenket (45), let us define the
bras

Moreover, by making use of Eqs. (20), (26), and (37), one
obtains that (nI= X f;.(il, (46)

o,'""'lI) =X ln)&nlo II) (40) where

and also

o,'""'Ip) =X ln)&nlo Ip) (41)
The space spanned by these states, E, is a subspace of E*,
the dual space of E. Moreover, since

Now let I%'J) = Zix, , I l) be an eigenstate of O~z" i with eigen-
value k~ and I'II'J) = Xixijl 1) its (nonzero) image state. Then

O',""'le,)=g x„O',""'II)=X xi&X ln)&nloclI)

(nln')=~ 8 (48)

the dimension of E is the same as that of E, that is, N.
An important property of bras (46) and kets (37) is that

and since

=),X I )& l~, )

(nln') = 8

It follows from this and from Eq. (40) that

( Io.'""'=X
& IoclI)(II

(49)

(50)

o,'""'Ie,)=),le, )

one can conclude that, if KJWO,

l~,)=X
I ) & I~,).

(43)

(44)

By making use of this expression one can verify that the bra

(51)

That is, in correspondence with an eigenvalue k, +0, an

eigenket of the image operator OE must belong to E. But
it has already been seen that Oz~" i has the N eigenkets (36)
and these can be rewritten as (nlo'""'Ip)=&nlo Ip) (52)

is an eigenbra of OE~
~ corresponding to the eigenvalue

It also follows from (41) and (49) that

(45)

These states belong to E, are linearly independent [similarly
to the states (35)], and, this space being N dimensional, no
extra eigenket linearly independent from these can be ac-
cepted within this space. As will be seen in Sec. III C, even
in the presence of degeneracies, all the eigenstates of the
non-Hermitian image Oz" in the space E must be linearly
independent. Since, on the basis of Eq. (44), a nonzero ei-
genvalue would force its eigenstate to belong to E but this
state could not be linearly independent from the previous N
eigenstates (45), one can only conclude that a )i. beyond
those of these N eigenstates cannot be different from zero.
One finally notices that the case of an image state I'P ) with
zero norm (we considered so far a nonzero state) corresponds
to an eigenvalue k =0, as can be seen from Eq. (42).

Therefore, to any basis state
I n) (20) of C one can associate

a ket
I
n) (37) of E and a bra (nl (46) of E such that matrix

elements of 0& between basis states of C are equal to matrix
elements of the image O~" between the corresponding bra

and ket of E and E. Restricting the action of Oz" within

E and E, then, eliminates the unphysical zero eigenvalues
which emerge from the diagonalization of Oz" in the full

(i I
&&"

I
J') —=~'"(i.i) (53)

C. The image operator: Its Hermitian form

In order to derive the Hermitian form OE of the image
operator defined in Eq. (34), let us first introduce the opera-
tors BE and B~" such that
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and

(54)
(64)

where B' (i,j) and B ' (i,j) are matrices real, symmetric,
and such that

One can verify that

(n la')= 8' (65)

and

X B'"(l.l') B'"(1'.j)= B(i.j) (55) and that

(~l o,'")l~') =(~lo, l~'&. (66)

B1/2( ~ i )B
—1/2( ~ i (56)

BE and BE" are, therefore, Hermitian and such that

B1/2B —1/2 B
—1/2B 1/2

E E E E E' (57)

B I/2O(nH)B 1/2B 1/2l+ ) P B—1/2l+ )E E E E j j E j (58)

By defining

If l%' ) is an eigenket of Oz~" ) associated with the eigenvalue

k, , one deduces that

Therefore, if E is the N-dimensional subspace of E spanned

by the states (l 1 ), l
2 ), . . . , lN) ) defined in Eq. (64), one

can say that to any basis state
l n) (20) of C it is possible to

associate a state
l
n) (64) of E such that a matrix element of

Oz between basis states of C is equal to the matrix element
of OE between the corresponding states of E. The spectrum

of OE in E contains, then, only the physical part of the

spectrum of OE~
~ in E. The space E so defined individuates

the physical subspace of E.
It is interesting to discuss also the case of the eigenbra

('I/'/l of Oz" ) . Similarly to Eq. (58), one can write

O'»=—B '"O'""~B'"
E E E E (59) (qP lB QB —1/2O H)Bl/2 ) (q lB1 2 (67)

and that is,

Eq. (58) can be rewritten as

(60)

where

(e,lo,'"'=),(+,l, (68)

o~")l4,) = x, lq, ), (6l) (69)

namely, l%" ) is an eigenket of Ozl ) associated with the same
eigenvalue P . It can be derived that

(iloz lm) = g B' (i, l)(lloclk)B (k, m)
l, k

(62)

Ie,) =g c.,B "l~) = g c.,l
~) (63)

where

from which one deduces that OE is indeed Hermitian. This

equation defines the image operator of Oc in E in its Her-
mitian form.

Equation (60) establishes a relation between eigenkets of
OE" and OE corresponding to the same eigenvalue. The
linear independence of the first ones, stated in the previous
subsection and not guaranteed, in the presence of degenera-
cies, for a non-Hermitian operator, is forced, as an effect of
this relation, by the linear independence of the eigenstates of
Ozl ) (obligatory for a Hermitian operator).

It has been seen in the previous subsection, Eq. (45), that

eigenkets corresponding to physical eigenvalues of OE" are

combinations of states of E. The state (60) becomes in this
case

This state is the eigenbra of OE~
~ corresponding to the eigen-

ket defined in Eq. (60). More particularly, if )l. ~ is a physical
eigenvalue, the eigenbra corresponding to the eigenket (63)
1s

(e,l=g c.,(u

It can be verified that

(7l)

i.e., this bra is the dual vector of the ket
l
n) defined in Eq.

