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In this paper we discuss the role of chiral symmetry in the description of the nucleon-nucleon interaction. We
make use of a generalized Nambu —Jona-Lasinio model which exhibits chiral symmetry at the quark level and
demonstrate how the various components of the boson-exchange model of the nucleon-nucleon interaction
arise in this model. In this paper we make use of our recent analysis of correlated two-pion exchange. We have
found that when correlated two-pion exchange is represented by an effective low-mass sigma meson, that
meson may be seen to be the chiral partner of the pion. (That result pertains if the meson momentum q is
spacelike such that t= q (0.) We give particular attention to the vertex functions appearing in the boson-
exchange model. For monopole forms of the vertex functions the cutoff parameter A varies from about 1.3
GeV to 2.0 GeV. In our model the nucleon form factors are characterized by a parameter X. We show how large
cutoff parameters, such as Ao, can arise in our analysis even if the meson nucleon -vertex is soft, with a
characteristic cutoff of about 800 MeV. We present the values of X that puts the NJL analysis in good
agreement with the boson-exchange model of the nucleon-nucleon force.

PACS number(s): 24.80.Dc, 12.39.Fe, 13.75.Cs, 24.85.+p

I. INTRODUCTION

There has been an ongoing interest in understanding the
role of chiral symmetry in nuclear structure studies [1]and in
the nucleon-nucleon interaction [2—5]. Some effort has been
devoted to introducing chiral symmetry at the level of nucle-
ons and mesons [2—4]; however, the results of that program
have been somewhat inconclusive. It is our belief that chiral
symmetry is best studied at the quark level by making use of
models such as that of Nambu —Jona-Lasinio (NJL) [6]. We
present such a study in this work.

We note that the most highly developed and detailed de-
scription of the nucleon-nucleon interaction is that of the
boson-exchange model [7]. That model makes no reference
to chiral symmetry. The essential features of the model are
seen in Fig. 1. There we show a linear equation for the
nucleon-nucleon T matrix with an interaction, V~~, given by
the exchange of mesons (o;7r,p, to, ) There a. .r. e. form factors
at the meson-nucleon vertices that are often taken to have a
monopole form. For example,

A„—I
F(t) A2 t

been extensively used to study the properties of nuclear mat-
ter [8], it is useful to consider whether such a model is re-
lated to a theory with chiral symmetry. The easiest approach
to this problem is to attempt to understand the boson-
exchange model using a model, such as the NJL model, that
has chiral symmetry at the quark level. The NJL model is
limited since it does not provide a model of confinement.
However, in previous work we have shown how confinement
may be introduced [9,10].

One difficulty faced in our program lies in understanding
the nature of the sigma meson. Since there is no low-mass

NN

(a)

( &NN )

may be used at each vertex in the case the pion is exchanged
[7]. Here t=q is the square of the meson momentum.

Let us concentrate on the most important me sons:
o;~,p, co. For each meson we need to specify the correspond-
ing value of A, the coupling constant, and the meson
mass. For the co and p mesons, one also needs the ratios

(f /g „) and (f /g ) that describe the relative importance of
the vector and tensor parts of the meson-nucleon coupling
[7].The vr, p, and ro mesons are assigned their experimental
masses. Therefore, there are at least ten parameters to be
specified in the one-boson exchange model.

Since the boson-exchange model provides a detailed de-
scription of the nucleon-nucleon force [7] and, since it has

(c)

FIG. l. (a) A linear equation that serves to determine the
nucleon-nucleon T matrix is shown. (b) The potential, V&z, is
shown for the boson-exchange model, where the important mesons
are o, 7r, p, and co [7].The open circles denote phenomenological
meson-nucleon vertex functions. (c) The vertex function, F(q ),
is shown for a meson of momentum q. See [7] for a description of
the various choices that have been made for the vertex function in
boson-exchange models.
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sigma in the data tables, the sigma is usually interpreted as
an effective meson describing correlated two-pion exchange
[11—15]. In a recent work [16]we have made a study of the
quark-quark T matrix of the NJL model. We have shown
that, for I;= q ~0, the imaginary part of the T matrix has its
origin in correlated two-pion exchange. However, for t(0,
the same T matrix describes the exchange of the chiral part-
ner of the pion. This feature of our work will be reviewed in
the next section.

