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QCD sum rules for vector mesons (p, co, P) in nuclear matter are reexamined with an emphasis on
the reliability of various sum rules. Monitoring the continuum contribution and the convergence of the operator
product expansion plays a crucial role in determining the validity of a sum rule. The uncertainties arising from
less than precise knowledge of the condensate values and other input parameters are analyzed via a Monte
Carlo error analysis. Our analysis leaves no doubt that vector-meson masses decrease with increasing density.
This resolves the current debate over the behavior of the vector-meson masses and the sum rules to be used
in extracting vector meson properties in nuclear matter. We find a ratio of p-meson masses of
m* /m = 0.78~ 0.08 at nuclear matter saturation density.

PACS number(s): 24.85.+p, 21.65.+f, 11.55.Hx, 12.38.Lg

I. INTRODUCTION

Whether the properties of vector mesons might change
significantly with increasing nuclear matter density is of con-
siderable current theoretical interest. This interest is moti-
vated by its relevance to the physics of hot and dense matter
and the phase transition of matter from a hadronic phase to a
quark-gluon plasma at high density and/or temperature. In
particular, the modifications of vector-meson masses in
nuclear matter have been studied extensively.

At least three experimentally based studies have been
cited as supporting the picture of decreasing vector-meson
masses in nuclear matter. These include the quenching of
the longitudinal response (relative to the transverse response)
in quasielastic electron scattering [1], (e,e'p) reactions [2],
and the discrepancy between the total cross section in
K+-nucleus scattering on ' C and that predicted from an
impulse approximation calculation using K -nucleon scat-
tering amplitudes (extracted from K+ Delastic scat-tering)

[3—7]. More direct investigations of vector-meson masses
in the nuclear medium have also been proposed. One
proposal is to study dileptons as a probe of vector mesons in
the dense and hot matter formed during heavy-ion collisions
[8]. The dilepton mass spectra should allow one to recon-
struct the masses of vector mesons decaying electromagneti-
cally.

Theoretical investigations of vector-meson masses in
nuclear matter have used various approaches and models that
include the scaling ansatz of Brown and Rho [9], Nambu-
Jona-Lasinio model [10], Walecka model [11—17], quark
model [18], and the QCD sum-rule approach [19—22]. Pre-
vious studies of vector mesons at finite density via the QCD
sum-rule approach have been made by Hatsuda and Lee [19],
and subsequently by Asakawa and Ko [20,21]. It was found
that the vector-meson masses decrease with increasing den-
sity. This finding is consistent with the scaling ansatz pro-
posed in Ref. [9], the quark model [18] and predictions ob-
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tained from the Walecka model provided the polarizations of
the Dirac sea are included [13—17].

However, more recently, another QCD sum-rule analysis
has shed considerable doubt on the former conclusions. Ref-
erence [22] claims that the previous QCD sum-rule analyses
of the in-medium vector-meson masses are incorrect and that
the vector-meson masses should in fact increase in the me-
dium. In response, Hatsuda, Lee, and Shiomi [23] have ar-

gued that the scattering-length approach used in Ref. [22] is
conceptually erroneous. In this paper, we reexamine the
QCD sum rules for vector mesons in nuclear matter. Our
focus is on the reliability and validity of various sum rules.
We will show that careful consideration of the validity of the
sum rules used to extract the phenomenological results is
crucial to resolving this debate.

Taking the three-momentum to be zero in the rest frame
of the nuclear medium, one can only obtain one (direct) sum
rule in each vector channel. By taking the derivative of this
sum rule with respect to the inverse Borel mass, one may get
an infinite series of derivative sum rules. Hatsuda and Lee
[19] used the ratio of the first derivative sum rule and the
direct sum rule in their analysis while Koike [22] argued that
one should use the ratio of the second and first derivative
sum rules. We point out that in practical sum-rule applica-
tions, the derivative sum rules are much less reliable than the
direct sum rule and eventually become useless as the number
of derivatives taken increases. The ratio method used by both
previous authors does not reveal the validity of each indi-
vidual sum rule, and hence can lead to erroneous results.

QCD sum rules relate the phenomenological spectral pa-
rameters (masses, residues, etc.) to the fundamental proper-
ties of QCD. To maintain the predictive power of the sum-
rule approach, the phenomenological side of the sum rule is
typically described by the vector-meson pole of interest plus
a model accounting for the contributions of all excited states.
By working in a region where the pole dominates the phe-
nomenological side, one can minimize sensitivity to the
model and have assurance that it is the spectral parameters of
the ground state of interest that are being determined by
matching the sum rules. In practice, these considerations ef-
fectively set an upper limit in the Borel parameter space,
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beyond which the model for excited states dominates the
phenomenological side.