(64). As expected, in this case, the eigenbra (70) is simply
the dual vector of the eigenket (63). The two spaces E and

E defined in the previous subsection for kets and bras, re-

spectively, are replaced here only by the spaces E and its
dual E*.

In conclusion, the operator Ozl ) (59) is a Hermitian op-
erator whose spectrum in E is exactly the same as that of
Ozl" ) in E and so contains (a) the N physical eigenvalues of
Oc in C and (b) the N Nunphysical zero eigenv—alues. The

physical subspace E of E is spanned by a set of N states in a
one-to-one correspondence with the basis states of C and
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such that corresponding matrix elements of O~ and 0& are
" (H)

equal. The spectrum of Oz in E coincides with that of
Oc in C.

IV. N-BODY STRUCTURE OF A BARYON OPERATOR:
THE LIPKIN HAMILTONIAN

In the previous section, we have derived the matrix ele-
ments defining the baryon image of a quark operator. An
important problem which we discuss in this section is that
related to the n-body structure of this baryon operator. As an
example, we will refer to the image of the Lipkin Hamil-
tonian (3).

The derivation of the image operator treated in Sec. III

has referred to the case of the correspondence between the
states (13) and (18), namely, the case 0=2, although, in
principle, applicable also to larger values of A. The case
0, =1, instead, the case of the correspondence between the
states (10) and (17), is particularly simple a case. In this case,
in fact, corresponding states have the same overlaps so that
the image operator Hz &

of the Lipkin Hamiltonian is simply
defined by the equality

( P' i P'2 P'3 1 HE i I P' i P'2 P'3 ) (P' i P'2 P3 I
H c I P i P 2P 3 &

.
(72)

Hz &
turns out to be the one-body Hermitian operator

3A 12y2
H E,1 2P2 3P3 P1 2P2 3P3 P1 2P2 3P3 P 1 2P2 3P3' ,„+P1+P2~3P3 - —

P1
—P2~3P3P1P2P3~2~3 P1P2P3~3

+ ' 36x3
+f—

p&
—p2o3p3 f+p~+p&a&p&) g2 X (f+p&+p2+p& f p&

—
p&

—
p&

— f p —p —p —f+p&+p&+p&)
P1P2P3

(73)

For 0= 2, let us call Hz 2 the Hermitian image of the Lipkin
Hamiltonian which is defined by Eq. (62). One can find in-
finite combinations of one-body plus two-body baryon op-
erators satisfying this equation. However, wishing the image
Hamiltonian to be a good baryon image for both A= 1 and
A = 2 one is forced to take

H~2=H~ )+H~2, (74)

where HE, has just been defined in Eq. (73) and Hp 2 is a
two-body baryon operator defined by the matrix elements

(ilHz, 2l~) = (ilH~, 21~)
—(ilHz, il j) (75)

A similar procedure has to be extended to any A leading to
the general result that

H~ g ——HE )+H~2+ . +H (76)

As a general result, then, the image Hamiltonian is a baryon
operator containing up to A-body terms even if H~ is at
most one body. The presence of these many-body terms re-
sults from the need to simulate in the baryon space the com-
plicated underlying quark exchange dynamics.

V. SUMMARY AND CONCLUSIONS

We have discussed a mapping procedure from a space of
colorless three-quark clusters into a space of elementary
baryons and illustrated it within a three-color extension of
the Lipkin model. Special attention has been addressed to the
problem of the formation of unphysical states in the mapped
space.

The mechanism of the mapping proposed has required us,

first, to establish a correspondence between the quark cluster
space and the baryon space. Therefore the baryon image of a
generic quark operator has been defined in both its Hermitian
and non-Hermitian forms and its spectrum analyzed. As a
general result, this spectrum (equal in the two cases) has
been found to consist of a physical part containing the same
eigenvalues of the quark operator in the cluster space and an
unphysical part consisting only of zero eigenvalues. The last
ones emerge as a product of the mapping mechanism.

This derivation of the baryon image has not passed
through the preservation either of the commutation relations
of the operators or of the matrix elements in the quark and
baryon spaces. However, a further correspondence has been
established between quark and baryon spaces such as to
guarantee the equality of corresponding matrix elements. A
physical subspace of the baryon space has been so defined.

We have examined the n-body structure of the image op-
erator and considered, as an example, the case of the Lipkin
Hamiltonian. In a correspondence involving 0, clusters, the
need of up to 0-body terms in the baryon operator, even in
the case of a one-body quark operator, has been discussed
and the definition of these terms provided.

With reference to the mapping procedure elaborated by
PADF, we notice that the baryon Hamiltonian which has
been constructed in that work, for A = 2, has been found able
to reproduce the spectrum of the Lipkin Hamiltonian in the
cluster space. In the cases examined, however, unphysical
eigenvalues have also appeared spread all over the spectrum,
in the Hermitian case, or pushed up in energy, in the non-
Hermitian case. This result clearly differs from that of the
present procedure, characterized by zero energy for all the
unphysical eigenstates and, therefore, by a better definite
separation between physical and unphysical eigenstates of
the mapped Hamiltonian.
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Although explicitly referring to the correspondence be-
tween systems of 3n fermions and n fermions, an important
aspect of the mapping procedure discussed in this paper con-
sists in its applicability to quite different scenarios like, for
instance, the correspondence between systems of 2n fermi-
ons and n bosons. This can be clearly noticed in Secs. III 8
and III C where the formalism of the procedure has been
kept quite general just on purpose. This ductility, together

with its simplicity, makes this procedure available for the
most various applications.
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