Since the NJL model, upon bosonization, will describe the
various mesons that play an important role in the boson-
exchange potentials, we will study that model in some detail.
Our procedure involves the following steps. First, we write
the one-boson exchange (OBE) amplitude in the various
channels. That amplitude is given in terms of the mass of the
exchanged meson, the vertex cutoff A, and a coupling con-
stant g. (For example, in the case of the pion, the parameters
are m, A, and g ~~.) It is important to note that we do
not ascribe any particular physical significance to the indi-
vidual factors of the OBE amplitude, but consider the ampli-
tude as a whole. As a next step we write the scattering am-

plitude for the NJL model. Here the various terms are of
physical significance. In particular, the NJL amplitude is ex-
pressed in terms of the quark-quark T matrix of that model
and (physical) form factors of the nucleon. We choose to use
a monopole form for the nucleon form factors which are then
parametrized by a constant X. In this work we are mainly
concerned with the rate of fall off of the amplitudes with
increasing —q, so that we compare amplitudes that are nor-
malized to 1 for q =0.

As a final step we ask if the NJL amplitudes reproduce the
OBE amplitudes in each channel. We find excellent agree-
ment between the phenomenological (OBE) and theoretical
(NJL) amplitudes in this case when we take li. to be a free
parameter and find the value of X. that puts the NJL and OBE
amplitudes in agreement. Such fits are nontrivial since we
are attempting to match two functions of q with the choice
of a single parameter.

The plan of our work is as follows. In Sec. II, we provide
a review of our study of a generalized version of the NJL
model and of correlated two-pion exchange [16].In Sec. III,
we consider the quark-quark interaction that is here assumed
to mediate the nucleon-nucleon interaction. We provide a
1/n, analysis of the various diagrams that contribute to the
interaction and show that, for t~0, the most important dia-
grams correspond to the exchange of qq pairs (mesons). For
t)0, however, our analysis is consistent with the picture of
correlated two-pion exchange (developed at the quark level).
In Secs. IV—VI we study meson-exchange processes in the
o; ~, p, and co channels. In these sections we attempt to
understand why A is large (about 1.3—1.7 GeV) while the
physical meson-nucleon vertex form factors can be "soft,"
with a characteristic mass of about 0.8 GeV.

The issue of "soft form factors" has been given a good
deal of attention recently [17—19].For example, in [17], the
use of a "soft" form factor in the case of pion exchange
requires the introduction of another meson, a ~' of mass of
about 1.2 GeV. For this massive meson to have any signifi-
cant role in the t channel that has pion quantum numbers it
must be assigned a very large value of g, ~~/4 m

—70—100. This value is much larger than g ~zz/4~-14 and

appears to us to be unrealistic.
A recent work by Flender and Gari [20] reports a nonper-

turbative and self-consistent determination of baryonic ver-
tex form factors. They find k =0.80 GeV, k,=0.50 GeV, and
X.„=0.60 GeV. Further, k =0.92 GeV or 0.61 GeV for the
Dirac and Pauli parts of the vertex form factor, respectively.
(Note that the r0 coupling to the nucleon is almost entirely of
vector character, so that only a single value of k„need be
given. ) The authors of [20] note that the small values of X

they find are quite incompatible with the large values of
A used in the one-boson-exchange model. In our work
we show how this problem may be resolved, so that the
"soft" form factors are seen to be consistent with large val-
ues of A . (Our analysis shows that one should not iden-
tify the physical parameter k appearing in the meson-nucleon
vertex form factor with the parameter A .) In Secs. IV—VI
we discuss the relation between X and A in the case of the
pion, sigma, rho, and omega mesons. Finally, Sec. VII con-
tains some further discussion and some conclusions.

II. A GENERALIZED NJL MODEL

In a number of works we have studied a coupled-channel
quark-hadron model based upon the NJL model [9,21,23]. In
that body of work we have included a model of confinement
that serves to eliminate unphysical cuts that arise if quarks
and antiquarks go on mass shell [10]. Here, we provide a
short review of our procedures, since the remainder of our
discussion will make use of various elements of our gener-
alized model.

We begin by specifying the form of the quark-quark T
matrix in a simple version of the NJL model, where the La-
grangian is

Gs~(x) =q(x)(r y'~~ —
mq) q(x)+ {[q(x)q(x)]'

+ [q(x)i ys7'q(x)] )— ([q(x) y&tq(x)]

+[q(x) yi, ys~q(x)] ), (2.1)

if we use the SU(2)-fiavor group. Here, m is the average
current quark mass. The T matrix in the scalar-isoscalar
channel is

Gs
I-G I (r) ' (2.2)

where, with t=P,
d'I

Js(P ) =(—1)n,nfi 3 iSF(PI2+k)iSF( —PI2+ir)
J 'rr

(2 3)

is the basic quark-loop integral of the NJL model. (See Fig.
2.)