At the same time, the truncated operator product expan-
sion (OPE) must be sufficiently convergent' as to accurately
describe the true OPE. Since the OPE is an expansion in the
inverse squared Borel mass, this consideration sets a lower
limit in Borel parameter space, beyond which higher order
terms not present in the truncated OPE are significant and
important. Monitoring OPE convergence is absolutely cru-
cial to recovering nonperturbative phenomena in the sum-
rule approach, as it is the lower end of the Borel region
where the nonperturbative information of the OPE is most
significant. This information must also be accurate and this
point will be further illustrated in Sec. III.

In short, one should not expect to extract information on
the ground state spectral properties unless the ground state
dominates the contributions on the phenomenological side
and the OPE is sufficiently convergent. In this paper, we will
analyze each individual sum rule with regard to the above
criteria. A sum rule with an upper limit in Borel space lower
than the lower limit is considered invalid. As a measure of
the relative reliability of various sum rules we consider the
size of the regime in Borel space where both sides of the sum
rules are valid. In addition, the size of continuum contribu-
tions throughout the Borel region can also serve as a measure
of reliability, with small continuum model contributions be-
ing more reliable.

The uncertainties in the OPE are not uniform throughout
the Borel regime. These uncertainties arise from an impre-
cise knowledge of condensate values and other parameters
appearing in the OPE. As such, uncertainties in the OPE are
larger at the lower end of the Borel region. To estimate these
uncertainties we adopt the Monte Carlo error analysis ap-
proach recently developed in Ref. [24]. In turn, these uncer-
tainties provide error estimates for the extracted phenomeno-
logical spectral properties. This is the first systematic study
of uncertainties for in-medium hadronic properties.

In the following we will show in detail how the direct
sum rule is valid and the most reliable. The first derivative
sum rule suffers from a small Borel region of validity and
relatively large continuum model contributions throughout. It
is marginal at best and any predictions from this sum rule are
unreliable. Higher derivative sum rules are found to be in-
valid. Both the direct sum rule and the first derivative sum
rule lead to the same conclusion that vector-meson masses
decrease as the nuclear matter density increases.

This paper is organized as follows: In Sec. II, we sketch
the finite-density sum rules for vector mesons and discuss the
reliabilities of various sum rules. In Sec. III, the sum rules
are analyzed and the sum-rule predictions are presented and
discussed. Section IV is devoted to a conclusion.

II. FINITE-DENSITY SUM RULES

raised in these sum rules and refer the reader to the literature
[19—21] for more details of the sum rules.

QCD sum rules for vector mesons at finite density study
the correlator defined by

f
II~,(q) =—i d xe'~'(Vol TJ~(x)J~(o) I Po) (2 I)

where ~Wo) is the ground state of nuclear matter, T is the
covariant time-ordering operator [25], and I represents any
of the three conserved vector currents of QCD:

l 1-J = —(uy u —dy d), J —= (uy —u+dy„d),

J~=—sy s. (2.2)

1 " ImIIL, (s)
III (Q = —qo) = — ds 2 + subtractions. (2.3)

7rJo s+Q

To facilitate our discussion of derivative sum rules, it
is useful to derive the following dispersion relation for
11'"'(Q')—= (Q') "11 (Q')

1 t ImII~l"l(s)
II~i"l(Q2) = — ds 2 + subtractions (n~ 1),

'rr J o s+Q
(2.4)

with ImII~"l(s) =(—1)"s" ImII (s).

The nuclear medium is characterized by the rest-frame
nucleon density pz and the four-velocity u". We assume that
the medium is invariant under parity and time reversal. Lor-
entz covariance and the conservation of the currents imply
that the correlator II„„(q)can be decomposed into two in-
dependent structures multiplying two invariants, correspond-
ing to the transverse and longitudinal polarizations. The me-
dium modifications of these two invariants are in general
different. To keep our discussion succinct, we follow the
earlier works and take q= 0 in the rest frame of the medium,
u~=(1,0). Since there is no specific spatial direction, the
two invariants are related and only the longitudinal part,
III =II„"/(—3q )~q o, is needed.

