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Mass shift of vector mesons in the nuclear medium is studied in two different approaches: the in-medium

QCD sum-rule approach and the scattering-length approach. The latter is shown to be inapplicable to extract
the hadron masses in the medium. Further elaboration of the in-medium QCD sum rules is also discussed.
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I. INTRODUCTION

The question of changes in vector meson properties in the
nuclear medium is of interest in relation to the physics of
nuclear matter [I] and relativistic heavy ion collisions [2]. In
particular, if there are spectral changes of vector mesons in
the medium, they could be observed directly through the
lepton-pair spectrum in y-A, p-A, and A-A reactions [3].
The problem has been studied in effective hadronic models
and QCD sum rules (QSR) generalized to finite baryon den-

sity. In QSR, it was shown that the vector meson mass drops
to about 10—20% of its vacuum value in nuclear matter den-

sity [4]. This is consistent with the idea of the Brown-Rho
scaling [5] and also with Walecka model calculations includ-

ing the vacuum polarization [6].
Recently, it was claimed in Ref. [7] that the vector meson

mass should increase slightly on the basis of an analysis of
the meson-baryon scattering length in QCD sum rules. Since
both Refs. [4] and [7] are based on the Fermi-gas approxi-
mation for nuclear matter, it is desirable to clarify the origin
of the difference. In this work, we will first give a correct
account of the Fermi-gas approximation of the QSR in the
medium and show the dangers of relating mass shifts with
the scattering length. Secondly, we will show that the deter-
mination of the scattering length in QSR is itself rather dif-
ficult because of the lack of information on the higher di-
mensional condensates. Thirdly, the vector meson mass is
shown to decrease in the nuclear medium in a correct appli-
cation of QSR.

This paper is organized as follows. In Sec. II, we will
summarize the results of Ref. [4] and make new remarks
which are not given in [4] but are relevant for the later dis-
cussions. In Sec. III, the essential ingredients of the scatter-
ing length approach [7] are summarized. Section IV is de-
voted to critical investigation of the scattering length
approach and its comparison to the in-medium QSR ap-
proach. In Sec. V, further elaboration of Ref. [4] is discussed.

II. QSR IN THE NUCLEAR MEDIUM

Let us start with the retarded current correlation function
in nuclear matter,

4II,(to, q;n ) =i d xe'~ (RJ~(x)J,(0))„,

I " ImII (u)
ReII (co ) = —P du 2 2 +(subtraction). (2)

7T ) p M, CO

In QSR, the spectral density ImII is modeled with several
phenomenological parameters, while ReH is calculated us-
ing the operator product expansion (OPE). The phenomeno-
logical parameters are then extracted by matching the left
and right hand sides of (2) in the asymptotic region
CO

2

Although the nuclear matter ground state has a compli-
cated structure, the Fermi-gas approximation taking into ac-
count the Pauli principle among the nucleons is a good start-

ing point [8]. In this approximation, II „reads

II„,(to, q;n ) = II„,(to, q;0)

fpF d p+ y (2~)s2~ '.(~.ql p). (3)

with

4T„,(co,q~p) =i d xe'~ (N(p)~RJ~(x) J,(0)~N(p)).

(4)

Here y is a degeneracy factor (y=4 in nuclear matter) and

~
N(p) ) is the nucleon state with four-momentum pt"
= (Fz,p) in the covariant normalization (N(p) ~N(p'))
=(27r) 2Ftv8 (p p'). The spin av—erage for the nucleon
state is assumed in (4). T,(to, q~p) is nothing but the spin-
averaged forward scattering amplitude of the external current

where q"= ( co, q) and RJ„(x)J,(0)=—0(x )[J„(x),J„(0)]
with the source currents J~ defined as J
= —,

' (uy~u~dy„d) [—(+) is for the p (to) meson]. n de-

notes the baryon number density and ( )„ is the expectation
value in the ground state of nuclear matter.