In our generalized NJL model we introduced a model of
confinement. That led to a modified form for Js(P ). In Fig.
2(a) we show the summation of a ladder of confining inter-
actions [10].We also define a vertex for the confining field



52 GENERALIZED NAMBU —JONA-LASINIO MODEL IN A STUDY. . . 3355

P/2+ k P/2+k

~ ~ ~ ~

p
-P/2+ k

~ ~ ~ ~ + ~ ~ ~ ~

p

(a)

~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ -iJ (P )

- P/2+k

~ ~ ~ ~ P

p ~ ~ ~ ~

(b)

+ ~ ~ ~

-iJ (P )

P/2+ k

~ ~ ~ ~ p

p ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ ~+ ~ ~ ~ - P/2+k

FIG. 2. (a) The diagram on the left is the basic quark loop
integral of the NJL model. The propagators are

SF(p) =(P —m +is) ', where m is the constituent quark mass.
The additional diagrams show the introduction of a confining po-
tential, V . (b) A vertex function for the confining interaction
(crosshatched area) is given by the equation shown [10]. (c) Here
the various terms summed in the equation of (b) are shown.

-iK (P2) =S

A

-)KS (P ) =

(c)

~ ~ ~ ~ p

~ ~ ~ ~ p

that satisfies the equation shown in a schematic fashion in
Fig. 2(b). [Figure 2(c) exhibits the series that is summed in
forming the vertex function. ] Once the vertex function is
calculated, we can replace Js(P ) of Eq. (2.3) by Js(P )
shown in Fig. 3(b). Note that Js(P ) does not have an imagi-
nary part that would arise in a theory without confinement
when both the quark and antiquark go on mass shell.

Also important for our work is the function Ks(P )
shown in Fig. 3(c). There, the wavy lines denote pions. In-
troduction of confinement replaces Ks(P ) by Ks(P ),
shown in Fig. 3(d). Note that Ks(P ) has an imaginary part
for P ~4m, since both pions can be on mass shell in that
region.

The functions Js(P ) and Ks(P ) arise when solving
coupled equations of the type shown in Fig. 4. Various ap-
proximations may be used in solving such equations [9].
Relatively simple results are obtained if the coupling of the

qq channels to the two-pion continuum is as shown in Fig.
4(b).

We have studied models that we have designated as 8 and
C [9]. In model C, the qq T matrix in the scalar-isoscalar
channel is

-
(t~qq = —

( + ~&a) (~4~ +

tq = k~ +

FIG. 3. (a) The basic quark-loop integral of the NJL model is
shown. In the notation of this work we have P =t [See Eq. .
(2.3).] (b) The function Js(P ) is defined by introducing a vertex
(crosshatched area) for the confining interaction V . See [10] for a
detailed discussion of the construction of such vertex func-
tions. (c) The function Ks(P ) is defined by the diagram shown.
(See [9].) (d) The function Ks(P ) is defined by including a ver-

tex function for the confining interaction (cross-hatched region).
(See [10].)

t„(t)=—
1 —Gs Js(t) —GsKs(t)

(2.4)
t~~ = k +

This result has a straightforward diagrammatic representa-
tion. For model 8, the result is

Gs[1+GsKs(t)]
tB,(t) =-

Gsl. I + GsKs(t) ]Js(t)

+ ivc

Gs(t)
1-G,'(t) Js(t)

(2 6)

with Gs(t) = 1+GsKs(t) The T matrices, .t (t) and

tqq(t), are rather similar since GsKs(t) is small.

FIG. 4. (a) General form of coupled equations for the T matricest, t, and t . (See [20].) (b) The form of the kernels, I(: „and
k q, used in our work is shown. (c) The interaction I( is shown to
be composed of the Born term of the NJL model (solid dot) and a
confining field V .
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FIG. 5. The dashed line and the solid line for t(0 denote the
values of Js(t) calculated in a Euclidean momentum space with

A+=1.0 GeV. The solid line for t)0 represents the result of a
calculation of Js(t) in Minkowski space. There, a three-

dimensional cutoff of A3=0.702 GeV is used for all the momentum
vectors in the integral. Here we use mq=262 MeV, G&=7.91
GeV and the model of confinement described in [10].Note that

the inclusion of the confinement vertex function hardly affects the
result for t~O.

In Fig. 5 we show Js(t) as calculated in an earlier work
[16].The dashed line and the solid line for t(0 represent
Js(t), while the solid line for t)0 represents Js(t). Note that
confinement plays only a minor role for t(0 where
Js(t)=Js(t) However, .for t)0, Js(t) rises more slowly
than Js(t) with increasing t. That has the effect of pushing
the scalar-isoscalar resonance to higher energies. For ex-
ample, in the theory without confinement m =540 MeV,
while with confinement, nz )900 MeV. Therefore, our gen-
eralized model is consistent with the fact that there is no
low-mass physical sigma meson, However, for t~0 we have
seen that confinement plays only minor role with the conse-
quence that the theory behaves as if there was a low-mass
sigma, with m =540 MeV. This result is particularly impor-
tant for studies of nucleon-nucleon scattering and nuclear
structure where the meson momenta are spacelike.