All three currents under consideration are neutral currents.
This implies that both time orderings in the correlator corre-
spond to the creation or annihilation of the vector meson.
Accordingly, the spectral function is necessarily an even
function of the energy variable. One can write the invariant
function as IIL(qo) =II~(qo)/( —3qo), which satisfies the
following dispersion relation [19]:

In this section, we briefly review the QCD sum rules for
vector mesons in nuclear matter. We focus on some issues

'Here and in the following, "convergence" of the OPE simply

means that the highest dimension terms considered in the OPE, with

their Wilson coefficients calculated to leading order in perturbation

theory, are small relative to the leading terms of the OPE.

In the baryon case, the correlation function, considered in the rest
frame as a function of qo, has both even and odd parts. The reason
is that, at finite baryon density, a baryon in medium propagates
differently than an antibaryon, yielding a correlation function that is
asymmetric in the energy variable (see Refs. t26, 27]).

Here we have omitted the infinitesimal as we are only concerned
with large and spacelike qo.
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For large Q, one can evaluate the correlator by expand-
ing the product of currents according to the operator product
expansion (OPE). The result can in general be expressed as

C1 C2 C

IIt.(Q )= —co ln(Q )+ 2+ g+ 6+ * (2.5)

we use m, , F, , and sp to denote the corresponding vacuum
(zero-density limit) parameters.

Substituting Eqs. (2.5) and (2.9) into the dispersion rela-
tion of (2.3) and applying the Borel transform to both sides,
one obtains the direct sum rule

where we have omitted the polynomials in Q, which vanish
under Borel transform. The first term corresponds to the per-
turbative contribution and the rest are nonperturbative power
corrections. The coefficients, cp, c&, c2, and c3, have been
given in literature. For p and co mesons, one has [19,20]

1 ~ A
cp= 2 1+—,ci=0,

8m

Cm

( 1)t(M2)m —1 (2.10)

From the dispersion relation of (2.4), one finds

Fe( 82)n —m„* /M

* /M' 2 C2 C3
F,*e ~

8
+cpM E + '+ M2+ 2~

+
8m M 2!M

1 cled 1c2™(qq) +
24

G +
4 A2 MNPN'

~N

112 2 5
(2.6)

=n!co(M )"+'E

en+2+(—1)" c+,+ 2 +
M

where (0)~ —=(%0~0~+o) denotes the in-medium conden-

sate, m~= —,
' (m, +md), (qq)~ =(uu)~ =(dd)~, and A~ is

defined as

cm

(m n 1) t (M2)m —n —1

where we have defined

(2.11)

A~=2 dxx" '[q(x, p, )+(—1)"q(x,p, )]. (2.7)
0p

Here q(x, p, ) and q(x, p, ) are the scale dependent dis-
tribution functions for a quark and antiquark (of flavor q)
in a nucleon. We follow the standard linear density approxi-
mation to the in-medium condensates, (0)~

= (0)0

+(0)NpN, with (0)o the vacuum condensate and (0)N the
nucleon matrix element. The corresponding result for the P
meson is [21]

1 ( a
Cp= 2 1+, Ci =0,

4m (

1 A'

c,=2 m, (ss), + ——G' +A', MNp„,12
~N

224 5
3c

&
——— em, (ss) ——A 4MN pN . (2.8)

We adopt the usual pole plus continuum ansatz for the
spectral density. This ansatz was recently tested in the lattice
QCD investigation of Ref. [28] where it was found to de-
scribe nucleon correlation functions very well. The phenom-
enological spectral density for vector mesons in medium
takes the form [19—21]

—ImIIL(s) =
2 8(s)+ F,*8(s—m.* )+ co 0(s —sg),

(2 9)

where the first term denotes the contribution of the Landau
damping, m,* is the vector-meson mass in the medium, and

sp is the continuum threshold. In the calculations to follow,

(2.12)

One recognizes that Eq. (2.11) corresponds to the derivative
sum rules as they may also be obtained by taking derivatives
of Eq. (2.10) with respect to 1/M .

Hatsuda and Lee used Eq. (2.10) and the first derivative
sum rule (n= 1) of (2.11) in their calculations [19], while
Koike claimed that one should use the first and second
(n=2) derivative sum rules [22]. Of course, if one could
carry out the OPE to arbitrary accuracy and use a spectral
density independent of the model for excited state contribu-
tions, the predictions based on Eq. (2.10) and those based on
the derivative sum rules should be the same. In practical
calculations, however, one has to truncate the OPE and use a
simple phenomenological ansatz for the spectral density.
Thus it is unrealistic to expect the sum rules to work equally
well. The question is, which sum rules give the most reliable
predictions. To answer this question, let us compare the nth
derivative sum rule with the direct sum rule of (2.10). We
observe the following.