Although there are two independent invariants in the me-
dium (transverse and longitudinal polarization), they coin-
cide in the limit q~O and reduce to II„ /( —3' )=—II
II satisfies the following dispersion relation:
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J„and the nucleon. In nuclear matter, p is integrated out in

the range 0& ~p~ &pF (pF is the Fermi momentum).
The OPE for ReII (co ), which is the same as the OPE

for the causal (Feynman) correlation II (co ), has the gen-
eral form at co —= —Q ~-~

1RelI'(~' — ) =r; a;(O' p')(~~;(p')). ~ (5)

where p, is the renormalization point of the local operators,
which separates the hard scale ~to~ and soft scales such as
A QCD and p F . The Wilson coefficients do not depend on the
medium effect. Only the expectation values (D;(p, ))„,
which are obtained within the Fermi-gas approximation,
have the pF dependence.

The local operators H(tu, ) in the vector meson sum rule
are essentially the same as those in the lepton-nucleon deep
inelastic scattering (DIS) and can be characterized by their
canonical dimension (d) and the twist (r=dimension spin).
They are given in [9] up to dimension-6 operators and we
will not recapitulate them here. Since we are taking q—+0,
Eq. (5) is an asymptotic series in I/co or equivalently an
expansion with respect to d.

In Ref. [4], the leading density dependence of all the op-
erators up to d=6 except for relatively small twist-4 spin-2
operators is taken into account. In Sec. IV, we will discuss
the effect of the twist-4 operators and Fermi momentum cor-
rection to the result of [4].

In the vacuum QSR, the spectral function [i.e., ImII in

Eq. (2)] is modeled with a resonance pole and the con-
tinuum. In the medium, we have to add additional singulari-
ties below the lowest resonance pole within the Fermi-gas
approximation, which is called the Landau damping contri-
bution [10].For q~o, it is calculable exactly and behaves
like a pole at co = 0 (see Appendix A for the proof). In total,
the hadronic spectral function has the form

dsW(s)[ph a(s) p (s)]=0
0

s"0(S0—s) (FESR)
—s/M (BSR)

Here the spectral function ph, a(s) stands for Eq. (6).
p (s) is a hypothetical imaginary part of II which,

through the dispersion relation (2), reproduces Eq. (5). For
more details on (7) and the explicit form of p, see Sec. 2

OPE

of Ref. [9].

FESR and BSR for II"(to )

First, for the qualitative argument, let us write down the
FESR for the p(co) meson in the chiral limit. This can be
easily obtained by taking the first three moments n =0,1,2 in

(7):

( n, &

F S0 1+—— = —2m. m 'n (n=0),
// B

s'(
Fm ——1+—= —H —2m A' m n = —C8'

So 2 u+d
2t m/

1 N B

(n= 1),

So n, 10(

Fm ——1+—= —H6 ——m A3 m n —= —
Cap

v 3 i 'tr ( 3 N B

(n = 2), (8)

8mlmII (u)0 ) =8(u )p„+F8(u mv)—
n, l

+ 1+—0(u —50)
m(

2—=ph. ~(u ).

with p„=2m' nz f ypF+ m~=2m nz lmw . mv F, and So2 / 2 2 2

are the three phenomenological parameters to be determined
by the sum rules.

Matching the OPE side and the phenomenological side
via the dispersion relation in the asymptotic region
co —+ —oc, we can relate the resonance parameters to the2

density-dependent condensates. There are two major proce-
dures for this matching, namely, the finite energy sum rules
(FESR) [11]and the Borel sum rules (BSR) [12] which are
summarized as the following forms:

where D4 [A'6] is

(7r /3)((a, /7t)G )„[( 896/81)m (a,(qq) )„]

taken up to linear in n . Using the three relations above, we
B

can determine the three phenomenological parameters F,
Sp, and m v or equivalently the changes from the vacuum
values 6F, 6'So, and 6m . Important density dependence

V

comes from Ai n and the four-quark condensate A6,B
which can be shown by solving Eq. (8) numerically.