In Fig. 6 we exhibit values of ReMs(P ) and Irri/lfs(P ),
where Ms(P )—= —GsKs(P ) Since we hav. e calculated
values for Js(t) and Ks(t), we may present values for t q~(t),
defined above. In Fig. 7, we show Ret (t) and Imtqq(t).
The imaginary part arises from the cuts in the function
Ks(t). Thus, for t)0, t (t) describes "correlated two-pion
exchange" as defined in [16], for example. The dotted curve
in Fig. 7 represents g /(t m) with g =3.0—5 and m =0.542
GeV. (Here we have used Gs=7.91 GeV and m =262
MeV. ) Note that the dotted curve provides a good fit to
t (t) for —0.25 GeV (t(0, a range of values particularly
important for nuclear structure studies. Figure 8 serves to
compare the values of t (t) and r (t). It may be seen that
these functions are very close in value for t(0.

III. DIAGRAMMATIC ANALYSIS OF THE
NUCLEON-NUCLEON INTERACTION

AND Un, COUNTING

There are a large number of diagrams that contribute to
the calculation of the quark-quark T matrix. We will call the
general T matrix T, while using t to denote the T matri-

P (GeV )

FIG. 6. The function ReMs(P ) is shown as a solid line. The
dashed line is Imltfs(P ). Note that Ms(P ) = —GsKs(P ) (This.
figure is taken from [9].)
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FIG. 7. The figure exhibits Ret (t) (solid line) and Imt lt)
(dashed line) obtained using model 8 where t (t) is given by Eq.
(2.5). The dotted line represents g /(r —m ) with g=3.05 and
m =0.542 GeV. The values for Js(t) to be inserted in Eq. (2.5) are
taken from Fig. 5. [We put Js(t) =Js(t) for t(0.] Note that if we
were to neglect Ks(t), we would have t~ (0)=—23 GeV . The dot-
ted curve provides a good fit to the solid curve for —0.2
GeV &t~O. This is the range of momentum transfer that is particu-
larly important for nuclear structure physics and for nucleon-
nucleon scattering. (This figure is taken from [16].) The small dis-
continuity in the solid line at t =0 is due to the discontinuity in the
solid line in Fig. 5.

ces that may be expressed in terms of Js(t) and Ks(t) only.
[See Eqs. (2.4) and (2.5).] While the various diagrams may
be calculated explicitly, it is useful to find some guidance in
an organization of the diagrams in powers of 1/n, . In that
type of counting Gs is of order 1/n, and Js(t) is of order n,
Further, g=g =g

q
is of order I/vn„while Ks(t) is of

order unity. Thus, while GsJs(t) is of order unity, GsKs(t)
is of order 1/n, . Indeed, at t =0, GsKs(0)/Gs Js(0)
= —Ms(0)/Gsjs(0)=0. 55/(7. 91) (0.082)=0.11, where we
have used Ms(r) = —6sKs(t) and the values shown in Figs.
5 and 6. (In this case, the result of our calculation is in
accordance with what one would expect from 1/n, counting. )

In Fig. 9 we show various diagrams that contribute to the
nucleon-nucleon interaction, assumed to be mediated by
T . In Fig. 9(a) we show some Born terms, where the wavy
lines denote pions. The Born diagrams are of order 1/n, Of
still higher order is the last diagram that involves the pion-
pion interaction r . (Models for t„h avbeeen given in Ref.
[24]. Some of the terms that contribute to t are shown in
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FIG. g. Values of t (t) (solid line) and t (t) (dashed line) are
compared. The curves in the upper right are the imaginary parts and
the other curves represent the real parts of tqq(t) and tqq(t) It is.
seen that the real parts are quite similar for t(0. The values of
Re t qq(t) and Im t qq(t) are the same as those shown in Fig. 7.

(b) (c)

FIG. 10. Various diagrams contributing to a model for t are
shown. Here we concentrate on the dynamics in the t channel. (a)
Some box and crossed-box diagrams are shown. (b) s-channel p
exchange is seen to affect the interaction in the t channel for t
[24]. (c) Coupling to the KK system is important for the descrip-
tion of the resonance fo(975) in the model of [24]. The KK inter-
action is attractive due to P and co exchange in that model. (d) The
distant resonance, fo(1400), plays some role in the model of [24].

Fig. 10. The terms depicted in Figs. 10(b)—10(d) have been
considered in Ref. [24j.)