(1) The perturbative contribution in the derivative sum
rule has an extra factor n ~ relative to the corresponding term
in Eq. (2.10), implying that the perturbative contribution is
more important in the derivative sum rules than in the direct
sum rule, and becomes increasingly important as n increases.
Since the perturbative term mainly contributes to the con-
tinuum of the spectral density, maintaining dominance of the
lowest resonance pole in the sum rule will become increas-
ingly difficult as n increases.

(2) In Eq. (2.10), the term proportional to c is sup-
pressed by a factor of 1/(m —1)!,while it is only suppressed
by 1/(m n —1)! in the derivative su—m rule (m)n). This
implies that the convergence of the OPE is much slower
in the derivative sum rule than in the direct sum rule.
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This arises because the convergence of the OPE for
II'"~(Q )=(Q )"III(Q ) is obviously much slower than
that for IIL(Q ) for large Q . Consequently, the high order
power corrections are more important in the derivative sum
rule than in Eq. (2.10), and become more and more important
as n increases. If one would like to restrict the size of the last
term of the OPE to maintain some promise of OPE conver-
gence, the size of the Borel region in which the sum rules are
believed to be valid is restricted.

(3) The power corrections proportional to c, , c2, . . . ,c„
do not contribute to the nth derivative sum rule but do con-
tribute to Eq. (2.10) [29].If one truncates the OPE, part or all
of the nonperturbative information will be lost in the deriva-
tive sum rules. It is also worth noting that the leading power
corrections are the most desirable terms to have. They do not
give rise to a term in the continuum model and they are not
the last term in the OPE, whose relative contribution should
be restricted to maintain OPE convergence.

In practice, the predictions based on the direct sum rule of
(2.10) are more reliable than those from the derivative sum
rules, which become less and less reliable as n increases.
This can also be demonstrated by analyzing the sum rules
numerically.

III. SUM-RULE ANALYSIS AND DISCUSSION

If the sum rules were perfect, one would expect that the
two sides of the sum rules overlap for all values of the aux-
iliary parameter M (Borel mass). As mentioned above, one
has to truncate the OPE and use a phenomenological model
for the spectral density in practical calculations. Hence, the
two sides of the sum rules overlap only in a limited range of
M (at best).

All the previous works have used the ratio method of two
sum rules. There, one chooses the continuum threshold to
make the ratio of the two sum rules as flat as possible as a
function of Borel mass (the residue F„*drops out in the ra-

tio). Although it has also been used in various sum-rule cal-
culations in vacuum, we note that the ratio method has cer-
tain drawbacks. First, the ratio method does not check the
validity of each individual sum rule. It may happen that in-
dividual sum rules are not valid while their ratio is flat as
function of Borel mass. Second, the ratio method cannot ac-
count for the fact that sum rules do not work equally well.
The Borel region where a sum rule is valid can vary from
one sum rule to another. Finally, the continuum contributions
to the sum rules are not monitored in the ratio method. If the
continuum contribution is dominant in a sum rule, one
should not expect to get any reliable information about the
lowest resonance.

A. Outline of the method

To overcome these shortcomings of the ratio method, we
adopt here the optimizing procedure originated in Ref. [30],
which has been extensively used in analyzing various
vacuum sum rules [31]and finite-density sum rules [26]. In
this method, one optimizes the fit of the two sides of each
individual sum rule in a fiducial Borel region, which is cho-
sen such that the highest-dimensional condensates contribute
no more than —10% to the QCD side while the continuum

contribution is less than -50% of the total phenomenologi-
cal side (i.e., the sum of the pole and the continuum contri-
bution). The former sets a criterion for the convergence of
the OPE while the latter controls the continuum contribution.
While the selection of 50% is obvious for pole dominance,
the selection of 10% is a reasonably conservative criterion
that has not failed in practice. This point is further illus-
trated in the discussions to follow. The sum rule should be
valid in this fiducial Borel region as the pole contribution
dominates the phenomenological side and the QCD side is
reliable. We then select 51 points in the fiducial region and
use a y fit to extract the spectral parameters. The reader is
referred to Refs. [30,24) for more details of the method.