Although both FESR and BSR give the same qualitative
result, the BSR is more reliable for the quantitative estimate
since it is rather insensitive to the assumption on the con-
tinuum. The p(co) meson mass in the BSR is given as

(1+a, /7r)[1 —e o (1+So/M )]—(1/M")&q+(1/M )&6

(1+a,/m')(I —e 0 )+(I/M )cP~ —(I/2M )C9'6 —p„
(9)
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IPF dp T,(rp, q~O)

yJ (2 )32' T'.( .qlp), 2 (»)

&08;

E

0.6-

Sp(0) =1.43

Sp(np) =1.04

This corresponds to the assumption that all the nucleons in
the nuclear medium are at rest (p=0). If one further takes
the kinematics q=O and ~=m T =—T , q=
written by the V-N scattering length as

04-
0.5

Sp(2np) =0.68~~ 3Fm 24m(m +m )a
TR V N V vN

8 2
(

2 2)2
V

(14)

M'(GeV')

FIG. 1. Borel curve for m (M ) using II . Solid, dashed, and

dash-dotted lines correspond to n tn0=0, 1.0, and 2.0, respec-
trvely. Sp(n ) determined by the Borel stability method at each

density is also shown in GeV units.

where a,—(at~2+ 2a3~2)/3 with a t~2 and a3/2 being the V 1V-
scattering length in the spin-1/2 and spin-3/2 channels, re-
spectively. M(tp ) is the term less singular than the leading
double-pole term in the Laurent expansion around
Go = my.

n a ingBy substituting these expressions into Eq. (3) a d t k'

t e eading term in Eq. (14), one arrives at the formula

In Frg. 1, the Borel curve (m -M relation) is shown for

different baryon densities. The continuum threshold Sp is
chosen to make the Borel curve as flat as possible in the
Borel window Mmjp+M +Mmax at given density. We take
the density-independent window M =0.41 GeV a djg= . e an

.30 GeV in our analyses. A more general proce-30 Q V
dure with a density-dependent window (see, e.g. , Sec. 4 of
Ref. [9]) does not change the results quantitativel .

By making a linear fit using the values at n=np and
n=n, we get

—II (f0=m, q=O;n )=
3 "~ v' '

R 87r
~

cp —m
V

12ma (m +m )/m

(cp —m )v

1
OC

rp —(m + 6'm )

with

(15)

m (n ) n

( )
=1 —(0.16~0.06) —,

np' (10) m~+ my
8'm =6~ a n .

m+my vN B (16)

Sp(n, ) n

( )
=1 —(0.15~0.05) —,

p np

F(n )

( )
=1 —(0.24~0.07)—.

np
(12)

Hence the positive (negative) scattering length gives an in-
creasing (decreasing) mass in the medium.

(B) To estimate the magnitude and sign of the scattering
length a in (16), one may use the QSR for T satisfying

the unsubtracted dispersion relation

These values are slightly different from our previous ones in
[4] where the uncertainty discussed in Appendix B is not
taken into account. For the decreasing p(co) mass, the
twist-2 and the scalar matrix elements are equally important.

III. MASS SHIFT AND THE SCATTERING LENGTH

1 &" ImT (u)
7TJ p 0 —

CO

The OPE for T is expanded up to 0( I/Q ) as

RTR 2
t c

oFE(~ ) 8 2 2

(17)

(18)

In this section, we will first summarize the basic ingredi-
ents and assumptions of the scattering length approach [7]
[(A)—(C) in the following] in a form appropriate for our
discussions. Then critical examination of the approach and
its comparison to the in-medium sum rule is given in Secs.
III A-III C.

(A) In the scattering length approach, one starts with Eq.
(3) and, making a low density approximation for the second
term,

where c&2/2m =—d46/dn at n =0. The absence of the

logarithmic term in (18) indicates that subtraction is not nec-
essary in (17). Motivated by Eq. (14), the imaginary part is
parametrized as

8m ImT (u)0) =b, 8'(u —m (0) )+b 8(u —m (0) )
V V

+ b38(u2 —Sp(0)), (19)
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with three unknowns b&23 and known vacuum parameters

mv(0) and So(0). [Note that bi=Fm 24m(m +m )a .]
The above parametrization is equivalent to taking the follow-
ing ansatz for the real part:

P (q) P (q)

b2
had(~ ) [ (0)2+ g2]2 (0)2+ g2 N (p) N (p)

b3

So(0)+ Q
(20)

FIG. 2. A schematic illustration of the V-N scattering with
s-channel nucleon resonances.