In Fig. 9(b) we show the contributions that are of order
1/n, . The terms shown in Fig. 9(c) are of order 1/n „since
they contain two factors of Gs, one factor of Ks(t) and an
arbitrary number of factors of GsJs(t). Note that the dia-
grams of Fig. 9(b) are real, while those of Figs. 9(a) and 9(c)
have imaginary parts if t~4m . In Fig. 11(a) we show how
we may calculate Im T

q using the diagrams of Fig. 9(c)

when t~4m . In Fig. 11(b) we show a sigma-dominance
approximation to the series in Fig. 11(a).

Finally, in Fig. 12 we consider the case t(0 and exhibit
the leading diagrams which are of order 1/n, . At that order,
the result is expressed solely in terms of Js(t) =Jz(t),

—GS-(')=
1 —G,J,(t) ' (3.1)

(a) Again, if —t is not too large, we have, for t(0,
+ ~ L ~

(b)

+ ~ ~ ~

'L

(c) + 1

nc
+ ~ ~ ~

FIG. 9. The figure shows various diagrams that contribute to the
quark-quark T matrix, Tq . (a) These diagrams represent Born
terms in the quark-quark amplitude and also a term in which the
pions interact via a pion-pion interaction t . (Models for t may
be found in [24].) The first two diagrams in (a) are of order 1/n,
and the last is of order 1/n, . (b) Here the solid dot is the basic
quark-quark interaction of the NJL model. The remaining diagrams
are given in terms of an expansion of the T matrix in powers of
GzJz(t), if we consider the scalar-isoscalar channel, for example.
These diagrams are of order 1/n, . (c) Diagrams that contain one
factor of Kz(t), for example, and any number of factors of GzJs(t).
The presence of Kz(tl causes these diagrams to be of order lln, .

Note that, if we are interested in the imaginary part of T (t) for
t)4m, it is the diagrams of (c) that are most important. [Recall
that Jz(t) is real. ]

FIG. 11. Diagrams contributing to Im T (t) for t)4m . (a)
Diagrams of order I/n, are obtained if a single factor of Kz(t)
appears. The crosses on the pion lines denote on-mass-shell pions.
An arbitrary number of factors of GsJz(t) may be included. (b) A
sigma-dominance approximation to the sum of the amplitudes con-
sidered in (a). (See Fig. 7.)
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FIG. 12. (a) For t(0, the leading terms in the calculation of
Tqq(t)=tqq(t) are shown. (b) The sum of the diagrams in (a) may
be given in terms of a sigma-dominance model if —t is not too
large. (See Fig. 7, for example. ) g'.„(t) g'.„(o)

t —m (t) t —m'(0) (4.3)

FIG. 13. The function Jp(t) is shown. The calculation is made

by using a Euclidean momentum space. Here mq=0. 262 GeV and
Gg=7.91 GeV ~.

g (t)
(t) =

t —m (t)
(3 2)

2
g m.qq

2 0

t —m
(4.4)

t —m
(3.3)

[See Fig. 12(b).]
While our discussion here has mainly concerned the

scalar-isoscalar t-channel dynamics, we can generalize the
discussion to other channels. That will be done in the follow-
ing sections. However, before leaving this section, it is worth
noting that, while the calculation of the diagrams of Fig. 9(a)
requires the knowledge of the quark density matrix of the
nucleon, the calculation of the diagrams of Figs. 9(b) and

9(c) require only the specification of valence quark form fac
tors of the nucleon. These form factors are functions of the
single variable t=q .

where g —=g (0) and m —=m (0). (See Fig. 7, for ex-
ample. )

Now, the leading diagrams that are of order 1/n, yield the
interaction

( )2 )2
V (t) =t'„'(t)F'(0) —t)

(4.5)

Here t ( )(t) is given by Eq. (4.1) or Eq. (4.2) and
F (0)[k „/(k —t)] is the valence form factor of the
nucleon in the pion channel corresponding to the diagrams of
Fig. 12. The parameter F (0) is defined via the relation

IV. PION EXCHANGE IN A GENERALIZED NJL MODEL
AND IN THE BOSON-EXCHANGE MODEL

Consider the nucleon-nucleon interaction that involves the
exchange of qq pairs with the quantum numbers of the pion.
The T matrix in the NJL model takes the form

k
F (0) ~ u(P+q, s') ysu(P, s)(r'l rl q)—t)

=(N, P+q, s', 7'~q(0) ysrq(0) ~N, P, s, r)„,t. (4.6)

Now let us identify V (t) of Eq. (4.5) with V (t), where

t( )(t)— Gs

1 —GsJP(t)
(4.1) 2 (p2 2 2

OBE g ~NN
V (t)=

t m( A —t— (4.7)

where Jp(t) is the appropriate quark-loop integral (see Fig.
13) and where 1 —GsJ~(m ) =0. Using a momentum-space
bosonization procedure [25], we have

with g»/4m=14. 4—14.9 and A —1.3 GeV to 1.4 GeV
[7].Thus, we should have

Gs g qq(t)