Since QCD sum rules relate the spectral parameters to the
properties of QCD, any imprecise knowledge of the conden-
sates and related parameters will give rise to uncertainties in
the extracted spectral parameters. These uncertainties have
not been analyzed systematically in the previous works. Here
we follow Ref. [24] and estimate these uncertainties via a
Monte Carlo error analysis. Gaussian distributions for the
condensate values and related parameters are generated via
Monte Carlo. The distributions are selected to reflect the
spread of values assumed in previously published QCD sum-
rule analyses and uncertainties such as the factorization hy-
pothesis. These distributions provide a distribution for the
OPE and thus uncertainty estimates for the QCD side which
will be used in the y fit. In fitting the sum rules taken from
the samples of condensate parameters one learns how these
uncertainties are mapped into uncertainties in the extracted
spectral parameters.

As in the previous works [19—21], we truncate the OPE at
dimension six and keep only the terms considered in the
literature. In the linear density approximation, the quark and
gluon condensates can be written as

~N
m, (qq), =m, (qq)0+ p~, (3 1)

ms ON
m, (ss) = m, (ss)o+y p~,

mq 2
(3.2)

G2 = —62 + —62 PN (3 3)

"Reasonable alternatives to the 10% and 50% criteria are auto-

matically explored in the Monte Carlo error analysis, as the con-
densate values and the continuum threshold change in each sample.

where y—= (ss)z/(qq)jv. The values of vacuum condensates
we use are a= —4vr (qq)O=0. 62~0.05 GeV3 [24],
b=47r ((n, /7r)G ) o0.4 0~. 15 GeV [24], and (ss)ol
(qq)O=0. 8~0.2 [32,30]. The quark mass m~ is chosen to
satisfy the Gell-Mann —Oakes —Renner relation, 2mq(qq)o

m f, and the —strange quark mass is taken to be
m, =(26~2.5)mq [33]. We adopt a~=45~7 MeV [33],
((n, /7r) G )~= —650~ 150 MeV [27], and y = 0.2~ 0.1

[19].For the moments of the parton distribution functions,
A~'s, we quote the values given in Ref. [19] and assign a
20% uncertainty to each value, A 2+ =0.9+ 0.18,
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after 100 condensate values generated via Monte Carlo. It is
perhaps worth emphasizing that the error bars do not repre-
sent the standard error of the mean, which is 10 times smaller
for this case. Hence the error bars are representative of the
spread of input parameter values. In addition, the uncertainty
estimates become insensitive to the number of Monte Carlo
samples after about 50 samples. We normalize all finite-

density spectral parameters (m,*, F,*, and sf) to their cor-
responding values in vacuum (i.e., zero-density limit). Thus,
the error bars in the ratios are dominated by the uncertainties
in the density dependent terms of the in-medium condensates
since the errors in the vacuum sum rules and finite-density
sum rules are correlated.

FIG. 1. Predictions of the direct sum rule for the ratio m*/I as

a function of the medium density.

A4+" = 0.12~ 0.024, A2 = 0.05 ~ 0.01, A4 =0.002~ 0.0004.
The strong coupling constant is taken to be
n, /m= 0.117~0.014 at 1 GeV scale [24].

The values of both vacuum and in-medium four-quark
condensates are not well determined. Early arguments placed
the values of vacuum four-quark condensates within 10' of
the vacuum factorized values [34]. However, later analyses
suggested that factorization underestimates the four-quark
condensates significantly [35,36]. Parametrizing the conden-
sate as lr(qq)Ii, we will consider values of I~=2+ 1 and

1.0~ Ir~3.5 [35,24]. As for the in-medium four-quark con-
densates, previous authors have adopted the in-medium fac-
torized values (mean field approximation) [19—21]. In the
study of finite-density baryon sum rules [26,27], it was found
that the in-medium factorized values of certain four-quark
condensates led to results in contradiction with experiment.
However, it should be pointed out that the four-quark opera-
tors appearing in the baryon sum rules are different from
those in the vector meson sum rules. Here we parametrize
the in-medium four-quark condensates as 1~(qq) ~N

The Gaussian distributions for the condensate values and
various parameters are generated using the values given
above. The error bars in the extracted fit parameters (see
below) are given by the standard deviation of the distribution

B. Numerical results

Let us start with the sum rules for p and co mesons. We
first analyze the direct sum rule of Eq. (2.10). The Landau

damping contribution proportional to p„is very small at the
densities considered here [19].Treating p„.as a search pa-
rameter, we find that the direct sum rule predicts a value for

p„ in accord with the Fermi-gas approximation,
p„=2m p~/M~ [23,19]. In calculating the uncertainty of
this parameter we found that there is insufficient information
in the sum rules to reliably determine this small contribution.
As a result we use the Fermi-gas relation and treat m,*,
F,*, and so as search parameters in the results presented
below.