By constructing a Borel sum rule using (17)—(19), a positive
scattering length a t„&=0.14 (0.11) fm is obtained [7] and
it is concluded that the mass shift 8m in Eq. (16) must be

V

positive in [7].
(C) The above procedure (A)+(B) is equivalent to doing

the medium sum rule for II but not for II . (Note that
II = —3co II" when q=O. ) This can be seen as follows.
The dispersion relation in the medium for II„„reads

1 t'" Im[II„(u)]
ReII „(co ) = —P du 2

"
2 +(subtraction).

7r o Q —
CO

(21)

If one adopts Eq. (6) for ImII and uses the relation
H „=—3' II, one obtains

——
~ 8' 1m[II" (u)] =Fmvb'(u mv)—

( u, b

+ 1+—u 9(u —So)
7r J

=u Phad(u ). (22)

b)/2m~= —Fm Bm, b2/2m~=m 8F+FBm,
V V V V

Since u 8(u ) =0, the Landau damping term in (6) does not
arise in (22).

Expansion of the left-hand side (LHS) of (21) in terms of
nii gives [nii-independent term] + [n&X Eq. (18)],while the
same expansion of (22) gives [nii-independent term] +
[niiXEq. (19)]. The latter is obtained simply by writing
m =m (0)+ Bm, SO=SO(0)+8So, F=F(0)+ BF, ex-

panding (22) up to linear in Bm, BF, and BSO, and doing the

following identification:

In the following, we will critically examine (A) —(C). The
subsection numbers III A, III B, and III C in the following
correspond to the statements (A), (B), and (C) in the above,
respectively.

A. Mass shift and the scattering length

First of all, let us show that Eq. (13) is an approximation
which is not useful around nuclear matter density. In Eq.
(13), the motion of nucleons and the Pauli exclusion prin-

ciple in nuclear matter are completely neglected. Such ap-
proximation is valid only when (i) the nucleon density is
extremely low, or (ii) T„„(co,q=OIp) is almost constant as a
function of p in the interval 0(IpI(p„.

Since we are not interested in the case (i), let us concen-
trate on (ii) and see whether (ii) is plausible or not. At
nuclear matter density, the Fermi momentum is sizable,
pF=270 MeV. Thus we should consider, e.g. , the p-N
scattering from Ps= m~+ m~= 1709 MeV through

Ps=[(m~+ /md+ pF) —pF]' =1726 MeV. In this inter-

val, there are at least two s-channel resonances N(1710) and

N(1720) and also there are two nearby resonances just below
the threshold, N(1700) and A(1700) [13].They are all able
to have coupling with pN. This means that T„,has a rapid
variation as a function of IpI between IpI =0 and IpI=pF
due to the effect of these s-channel resonances and it is im-
possible to approximate it by the threshold value (i.e., the
V Nscattering len-gth) T (co=mv, q=OIp=O). See Fig. 2
for a schematic illustration of the s-channel contributions
[14].

What one can expect at best is the approximate linear
density formula written in terms of the average of T„ in the
region 0(IpI(pF.

«F d p z T„(~q=OIP)
r„(2 ) 2~

'.( .q=olP)=

(24)

b3/2mN = —S08'So. (23)

This means that the sum rule for T, Eq. (17), is equiva-
lent to the linear density part of the sum rule for H, Eq.
(21). Assuming that the procedure (A)+(B) is right, it is
concluded in [7] that (i) the medium QSR using II„must
give the increasing vector-meson mass, and (ii) the result of
the medium sum rule using II in [4] must be wrong.

where ( ) stands for the average over the above momentum
interval.

It is easy to see what is wrong in (13) in physical terms:
the p-meson at rest (q=0) in nuclear matter will suffer the
scattering from the nucleons having various three-momenta

p in the interval 0(IpI(pF. The net effect should be the
averaged strength of the scattering and not the scattering
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length defined at p=0. This is particularly so when T„,has
a rapid p dependence.