I —GsJP(t) t —m'(t) (4.2)

2 (A2 2)2 ( )2 )2
~wNN w m (~)( )FP (0)t-m'

~
A' t )

" — ()~.'-t) (4.8)

at one-loop order.
If ~t~ is not too large, we may use the approximation

for t(0 For example, if .we use Table A. l of [7], we have

g ~~~/4~= 14.7 and A = 1.3 GeV. If we further put

qq 2.72 and m = 138 MeV, we see that we should have
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FIG. 14. Values of h (t) are given by the solid line and
h (t) is represented by the dotted line. Here k =0.80 GeV and

A =1.3 GeV [7]. (See Fig. 15.)

FIG. 15. Values ofh "(t) (solid line) and h (t) (dotted line)
are shown on an expanded scale relative to Fig. 14. Here X =0.80
GeV and A =1.3 GeV. Note that, by definition, both curves go to
1 at t=0.

F (0)=4.97 if Eq. (4.8) is to be valid. Since we have not
calculated F (0) at this point, we will compare the rates of
fall with increasing t of the —two sides of Eq. (4.8). To that
end, we define

t( )(t)
Gs

1 —GsJs(t) —GsKs(t)
(5.2)

g~wtvI I A~™~I ™( A„—t
~

(4.9)

but we will drop Ks(t) as it represents only a small correc-
tion to Eq. (5.1) when t(0. Momentum-space bosonization
[25] yields the relation

and Gs g'„(t)
1 —Gsjs(t) t —m'(t)

(5.3)

t,', '(0) ~) tj '—(4.10)

which are defined such that h (0)=h (0)=1.
In Figs. 14 and 15 we show h„' (t) of Eq. (4.10) as a

solid line. (Here )~. =0.8 GeV.) Also shown, as a dotted line,
is h (t) with A„=1.3 GeV, m =0.138 GeV, and

g ~~I47r——14.7. For small negative t (—0.1(t(0.0 GeV ),
the curves are undistinguishable and they are not shown in
that region in Fig. 15. (Note that both curves go to 1 at t =0.)

We see that, even though P =0.8 GeV, we still need
=1.3 GeV, if the simple form of the OBE model is

used, as in Eq. (4.7). Thus, we infer that while k is a physi-
cal parameter, A is not. This result resolves some of the
problems described in [20] where values of P and A are
compared for a number of mesons.

)2 )2
V.(t) = t';, '(t) F'.(o) ' —ti

(5.4)

where F (0) is defined via the relation

()'. ~

F (0)~ ~ u(P+q, s')u(P, s)8„

=(IV'.P+e.s'. r'le(0)e(0)l&. P s.r)-i. (5.5)

For the boson-exchange model we have the interaction

for t&0.
Let us define the interaction for the generalized NJL

model

V. SIGMA EXCHANGE IN THE NJL MODEL AND IN THE
BOSON-EXCHANGE MODEL

We have seen how sigma exchange may be used to pa-
rametrize the quark T matrix, if t(0 [16].Proceeding as in
Sec. IV, we write

2 (A2 2)2
pgE g aNN a a

V (t)=
t —m

~
A —t I

Thus, as in Eqs. (4.9) and (4.10), we define

(5.6)

Gs

1 —G J(t) (5.1) ( gaNiv j ( Acr™oI ( ™rrt l
(5 7)

More precisely, we could put and
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cussion of pion and sigma exchange due to the necessity of
specifying two form factors. For example, we have for the
isoscalar and isovector parts of the electromagnetic current,

0.8— (N, P+ q, s' r' ~q(0) q(0) ~N, P, sr)

0.4—
O~

0-2.0 -1.6
I I )

-1.2 -0.8 -0.4
t (GeV )

i cr+
=8'„u(P+q, s') y Ftp(q )+ q,F2p(q ) u(P, s)

m~
(6 1)

and

(N, P+q, s'r'lq(0) q(0)IN, P, sr)
FIG. 16. Values for h "(t) are shown as a solid line for

k =0.80 GeV and m =0.54 GeV. Values of h (t) are given for
A =1.2 GeV (dotted line) and A =1.5 GeV (dashed line). The
value for A from [7] is 1.5 GeV, with m =0.55 GeV. (This
figure would appear essentially the same if model C were
used. ) Note that if X is increased to 1.0 GeV the agreement of the
solid line with the dashed line (X =1.5 GeV) is very good. Al-
most perfect overlap is obtained if X is increased to 1.1 GeV.