The predictions for the ratio m*/m as a function of the
nucleon density is plotted in Fig. 1. One can see that the
p-meson mass decreases with increasing density. At nuclear
matter saturation density p~=p~=(110MeV), we find

I*/m~=0. 78~0.08. The residue F* and the continuum

threshold sz also decrease as the density increases. The pre-
dictions for the ratios F*/F and s& /so are shown in Figs. 2
and 3, respectively.

In Fig. 4 the left- and right-hand sides of the direct sum
rule are plotted as functions of M at the nuclear matter satu-
ration density. The near perfect overlap of the two sides of
this sum rule is typical of the quality of fits seen at other
densities. The corresponding valid Borel window and the
relative contributions of the continuum and the highest order
term in the OPE are displayed in Fig. 5 as dashed curves.
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FIG. 2. Predictions of the direct sum rule for the ratio F*/F~ as
a function of the medium density.

FIG. 3. Predictions of the direct sum rule for the ratio

(so /so)' as a function of the medium density.
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FIG. 4. The left- and right-hand sides of the direct sum rule as
functions of the Borel mass M at the nuclear matter saturation den-

sity.
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FIG. 5. Relative contributions of the continuum and the highest
order OPE terms to the sum rules as functions of the Borel mass at
nuclear matter saturation density. The dashed and dot-dashed curves
correspond to the direct sum rule and the first derivative sum rule,
respectively, Note the relatively broad regime of validity for the
direct sum rule.

One notices that the direct sum rule is valid in a broad Borel
regime, where the highest order term contributes less than
10' and the continuum contributes only about 15% at the
lower bound and the required 50%o at the upper bound. Thus,
the pole contribution truly dominates the sum rule in the
Borel region of interest, implying that the predictions are
reliable. We also find that both lower and upper bounds are
functions of the density and decrease as the density in-
creases. The rate of decrease for the upper bound is larger
than that for the lower bound, which means that the optimal
Borel window shrinks with increasing density.

We proceed now to analyze the first derivative sum rule of
Eq. (2.11) (with n = 1). It is found that this sum rule is valid
in a much smaller Borel regime. The continuum and highest
order OPE term contributions are shown in Fig. 5 as dot-
dashed curves for pz= p~. It can be seen that the continuum0

contribution exceeds 33% in the entire Borel window and the
relative importance of the highest order term increases as
compared to the direct sum rule. Thus, the predictions of the
first derivative sum rule are less reliable than those from the

direct sum rule. At zero density, the first derivative sum rule
predicts a very large p-meson mass and the continuum
threshold is only about 100MeV above the pole position.
Nevertheless, the first derivative sum rule also predicts that
the ratios m*/m~, F*/F~, and so/so all decrease as the
density increases, which agrees qualitatively with the predic-
tions of the direct sum rule. The reasons for the failure of the
first derivative sum rule to reproduce the p-meson mass ob-
tained from the direct sum rule are discussed at length in
Ref. [24].

In the second derivative sum rule of Eq. (2.11) (with
n = 2), the contributions of the quark and gluon condensates
drop out and the nonperturbative power correction starts with
dimension-six condensates, the last term of the truncated
OPE. The perturbative contribution and hence the continuum
contribution is multiplied by an extra factor of 2 relative to
that for the direct sum rule. Numerical analysis indicates that
there is no Borel window where the sum rule is valid. Thus,
one cannot get information about ground state vector mesons
from this sum rule. This is also true for the third and higher
derivative sum rules, where there are no power corrections at
the level of the OPE truncation considered here.

All of the results above are for the p and co mesons. A
similar analysis can be done for the P meson. Again, we
find the same pattern. The direct sum rule gives the
most reliable predictions, the first derivative sum rule yields
a less reliable result, and the second and higher derivative
sum rules are invalid. We find from the direct sum rule
m~&/m@=0. 99~0.01 at nuclear matter saturation density.
This rate of decrease is much smaller than that for the p and
cu mesons. This is due to the dominance of m, (ss) and its

~N

slow change with the medium density.

C. Discussion

The Borel transform plays important roles in making the
QCD sum-rule approach viable. It suppresses excited state
contributions exponentially on the phenomenological side,
thus minimizing the continuum model dependence. It also
improves OPE convergence by suppressing the high order
power corrections factorially on the QCD side. We observe
that taking derivatives of the direct sum rule with respect to
1/I is equivalent to a partial reverse of the Borel transform.
It is thus not surprising to find that the continuum contribu-
tion becomes more important and the convergence of the
OPE becomes slower in the derivative sum rules than in the
direct sum rule. Since the excited state contributions are
modeled roughly by a perturbative evaluation of the correla-
tor starting at an effective threshold, and the higher order
OPE terms are not well determined, there are more uncer-
tainties in the derivative sum rules than in the direct sum
rule. In fact, a simultaneous fit of both the direct and first
derivative sum rules in vacuum reveals that the first deriva-
tive sum rule plays a negligible role in determining the fit
parameters, when a y measure weighted by the OPE uncer-
tainty and relative reliabilities of the sum rules is used [24].