The above point is well known for the nucleon in the
nuclear medium. The optical potential for the nucleon at rest
in nuclear matter cannot be approximated by the N-N scat-
tering length multiplied by the nuclear density. In fact, the
N Nfo-rward scattering amplitude T~z(p) has a huge mo-
mentum dependence due to the the deuteron state and the
"almost" bound state near the threshold. The relevant quan-
tity for the nucleon optical potential is not the scattering
length but the averaged scattering amplitude in the interval
0(~p~(pF. This was recently emphasized in [15] which
points out a problem of Ref. [16] where a similar approxi-
mation to (13) is used to analyze the nucleon in the nuclear
medium.

It is now clear that the mass shift and the scattering length
are not related directly at nuclear matter density. In the ap-
proach of Ref. [4], neither Eq. (13) nor Eq. (24) is adopted;
thus one does not suffer from this problem.

b2+ b3= c),

b, —m (0) bp —So(0)b3 c2, (25)

whereas one needs three equations to solve b& 23. This hap-
pens because the OPE is calculated only up to 0(l/Q ) in
(18). (25) clearly shows that it is impossible to predict the
scattering length av~ (which is proportional to bi) without
extra assumptions [17].

If one tries to make Borel analyses without the above
consistency, one does not get stability of the Borel curve,
which is actually observed in [7]. Nevertheless, a positive
number for b, is deduced in [7]: In terms of FESR, this is
caused by an extra assumption that the contribution from
dimension-8 operators is zero,

2m (0) bi —m (0) b2+So(0) b3=0. (26)

This assumption together with Eq. (25) yields three equa-
tions for three unknown constants. Using the fact that
c~-0, c2)0, and So~m, one finds a positive value for

B. Is scattering length calculable in QSR?

Even if one accepts the conclusion of Sec. III A, the V-N
scattering length itself is an interesting physical quantity to
be calculated in QSR. We will show, however, that this is
rather difficult with the present knowledge of the higher di-
mensional condensate.

Let us look at (18) and (20) and compare them at

Q ~~, which corresponds to the FESR for T . One imme-
diately realizes that only two independent equations can be
obtained:

b, as in [7]. However, Eq. (26) has no ground and we do
expect a non-negligible contribution from the dimension-8
operators. Since it is technically very hard to estimate
dimension-8 condensates precisely at present (1/Q terms of
T"), it is dificult to get reliable a by using QSR only.

C. Use of QSR for II„"„

Here, we will demonstrate that the sum rules for II „do
not give reliable predictions for the mass shift. Let us first
discuss the FESR for H

fsp
dss" [ImII (s)h,d

—ImII„(s) ]= 0
Jo

S(') ( n, )
Fmv —

~ 1+—
~ = —H4 (n=0),

)

S0( n, i

v
——1+—' =—

3 (
(28)

There are three unknowns J', m, and So, while only two
V

relations are available. Thus unless one introduces an extra
assumption, it is impossible to solve for three even in the
vacuum. This is similar to the problem which we have dis-
cussed in Sec. III B.

One should also note that the missing condition is the
duality relation for the spectral density:

fsp
ds[/ „„(s)—/ (s)]= 0,

Jo
(29)

with ph, d and p being the spectral densities for II . This
OPE

local duality is the cornerstone of vacuum QSR and holds
also in the medium since there are no dimension-2 operators
in the OPE. If one wants to get a reliable result from FESR,
one has either to work out the OPE up to dimension-8 op-
erators (which is a formidable task) or to start with IIR.

Here one may ask "why not take the n = —1 moment in
(27) to obtain another relation' ?" Such a procedure, however,
introduces an ambiguity at s =0, since one can add any func-
tion proportional to s/i(s) to ImII„which does not modify
the n=0, 1 sum rules but modifies the n= —1 sum rule. If
one tries to remove this ambiguity, it is necessary to start
with II~ and to evaluate the Landau damping term in (6)
which is exactly calculable as we mentioned in Sec. II (see
also Appendix A) [18].