NJL&

t,'q'(o) ( ~'- —t)
(5.8)

First let us compare V (t) and V (t) at t=O We u. se
model I of Table B.l of [7]. For that model, we have

g zz/4rt=6. 32, m =0.55 GeV, and A =1.5 GeV. (We use
this particular OBE potential since the effects of the excita-
tion of the delta are explicitly separated. ) We now equate the
interactions at t =0:

=(r'~r~r)u(P+q, s') y~F) t(q )

i o."'
+ q„F2, (q ) u(P, s).IN (6.2)

These forms may be used to specify the form factors of the
nucleon that are needed to calculate the diagrams of order
1/n, . Equation (6.1) is needed for the (isoscalar) cp meson
and Eq. (6.2) is needed for the (isovector) p meson. [Note
that F)p(0) = F»(0) = 1/2, so that, for the proton form fac-
tor, we have F~&(0)=1 and for the neutron form factor we
have F t(0)=0.]

For omega exchange in the boson-exchange model, we
have at each vertex

2 (A2 2)2 2
o-NN o- o- g oqq -

2
p [F (0)] .

m I A / m
(5.9)

ig„u(P q, s') y"+ i q„u(P, s) 2 2g~ 2m)v A
(6.3)

For A~=1.5 GeV, g z&/4m=6. 32 and g =3.05, we obtain
F (0)=2.54 from Eq. (5.9). [If we include the effects of a
finite value of GsICs(0), we obtain F (0)=2.78 instead of
2.54.] For the nonrelativistic quark model we would have
F (0)=3, since in that case the same value is obtained for
the matrix elements of qt(0)q(0) and q(0)q(0). However,
the use of relativistic wave functions (with small compo-
nents) would lead to F (0)~3. We expect about a 10% re-
duction from the value 3, that is F (0)=2.7. Therefore, we
infer that the NJL model may give a good account of the
magnitude of that part of the scalar-isoscalar (T=O) potential
that does not involve excitation of the delta [7].

We return to a comparison of h (t) and h "(t) of Eqs.
(5.7) and (5.8). In Fig. 16 the solid line represents h J (t).
The dotted line represents h (t) with A =1.2 GeV and
the dashed line represents h (t) with A =1.5 GeV. (The
value used in [7] is A =1.5 GeV. ) If we increase X to 1.1
GeV, we find essentially perfect agreement with h (t) cal-
culated for A =1.5 GeV.

/A' —m', l
ig u(P q, s') y~+ —i q„u(P, s) 2 2

gp 2m

&& (r'~ r~ r). (6 4)

In the case of the rho, we have f /g =6.1 in standard phe-
nomenological fits, while A is about 1.3 GeV [7].

To keep our analysis simple, we will be interested in the
behavior of the vertex functions with increasing —t= —q .
Again let us define the basic quark-loop integral to be 1 (t)
and write

t(v)(, )
&v

1 Gvjq(t)
(6.5)

if we use monopole vertex cutoffs. In the case of the co,

f„/g =0 in phenomenological fits.
For rho exchange in the boson-exchange model, we have

at each vertex

VI. RHO AND OMEGA EXCHANGE IN THE
GENERALIZED NJL MODEL AND IN THE OBE MODEL

The discussion of the exchange of the rho and omega
mesons is made somewhat more complicated than the dis-

Values of J (t) are given in [21].We also define

NJL

t(v)(0) (6.6)
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0.8— 0.8—

0.6— 0.6—

0.4—

0.2—

0 -2.0 -
I .6 -1.2 -0.8 -0.4

t (GeV )

0—

-2.0 -1.6 -1.2 -0.8 -0.4
t (GeV )

FIG. 17. Values of h "(t) are shown as a solid line for k =0.80
GeV. The dotted line represents h (t) for A =1.1 GeV and the
dashed line represents h (t) when A =1.3 GeV. For the cal-
culation of h "we used results of a previous work where we had
G&=9.2 GeV, mq =350 MeV. The Euclidean-space calculation of
J (t) made here had a momentum cutoff As=0.68 GeV.

FIG. 18. Values of h "(t) are shown as a solid line for X =0.93
GeV. The dotted line represents h (t) for Ap =1.1 GeV and the
dashed line represents h (t) for A =1.3 GeV. (See caption to
Fig. 17 and Table I.)

in analogy to Eq. (4.10), for example, and

2 /A2 2 2 2
g pNtq p p gpqq

4~ (6.9)

tg~+)lA —I) (™)t. A —t)
(6 7)

in analogy to Eq. (4.9). Note that h (0)=h (0)=1. To
compare h (t) and h (t) we make use of some calcula-
tions of J (t) made in our study of the vector-isovector cur-
rent correlation function [21].In that work we have I =350
MeV and G~=9.2 GeV . In the present work we calculate
J (t) for negative t using a Euclidean momentum space with
a cutoff A+=0.680 GeV. We then use Eq. (6.4) with the
approximation that J (t) =J (t) for t(0. The results of our
calculations are shown in Fig. 17. There the solid line repre-
sents h "(t). The dotted line represents h (t) with
A =1.1 GeV and the dashed line represents h (t) with
A =1.3 GeV. Here, we put k =0.8 GeV in Eq. (6.6). It is
seen that the phenomenological value of the cutoff param-
eter, A =1.3 GeV [7], is generally consistent with a "soft"
form factor that has P =0.8 GeV. However, if we increase X
to 0.93 GeV, we get a significantly better fit. (See Fig. 18 and
Table I.)