To improve the reliability of the derivative sum rules, one
must include more higher order terms in the OPE. However,
one usually does not have much control of the values of the
higher-dimensional condensates. In addition, the derivative
sum rule will always suffer from a factorial enhancement of
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the terms contributing to the continuum model. Therefore,
the direct sum rule will always yield the most reliable results
for vector mesons.

Hatsuda and Lee invoked both the direct and the first

derivative sum rules [19].Their results for the ratio m*/m~
are somewhat larger than those we obtained from the direct
sum rule but are somewhat smaller than those from the first
derivative sum rule. This discrepancy is obviously attributed
to their use of the two sum rules simultaneously without
weighing the relative merits of the sum rules. In Ref. [22],
Koike adopted both the first and second derivative sum rules.
His conclusion of slightly increasing vector-meson masses in
the medium depends on the use of the second derivative sum
rule, which we have found to be invalid when the OPE is
truncated at dimension six. Hatsuda et al. [23] also pointed
out some shortcomings of the second derivative sum rule.
However, their arguments are based on concerns over the
lack of information on the QCD side of the second derivative
sum rule and the absence of a "plateau" in the ratio of the
second and first derivative sum rules from which a mass is
extracted. In this paper, we have extensively explored why
these observations come about, and why even Hatsuda
el; al. 's analysis is less than satisfactory.

The use of the ratio method is mainly driven by the ex-
pectation that if the sum rules work well one should see a
plateau in the predicted quantities as functions of the Borel
mass. The usual interpretation of this criterion is that the
ratio of two different sum rules, proportional to certain spec-
tral parameter of interest (e.g. , mass), should be fiat as a
function of the Borel mass. Although it is true ideally, this
interpretation is potentially problematic in practice. We have
seen that the reliabilities and validities of two sum rules are
usually different. This feature cannot be revealed in the ratio
of the two sum rules. In addition, one can always achieve the
fatness of the ratio in the large Borel mass region, where
both sides of the sum rules are dominated by the continuum.
However, one learns little about the lowest pole in this case.

To make contact with the plateau criterion, we propose
that if a sum rule works well, one should see a plateau in the
plot of an extracted quantity expressed as a function of the
Borel mass. For example, from the direct sum rule of (2.10),
one can express the vector-meson mass as

I' p g ) 1/2

I IIs(M) ]

where IIs(M) denotes the right-hand side of Eq. (2.10). In
Fig. 6, we plot the right-hand side of Eq. (3.4) for the
p-meson case at four different densities, with optimized val-
ues for F,* and s& . One indeed sees very Oat curves within
the region of validity denoted by the error bars. It should be
emphasized that (1) this interpretation only involves one sum
rule and is thus different from the ratio method previously
used in the literature; (2) the value of m„*is only meaningful
in the valid region of a sum rule; (3) in this interpretation, the
plateau criterion is a true criterion, measuring the quality of
the overlap between the two sides of a valid sum rule. For
curiosity, we also display the curve outside the validity re-
gion for the case of pz= p~ in Fig. 6. One notices a devia-0
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FIG. 6. The p-meson mass as obtained from the right-hand side
of Eq. (3.4) as a function of M at various nuclear matter densities.
The curves from top down correspond to p&=0, p&=0.5p~,0

p~= p~, and p~= 1.5p~. The error bars denoting the valid regimes
are obtained from the relative errors of Fig. 1. Note how the Borel
regime shifts and becomes smaller as the density increases. The
curve for pz= p~ is plotted outside the valid region to demonstrate
the importance of carefully selecting a Borel region.

tion from the plateau just outside the valid Borel region. This
feature supports our selection of 10% as the criterion for
OPE convergence.