Let us now turn to the BSR for H

(n =0,1,2, . . . ). (27)

One immediately observes that only two relations corre-
sponding to n=0, 1 are obtained, and they turn out to be
equivalent to the second and third relations in Eq. (8). [Note
that n=2 in (27) cannot give extra condition because the
OPE is calculated only up to dimension-6 operators. ]

2[1+(n, /7r)][1 —e o' (I+So/M +So/2M )]—(I/Ms)H6

[I + ( n, / vr) ][I —e o '
( 1 + So /M )]—(1/M )P'4+ ( I/M )&& .

(30)
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nB——0

Sp——2.5

0.8—

E

nB——0.17/I' fm

Sp——2.5

0.8-
0)
(3

E
0.6-

/

//
//

/

//

0 4 — Il

0.5

Sp——2.0

M (GeV )

(GeV )

it at any density, one finds a fake result m (n )Im (0))1
V B V

for given M from Fig. 3, as is found in [7].
The "bad" Borel curves for H „ in Fig. 3 are quite in

contrast to the "good" Borel curves for H in Fig. 1. The
latter show beautiful stability in the vacuum as well as in the
medium, which makes it possible to determine So(n ) at

B
each density and hence m (n ).

V B

The reason for the failure of the BSR for H„ is twofold.
First, the higher dimensional operators in the OPE are rather
important for H sum rules. We have already seen this in

(28) where the n = 2 sum rule can be obtained only when one
has dimension-8 operators in the OPE. In the BSR, the lack
of information on the dimension-8 operators manifests itself
as an instability of the Borel curve at the low M region.
Inclusion of the dimension-8 operator would make the Borel
curve for H„Hatter. Secondly, the continuum contribution
is more important in H than in H, since the spectral
function is increasing linearly in the former case. This makes
the prediction of the resonance parameters less reliable.

Let us summarize here the lessons we learned in subsec-
tions III A, III B, and III C. First, the mass shift and the
scattering length do not have a direct relation in nuclear mat-
ter due to the momentum dependence of the V-N forward
scattering amplitude. Secondly, it is hard to predict the V-N
scattering length from QSR of the V Nscattering a-mplitude
without the knowledge of the dimension-8 operators in the
OPE. Thirdly, sum rules for H„„do not work even in the
vacuum without the dimension-8 operators in the OPE, while
that for H works very well both in the vacuum and in the
medium.

FIG. 3. (a) Borel curves for m (M ) at zero density using

II„„with several different values of So in GeV units. (b) Borel
curves for m (M ) at nuclear matter density using II" with sev-

V

eral different values of So in GeV units.

Equation (9) and Eq. (30) in the present paper correspond to

Eq. (13) and Eq. (14) in [7], respectively. Since && enters
with opposite sign in the RHS of Eq. (9) and Eq. (30) and

N& decreases in the medium, it is concluded in [7] that m
V

decreases in (9) while it increases in (30). However, this
conclusion could be completely changed since So in the RHS
of these equations is also density dependent. The density
dependence of So should be determined from the Borel sta-
bility procedure and it is in fact possible if one starts with (9)
as shown in Sec. II.

In order to see whether the density dependence of So can
be determined in Eq. (30), we show the Borel curves for
different values of So in Fig. 3(a) (at zero density) and in Fig.
3(b) (at nuclear matter density). Fig. 3(a) shows that the
Borel curve does not have any plateau in the relevant range
of M2 (say, 0.41(M (1.30), which implies that one cannot
determine So and hence I even in the vacuum. The situa-

V

tion is the same at the nuclear matter density as is shown in
Fig. 3(b). Again, one cannot determine So(no) by the Borel
stability method and hence m (n&), which implies that there

V

is no hope of determining the mass shift at finite density. If
one sticks to a specific value of So (say, 2.0 GeV ) and uses

(dI A„d) (dy„D„d)
(ul"„A,u) (uy D,u)

(31)

where I is some gamma matrix and A„an isospin singlet
operator. Then, it is possible to uniquely determine the
nucleon matrix element of twist-4 spin-2 operators appearing
in the p, co sum rule from combinations of experimental val-
ues. It gives the following contribution to Eq. (4):