We remark that for the 1/n, . diagrams considered here the
theory gives rise to the vector-dominance result f /g =3.70,
since these diagrams yield an interaction of the form

To obtain g pqq we write the relation that pertains upon
ho sonization

Gy
1 —GVJp(0)

2
g pqq

2m
(6.10)

With Gv =9.2 GeV, J (0)=0.049 GeV [22] and
m =0.770 GeV, we find g /4m=0. 79 from which we ob-
tain g ~~/4~=1. 86 when A =1.3 GeV. Values for g»/4~
range from about 0.95 to 1.2 in the various OBE models that
use monopole vertex cutoffs [7]. (Note that a larger value for
g was quoted in [21] since a different bosonization rela-
tion was used there. ) We remark that it would be of some
interest to see if consideration of additional diagrams would
yield values for f /g larger than the value of 3.70 obtained
here.

We note that g„»=3gp» Then, it is seen that, if
Ap 4 g»/4 77 9g ppfpf/4 ~ in ou™

odeum

. With the
value given above for g»/4', we find g „z~/4vr=16. 7.
From Table A. 1 of [7], we have g „~~/47r =25 for

=1.35 GeV. We see, therefore, that the diagrams of
order 1/n, provide only about 67% of the repulsion in the co

channel. Study of diagrams of order 1/n, may, therefore, be
useful in obtaining an improved fit to the phenomenological
value of the OBE potential in the co channel. For a more

i o.~'q,
V= —tl(P+q, s2) y Ft $(t)+ F2t(t) u(P, $2)

2m~

I'

&&

I G J, g . (P' —
q sI) 7' F»(t)

Meson Ao" (GeV) )I (GeV) Figure

TABLE I. Typical values of A are given for various mesons

[7] as are the values of k considered here. The items with asterisks
denote those values of k that yield a very accurate fit to h (t) for
t &0.

lo qp F»(t) ~(P' st)(r2lrlr2& (rIlrlrt) (6.8)
m~

for the NJL diagrams of order 1/n, .
In order to check upon the magnitude of g»/4~ given

by our model, we can write

p, co

1.3
1.5

1.3

*0.80
0.80
*1.10
0.80
*0.93

14
16

Not shown

17
18
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successful calculation of the strength of the interaction for
rho and omega exchange, see [26].

VII. DISCUSSION AND CONCLUSION

The large values of A of the boson-exchange model
have always been somewhat puzzling. In this work we have
shown how these values may be understood. It has been
seen, within the context of our model, that A has no
direct physical significance, but is needed to make phenom-
enological form such as

iA2 2)2 2

follow the behavior of the product of the quark-quark T ma-
trix and the square of the meson-nucleon vertex function for
spacelike t. Indeed, in the case of the pion the coincidence of
the two functions is remarkable. (See Figs. 14 and 15 and
Table 1.)

Probably of more significance is the fact that the NJL
model exhibits chiral symmetry and provides a basis for de-
riving the boson-exchange model. The role of chiral symme-
try in understanding the origin or the nucleon-nucleon force
has been of interest for some time [2—4]. One approach to
that problem has been to consider Skyrmion-Skyrmion scat-

tering. However, it is not expected that a detailed description
of the force will emerge in such studies. It is also unlikely
that one can obtain an understanding of nuclear matter based
upon the Skyrmion-Skyrmion interaction. On the other hand,
studies of finite nuclei and of nuclear matter based upon the
boson-exchange model have been quite successful [8].

It may also be seen from our analysis that a large part of
the (Lorentz) scalar field found in nuclei is a chiral field [I].
The magnitude of that field is related to the partial restora-
tion of chiral symmetry at finite density. Thus, it is possible
to relate QCD sum-rule studies in matter [lj, Dirac phenom-
enology, and the boson-exchange model in a single formal-
ism that has its base in models that exhibit chiral symmetry
at the quark level.

In future work one may study terms of order 1/n, to see if
the magnitudes of the force in the rho and omega channels
can be given more accurately. It will also be of value to
calculate X, X, and X.„, either in a lattice simulation of
QCD, or in a quark model of nucleon structure.
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