In the present analysis as well as the previous works, the
linear density approximation has been assumed for the in-
medium condensates. For a general operator there is no sys-
tematic way to study contributions that are of higher order in
the medium density. Model-dependent estimates in Ref. [37]
suggest that the linear approximation to (qq) should be

good (higher-order corrections -20% of the linear term) up
to nuclear matter saturation density. In our analyses, we have
assigned generous uncertainties to various condensate values
and parameters. We expect these will cover the uncertainties
arising from the linear density approximation. As the me-
dium density increases, the deviation from the linear density
approximation will increase. One then needs more precise
knowledge of the density dependence of various condensates
in order to have reliable QCD sum-rule predictions.

As in previous works, we have neglected the dimension-
six twist-four operators in (2.6), as the nucleon matrix ele-
ments of these operators are unknown. However, estimates
may be obtained from deep-inelastic-scattering data provided
one is willing to make a few additional assumptions [23].
Taking the estimates given in Ref. [23], we find these addi-
tional contributions have little effect on our results. At satu-
ration density, our present in-medium p-meson mass of 0.59
GeV is increased slightly to 0.62 GeV. Taking a 100% un-
certainty on the twist-four contributions has no apparent ef-
fect on the present uncertainty of 0.11 GeV. At saturation
density, the ratio pl pp /nfl p is shifted from 0.78 to 0.82 which
is small relative to the uncertainty of 0.08. Certainly further
study of the twist-four contributions is required. However,
we do not expect such contributions to significantly alter the
conclusions of this paper.

As a final remark, we comment on the electromagnetic
width of the p meson, I'(p ~e+e ). In free space, it is
given by [38,34]
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I'4~~ 4~, F,
I (p ~e+e )= —n~m z

~ = ns ~, (3.5)

where a~ is the electromagnetic coupling constant. The
modification of this result in medium may be estimated by
replacing m and F with their corresponding values in me-
dium. The ratio of the free space and in-medium widths can
be expressed as

I'*(po~e+e ) m F*
I (p ~e+e ) m* F~' (3 6)

Note that rn~/m* increases while F*/F decreases with in-

creasing density. However, the rate of decrease for F*/F is
larger than the rate of increase for m~/m*. Consequently,
the ratio for the widths is less than 1. At pz= p~, our esti-0

mate is I */1 =0.85~0.10. This implies that the p-meson
electromagnetic width becomes smaller in nuclear matter.
This behavior might be observed in the proposed experiment
studying dileptons as a probe of vector mesons in the dense
and hot matter [8].

IV. CONCLUSION

In this paper, we have carefully examined the QCD sum
rules for vector mesons in nuclear matter. Our primary con-
cern has been on the validity and reliability of various sum
rules. We emphasize that the sum rules do not work equally
well due to the truncation of the OPE and the use of a model
for the phenomenological spectral density. In particular, the
derivative sum rules are less reliable than the direct sum rule.
This is attributed to (1) the perturbative contribution and
hence the continuum contribution become increasingly im-
portant in the derivative sum rules; (2) the high order terms
in the OPE become increasingly important in the derivative
sum rules; (3) part (or all) of the nonperturbative information
is lost in the derivative sum rules. We therefore conclude that
any predictions based on (or partially on) second or higher
derivative sum rules are incorrect given the level of the OPE
truncation adopted in the literature. One should avoid using
the derivative sum rules in practical applications.

m*' =0.78 ~0.08,
I'*(po~e+e )

o +:0.85 ~ 0. 10r t'p'~e'e
(4.1)

and look forward to experimental vindication of these results
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We tested this conclusion numerically by analyzing the
sum rules with regard to pole dominance and OPE conver-
gence [30].A Monte Carlo based error analysis was used to
provide reliable uncertainties on our predictions and remove
the sensitivity of the results to the input parameters [24]. We
found that the direct sum rule satisfies our criteria and leads
to reliable predictions. The first derivative sum rule suffers
from a small region of validity and large continuum contri-
butions throughout. The second and higher derivative sum
rules are invalid.

Our analysis confirms that the QCD sum-rule approach
predicts a decrease of vector-meson masses with increasing
density, and resolves the debate between Hatsuda et aL [23]
and Koike [22].The prediction of a slight increase of vector-
meson masses in medium is based on an invalid second de-
rivative sum rule.

We note that all previous authors have used the ratio
method in the analysis of the sum rules, which has many
drawbacks and may lead to incorrect results. We encourage
the community to adopt the approach developed in Ref. [24]
which checks the quality of the overlap between two sides of
each individual sum rule by monitoring pole dominance and
the convergence of the OPE. This approach also allows one
to realistically estimate the uncertainties and reveal the pre-
dictive ability of QCD sum rules.

The analysis presented here is the most reliable QCD
analysis of in-medium vector-meson properties. At nuclear
matter saturation density, we predict
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