—
t (q.p) —(I/4)m~q ]T'„;='(~,qlp) =

4m~

s
X —(1+P) I~'+ —~'+ —It.'u 4 u g uJ

+K„d~K„d . (32)

IV. SEVERAL COMMENTS

Full twist-4 calculation

There are three kinds of twist-4 spin-2 operators contrib-
uting to the p, ~ sum rules. At present, their nucleon matrix
elements are not known. However, the values of two differ-
ent combinations in the transverse and longitudinal structure
functions of the nucleon have been obtained by two of us
[19,20] by analyzing the recent DIS data at CERN and
SLAC. Let us further make the following assumption [19]:
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The IC'„(i = 1,2,g) are defined in Ref. [19] and — (+)
corresponds to the co (p) case. Choosing P=0.476 as in
Ref. [19]the value inside the is square braket A 0.40 (0.24)
GeV for the co (p) meson.

Now the effect of the twist-4 matrix element can be esti-
mated by making the following substitution for the
dimension-6 operators:

M+d s 2 ll+d 36'6+ —vr A&™ m n l

—+ 6+ —w A3 m n
3 iv Bi

+2m'm A4n
N B/

(33)

The net effect of twist-2 + twist-4 is estimated to be 2.36
(3.29) times larger than the twist-2 effect alone in the p(co)
channel. This could change the slope of the mass shift in (10)
from 0.16 to 0.10 (0.075) for the p(cu) meson. Further in-

vestigation is necessary, however, to draw definite conclu-
sions, on the magnitude of the twist-4 effect.

Possible new structure in ImII

It is possible that the density-dependent change of the
OPE side is balanced by some new structure appearing in the
spectral density below the resonance mass. In the QCD sum
rule approach, it has to be included by hand before matching
it to the OPE. Such a possibility has been examined by
Asakawa and Ko [21] by redoing the medium QCD sum
rules for the vector meson including other complex structure
of the spectral density in the nuclear medium induced by the
m, .A, N, p dynamics. They found that even in that case the
vector meson mass has to decrease in order to be consistent
with the OPE side.

P meson sum rule

The formalism for calculating the change of the P meson
sum rule is the same as that for the p and co. However, in the

P case, one must include the effect of the strange quark mass
in the OPE and this will introduce some basic difference [4].
In the p, co sum rule, the density dependence in the OPE is
dominated by (d, r) = (4,2) and (d, ~) = (6,0) operators.
However, in the case of the @ meson, the dimension-4
strange quark condensate (m, ss) is not suppressed by either
1/4~ or the light current quark mass and consequently
dominates the OPE. In the medium, the change of this con-
densate, which comes from the K-N sigma term, dominates
the small changes in other condensates and introduces a non-

Fermi momentum correction

The nonleading p F corrections modify the leading
density-dependent part of the condens ates by factors
of B,(x) =(3/2x )(x/1+x —ln[x+ gi+x ]), B2(x)
= $1+x, and B3(x)= gl+x [1+(8/5)x ] for spin-0,
spin-2, and spin-4 operators, respectively. Here, x=pF/mz
and n = ypF/(6' ) For nu. clear matter (twice nuclear

B

matter) density x=0.27 (0.34), one finds that B,(0.27)
=0.979, B2(0.27) = 1.036, B3(0.27) = 1.157, and B,(0.34)
= 0.967, B2(0.34) = 1.056, B3(0.34) = 1.251. Thus the effect
can be safely neglected at nuclear matter density.

negligible mass reduction by 3—5% [4]. It is amusing to
compare this result with that of an effective model calcula-
tion [22] in which the IC N-sigma term also induces a small
reduction of the @ mass.

V. SUMMARY
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APPENDIX A

Here, we derive the Landau damping term p„. In the
Fermi-gas approximation, the spectral density has two types
of contribution: the annihilation term, which is nonzero
above the two particle threshold co )q +4m&, and the
scattering term, which is nonzero in the spacelike region
~ (q . We are interested in the second term. For finite q,
the spectral density, contributing to the longitudinal polariza-
tion, can be obtained by looking at the 00 component of the
imaginary part of Eq. (1):

ImIIpp q 0 ImII
pi(~. q) =

q —3' (A 1)

Looking at the spectral representation, it is easy to iden-
tify the following scattering contribution:

To estimate the mass shift of vector mesons in the me-
dium, we have carried out a detailed comparison between the
approach based on the modification of the vacuum QSR [4]
and that based on the scattering length [7]. We found the
following in our analyses.

(i) The mass shift and the scattering length do not have a
direct relation in nuclear matter due to the momentum de-
pendence of the V-N forward scattering amplitude.

(ii) Sum rules for the V Nscat-tering amplitude do not
give a reliable prediction for the V-N scattering length with-
out knowing dimension-8 condensates in the OPE or without
an extra assumption.

(iii) The sum rule for II„, which is sensitive to the
continuum ansatz and the higher dimensional operators in
the OPE, does not show Borel stability both in the vacuum
and in the medium. This is in contrast to the sum rule for
H which shows good stability and predicts the decreasing
vector-meson mass in the nuclear medium.
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(2') I' d k) d k2
pl ( tu, q) =

4 2 i 2 3E 3 l&N(ki ) I JolN(k2) &
I' r I' d'p

lim dtu p, ( t0, q) = —
s nF(E)U(3 —U)

X 8(co —Et+ E2) 8 (q —kt+k2)

+
I +F(E2) nF(Et)] (A2)

—=p„/t'8m,

so that p', (cu,p) effectively becomes a 8' function. Thus the
final result is that the spectral density reduces to

Here, E; = gk, + m~ (i = 1,2), and n F(E;) = 0( gkF+ m~
E;)—, where kF is the Fermi momentum.
In general, the nucleon expectation of the isospin current

has two form factors:

(N(kl) I
I IN(k2)) = u(ki) 2 I:Ft(q) r

+F2(q) ter~.q ']u("2) (A3)

Substituting this into Eq. (A2), one obtains

y goo

p', (ca, q) =
2 dx[(1 —x )F, (q)+x (cu —q )F2(q))

lim p', (to, q) = 8(co )p„/8m. (A6)

It should be noted here that we did not make any approxi-
mation from (A2) through (AS); thus the result is exact. Also
note that there arises no ambiguity from the nucleon form
factor because F t (q = 0) = 1.

APPENDIX B

At present, there are no experimental data for the four
quark condensate in the medium. Thus we use a simple mean
field approximation in nuclear matter [4]:

((qr rs) q)').= —((qr ) q)').

2nF
i lqlx+ tu~

2 2nF
i lqlx —to~

2 )
0(q2 —co'),

16= —[((qq)') o+ 2(qq) o

&& &NlqqIN&nes t(x)] (BI)
(A4)

where U = [I —4 m /( co2 —q2) ] 'tz.

Now, we want to take the limit lql~O. In this limit, the
constraint 0(~ ~q also forces co to approach zero. Con-
sequently, the contribution proportional to F2 vanishes, be-
cause it is multiplied by either q or cu . As for the other
term proportional to F&(q), the integral becomes increas-
ingly large as lql~O such that the integrated quantity of
pt (co, q) within the phase space for cu remains finite.

By integrating over this region with Iql finite and then
taking the limit, we find

As for ((qq) )o at 1 GeV scale, we will use the canonical
value ( —281 MeV) [12]with n, (1 GeV)=0.36. This num-

ber, which is substantially larger than the current algebra
value (qq)o—-( —230 MeV)s at 1 GeV, should be considered
as an effective one containing nonleading 1/N, contributions.
As for (qq)p ln the second term of (Bl), it is not clear
whether one should use ( —230 MeV) or ( —281 MeV) .
(Note that the latter number was used in [4].) Taking into
account such ambiguity as well as the "experimental" errors
of X tv and m, we adopt (qq)o(NlqqlN)=( —256
MeV) (45/14)(1 ~0.368) as a standard value to be used in

Eq. (Bl).
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